µCap Negative Low Dropout Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

 2017 Microchip Technology Inc.

DS20005881A-page 1

MIC5271

Features

• Stable with Ceramic or Tantalum Capacitors
• Standard Fixed Output Voltage Options: 3.0V and 

5.0V

• Adjustable Output Voltage Option: (–1.2V to 

–14V)

• Positive and Negative Enable Thresholds
• Low Dropout Voltage: –500 mV @ –100 mA
• Low Ground Current: –25 µA @ Load = –100 µA
• Tight Initial Accuracy: ±2%
• Tight Load and Line Regulation
• Thermal Shutdown and Current-Limit Protection
• IttyBitty 5-Pin SOT23 Packaging
• Zero-Current Off Mode

Applications

• GaAsFET Bias
• Portable Cameras and Video Recorders
• PDAs
• Battery-Powered Equipment
• Post-Regulation of DC/DC Converters

General Description

The MIC5271 is a µCap 100 mA negative regulator in
a SOT23-5 package. With better than 2% initial
accuracy, this regulator provides a very accurate
supply voltage for applications that require a negative
rail. The MIC5271 sinks 100 mA of output current at
very low dropout voltage (500 mV typical, 700 mV
maximum at 100 mA of output current).
The µCap regulator design is optimized to work with
low-value, low-cost ceramic capacitors. The output
typically requires only a 1 µF capacitance for stability.
Designed for applications where small packaging and
efficiency are critical, the MIC5271 combines LDO
design expertise with IttyBitty packaging to improve
performance and reduce power dissipation. Ground
current is optimized to help improve battery life in
portable applications. The MIC5271 also includes a
TTL-compatible enable pin, allowing the user to put the
part into a zero-current off mode, in which the ground
current is only ±1 µA, typical.
The MIC5271 is available in the 5-pin SOT23 package
for space saving applications and it is available with an
adjustable output.

Package Types

Please see pin descriptions in 

Table 3-1

.

MIC5271YM5

5-Lead SOT23 (M5)

Adjustable Output Voltage

(Top View)

MIC5271-5.0YM5 *

5-Lead SOT23 (M5)

Fixed Output Voltage

(Top View)

* 5.0V pinout shown. 3.0V version is identical.

ADJ GND

–OUT

–IN

EN

3

1

5

2

4

L9AA

NC GND

–OUT

–IN

EN

3

1

5

2

4

L950

µCap Negative Low Dropout Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

MIC5271

DS20005881A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuit

Functional Block Diagram

MIC5271
SOT23-5

V

IN

–6.0V

MIC5271YM5

1

2

3

4

5

1μF

10μF

R1

R2

V

OUT

–5.0V

GND

EN

–IN

ADJ

–OUT

+

GND

–OUT

+

ADJ

EN

–IN

MIC5271YM5

MIC5271YM5

(Adjustable Version)

+

GND

+

EN

MIC5271-x.xYM5

–OUT

–IN

MIC5271-x.xYM5

(Fixed Version)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

 2017 Microchip Technology Inc.

DS20005881A-page 3

MIC5271

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage (V–

IN

) ................................................................................................................................... –20V to +0.3V

Enable Voltage (V

EN

) .................................................................................................................................. –20V to +20V

Power Dissipation .................................................................................................................................. Internally Limited
ESD Rating .............................................................................................................................................................

Note 1

Operating Ratings ‡

Input Voltage (V–

IN

) ................................................................................................................................... –16V to –3.3V

Enable Voltage (V

EN

) .................................................................................................................................. –16V to +16V

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice:

 The device is not guaranteed to function outside its operating ratings.

Note 1:

Devices are ESD sensitive. Handling precautions recommended.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

MIC5271

DS20005881A-page 4

 2017 Microchip Technology Inc.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS

Electrical Characteristics:

 V–

IN

 = V–

OUT

 – 1.0V; C

OUT

 = 4.7 µF, I

OUT

 = 100 µA; T

J

 = +25°C, bold values indicate 

–40°C ≤ T

J

 ≤ +125°C; unless otherwise noted. 

Note 1

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Voltage Accuracy

V–

OUT

–2

2

%

Variation from nominal V–

OUT

.

–3

3

Output Voltage Temperature 
Coefficient

∆V–

OUT

/∆T

100

ppm/°C

Note 2

Line Regulation

∆V–

OUT

/

V–

OUT

0.04

0.15

%/V

V–

IN

 = V–

OUT

 – 1V to –16V

0.2

Load Regulation

∆V–

OUT

/

V–

OUT

0.4

1.8

%

I

OUT

 = –100 µA to –100 mA, 

Note 3

2.0

Dropout Voltage, 

Note 4

V–

IN

 – 

V–

OUT

–55

mV

I

OUT

 = –100 µA

–360

–500

I

OUT

 = –50 mA

–500

–700

I

OUT

 = –100 mA

–900

Ground Current, 

Note 5

I

GND

–25

–100

µA

I

OUT

 = –100 µA

–0.9

mA

I

OUT

 = –50 mA

–2.0

–3.0

I

OUT

 = –100 mA

Ground Current in Shutdown

I

GND_SD

–1.0

0.1

1.0

µA

V

EN

 = ±0.6V

Ripple Rejection

PSRR

50

dB

f = 120 Hz

Current Limit

I

LIMIT

235

350

mA

V–

OUT

 = 0V

Turn-On Time

t

ON

60

µs

Time to V

OUT

 = 90% (nominal)

Input Low Voltage

V

EN

±0.6

V

Regulator OFF

Input High Voltage

±2.0

Regulator ON

Enable Input Current

I

EN

0.1

µA

V

EN

 = ±0.6V and –2.0V

5.6

10.0

V

EN

 = +2.0V

Note 1:

Specification for packaged product only

2:

Output voltage temperature coefficient is defined as the worst case voltage change divided by the total 
temperature range.

3:

Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are 
tested for load regulation in the load range from 100 µA to 100 mA. Changes in output voltage due to heat-
ing effects are covered by the thermal regulation specification.

4:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its 
nominal value measured at 1V differential.

5:

Ground pin current is the regulator quiescent current plus pass transistor base current. The total current 
drawn from the supply is the sum of the load current plus the ground pin current.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

 2017 Microchip Technology Inc.

DS20005881A-page 5

MIC5271

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Junction Temperature Range

T

J

–40

+125

°C

Storage Temperature Range

T

S

–65

+150

°C

Lead Temperature

+260

°C

Soldering, 10s

Package Thermal Resistances
Thermal Resistance SOT23-5

JA

235

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2:

The maximum allowable power dissipation is a function of the maximum junction temperature, T

J(MAX)

 the 

junction-to-ambient thermal resistance, θ

JA

, and the ambient temperature, T

A

. The maximum allowable 

power dissipation at any ambient temperature is calculated using: P

D(MAX)

 = (T

J(MAX)

 – T

A

) ÷ θ

JA

, where 

θ

JA

 is 235°C/W. Exceeding the maximum allowable power dissipation will result in excessive die tempera-

ture, and the regulator will go into thermal shutdown. See the “Thermal Considerations” sub-section in the 
Application Information for details.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

MIC5271

DS20005881A-page 6

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Dropout Characteristics.

FIGURE 2-2:

Output Voltage vs. Output 

Current.

FIGURE 2-3:

Output Voltage vs. 

Temperature.

FIGURE 2-4:

Ground Current vs. Output 

Current.

FIGURE 2-5:

Ground Current vs. Input 

Voltage.

FIGURE 2-6:

Ground Current vs. Input 

Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

OUTPUT VOLTAGE (V)

SUPPLY VOLTAGE (V)

0 LOAD

-100mA LOAD

0

-1

-2

-3

-4

-5

-3.26

-3.265

-3.27

-3.275

-3.28

-3.285

-3.29

-3.295

-3.3

-3.305

OUTPUT VOLTAGE (V)

OUTPUT CURRENT (mA)

0

-20

-40

-60

-80

-100

0

-0.5

-1

-1.5

-2

-2.5

0

GROUND CURRENT (mA)

OUTPUT CURRENT (mA)

5V

IN

-20

-40

-60

-80

-100

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

GROUND CURRENT (μA)

SUPPLY VOLTAGE (V)

0μA LOAD

-100μA LOAD

-1mA LOAD

-1

-2

-3

-4

-5

0

0

-0.5

-1

-1.5

-2

-2.5

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

-100mA LOAD

-50mA LOAD

-10mA LOAD

0

-1

-2

-3

-4

-5

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

 2017 Microchip Technology Inc.

DS20005881A-page 7

MIC5271

FIGURE 2-7:

Ground Current vs. 

Temperature.

FIGURE 2-8:

Ground Current vs. 

Temperature.

FIGURE 2-9:

Positive Enable Threshold 

vs. Supply Voltage.

FIGURE 2-10:

Negative Enable Threshold 

vs. Supply Voltage.

FIGURE 2-11:

Dropout Voltage vs. Output 

Current.

FIGURE 2-12:

Dropout Voltage vs. 

Temperature.

0

-5

-10

-15

-20

-25

-30

GROUND CURRENT (

μA)

TEMPERATURE (°C)

0A LOAD

-1mA LOAD

-40 -20

0

20

40

60

80 100 120

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

GROUND CURRENT (

μA)

TEMPERATURE (°C)

-50mA LOAD

-100mA LOAD

-40 -20

0

20

40

60

80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ENABLE THRESHOLD (V)

SUPPLY VOLTAGE (V)

ENABLE OFF

ENABLE ON

-4

-7

-10

-13

-16

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

ENABLE THRESHOLD (V)

SUPPLY VOLTAGE (V)

ENABLE OFF

ENABLE ON

-4

-7

-10

-13

-16

0

-100

-200

-300

-400

-500

-600

0

DROPOUT VOLTAGE (mV)

OUTPUT CURRENT (mA)

-20

-40

-60

-80

-100

0

-50

-100

-150

-200

-250

-300

-350

-400

DROPOUT VOLTAGE (mV)

TEMPERATURE (°C)

0A LOAD

-10mA LOAD

-40 -20

0

20

40

60

80 100 120

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

MIC5271

DS20005881A-page 8

 2017 Microchip Technology Inc.

FIGURE 2-13:

Dropout Voltage vs. 

Temperature

.

FIGURE 2-14:

Load Transient

.

FIGURE 2-15:

Load Transient.

FIGURE 2-16:

Negative Enable Transient.

FIGURE 2-17:

Positive Enable Transient.

0

-100

-200

-300

-400

-500

-600

-700

DROPOUT VOLTAGE (mV)

TEMPERATURE (°C)

-50mA LOAD

-100mA LOAD

-40 -20

0

20

40

60

80 100 120

Time (2ms/div)

OUTPUT CURRENT

(50mA/div)

V

OUT

(AC-COUPLED)

(10mV/div)

C

OUT

 

= 1μF CERAMIC

V

IN

 

= –5V

V

OUT

 

= –3V

–10mA

-100mA

Time (2ms/div)

OUTPUT CURRENT

(50mA/div)

V

OUT

(AC-COUPLED)

(10mV/div)

C

OUT

 

= 1μF CERAMIC

V

IN

 

= –5V

V

OUT

 

= –3V

–10mA

–100mA

Time (20μs/div)

ENABLE

(1V/div)

V

OUT

(1V/div)

0V

0V

Time (20μs/div)

ENABLE

(1V/div)

V

OUT

(1V/div)

0V

0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

 2017 Microchip Technology Inc.

DS20005881A-page 9

MIC5271

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

Adjustable

Pin Number

Fixed

Pin Name

Description

1

1

EN

Enable Input. TTL logic-compatible enable input. Logic HIGH = ON, 
Logic LOW or open = OFF.

2

2

GND

Ground.

3

ADJ

Adjustable (Input): Adjustable feedback output connects to resistor 
voltage divider.

3

NC

No Connect. Leave unconnected.

4

4

–OUT

Negative Regulator Output.

5

5

–IN

Negative Supply Input.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005881A-html.html
background image

MIC5271

DS20005881A-page 10

 2017 Microchip Technology Inc.

4.0

APPLICATION INFORMATION

The MIC5271 is a general-purpose negative voltage
regulator that can be used in a system that requires a
clean negative voltage. This includes the post
regulation of DC/DC converters (transformer or charge
pump based voltage converters). These negative
voltages typically require a negative low dropout
voltage regulator to provide a clean output from noisy
input power.

4.1

Input Capacitor

A 1 µF input capacitor should be placed from –IN to
GND if there is more than two inches of wire or trace
between the input and the AC filter capacitor or if a
battery is used as the input.

4.2

Output Capacitor

The MIC5271 requires an output capacitor for stable
operation. A minimum of 1 µF of output capacitance is
required. The output capacitor can be increased
without limitation to improve transient response. The
output does not require ESR to maintain stability;
therefore a ceramic capacitor can be used. High-ESR
capacitors may cause instability. Capacitors with an
ESR of 3Ω or greater at 100 kHz can cause a
high-frequency oscillation.
Low-ESR tantalums are recommended due to the tight
capacitance tolerance over temperature. The Z5U
dielectric can change capacitance value by as much
50% over temperature, and the Y5V dielectric can
change capacitance value by as much as 60% over
temperature. To use a ceramic chip capacitor with the
Y5V dielectric, the value must be much higher than a
tantalum to ensure the same minimum capacitor value
over temperature.

4.3

No-Load Stability

The MIC5271 does not require a load for stability.

4.4

Enable Input

The MIC5271 comes with an enable pin that allows the
regulator to be disabled. Forcing the enable pin higher
than the negative threshold and lower than the positive
threshold disables the regulator and sends it into a
“zero” off-mode current state. In this state, current
consumed by the regulator goes nearly to zero,
typically drawing only ±1 µA. The MIC5271 will be in
the “on” mode when the voltage applied to the enable
pin is either greater than the positive threshold or less
than the negative threshold.

FIGURE 4-1:

Positive and Negative 

Enable Voltage vs. Supply Voltage.

4.5

Thermal Considerations

Absolute values will be used for thermal calculations to
clarify the meaning of power dissipation and voltage
drops across the part.
Proper thermal design for the MIC5271-5.0YM5 can be
accomplished with some basic design criteria and
some simple equations. The following information must
be known to implement your regulator design:
• V

IN

 = Input voltage

• V

OUT

 = Output voltage

• I

OUT

 = Output current

• T

A

 = Ambient operating temperature

• I

GND

 = Ground current

Maximum power dissipation can be determined by
knowing the ambient temperature (T

A

), the maximum

junction temperature (+125°C), and the thermal
resistance (junction-to-ambient). The thermal
resistance for this part, assuming a minimum footprint
board layout, is +235°C/W. The maximum power
dissipation at an ambient temperature of +25°C can be
determined with 

Equation 4-1

 and 

Equation 4-2

:

 

ENABLE VOL

TAGE (V)

5

4

3
2

1

0

–1

–2
–3

–4

–5

–7

–15

–3

–13

–11

–9

ENABLE INPUT

REGULATOR ON

REGULATOR OFF

REGULATOR ON

SUPPLY VOLTAGE (V)

–5

Maker
Microchip Technology Inc.
Datasheet PDF Download