ATtiny43U Data Sheet Summary

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

Features

High Performance, Low Power AVR

® 

8-bit Microcontroller

Advanced RISC Architecture

– 123 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

Non-volatile Program and Data Memories

– 4K Bytes of In-System Programmable Program Memory Flash

– 64 Bytes of In-System Programmable EEPROM

– 256 Bytes of Internal SRAM

– Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM

– Data Retention: 20 years at 85

°C/ 100 years at 25°C

– Programming Lock for Software Security

Peripheral Features

– QTouch

®

 Library Support for Capacitive Touch Sensing (8 Channels)

– Two 8-bit Timer/Counters with two PWM Channels, Each

– Programmable Watchdog Timer with Separate On-chip Oscillator

– On-chip Analog Comparator

– 10-bit ADC

• 4 Single-ended Channels

– Universal Serial Interface

– Boost  Converter

Special Microcontroller Features

– debugWIRE On-chip Debug System

– In-System Programmable via SPI Port

– External and Internal Interrupt Sources

– Pin Change Interrupt on 16 Pins

– Low Power Idle, ADC Noise Reduction and Power-down Modes

– Enhanced Power-on Reset Circuit

– Programmable Brown-out Detection Circuit

– Internal Calibrated Oscillator

– Temperature Sensor On-chip

I/O and Packages

– Available in 20-pin SOIC and 20-pin QFN/MLF

– 16 Programmable I/O Lines

Operating Voltage:

– 0.7 – 1.8V (via On-chip Boost Converter)

– 1.8 – 5.5V (Boost Converter Bypassed)

Speed Grade

– Using On-chip Boost Converter

• 0 – 4 MHz

– External Power Supply

• 0 – 4 MHz @ 1.8 – 5.5V

• 0 – 8 MHz @ 2.7 – 5.5V

Low Power Consumption

– Active Mode, 1 MHz System Clock

• 400 µA @ 3V (Without Boost Converter)

– Power-down Mode

• 150 nA @ 3V (Without Boost Converter)

8-bit  
Microcontroller 
with 4K Bytes 
In-System
Programmable 
Flash and Boost 
Converter

ATtiny43U

Summary

Rev. 8048CS–AVR–02/12

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

2

8048CS–AVR–02/12

ATtiny43U

1.

Pin Configurations

Figure 1-1.

Pinout of ATtiny43U

1.1

Pin Descriptions

1.1.1

V

CC

Supply voltage.

1.1.2

GND

Ground.

1.1.3

Port A (PA7:PA0)

Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source

(T0/PCINT8) PB0

(OC0A/PCINT9) PB1

(OC0B/PCINT10) PB2

(T1/CLKO/PCINT11) PB3

(DI/OC1A/PCINT12) PB4

(DO/OC1B/PCINT13) PB5

(USCK/SCL/PCINT14) PB6

(INT0/PCINT15) PB7

VCC

GND

20
19
18
17
16
15
14
13
12
11

1
2
3
4
5
6
7
8
9
10

PA7 (RESET/dW/PCINT7)
PA6 (CLKI/PCINT6)
PA5 (AIN1/PCINT5) 
PA4 (AIN0/PCINT4) 
PA3 (ADC3/PCINT3) 
PA2 (ADC2/PCINT2)
PA1 (ADC1/PCINT1)
PA0 (ADC0/PCINT0)
VBAT 
LSW

QFN/MLF Top View

SOIC

NOTE:  Bottom pad should 
  be Soldered to ground.

1

2

3

4

5

15

14

13

12

11

20

19

18

17

16

6

7

8

9

10

(OC0B/PCINT9) PB2

(T1/CLKO/PCINT11) PB

3

(DI/OC1A/PCINT12) 

PB4

(DO/OC1B/PCINT13) 

PB5

(USCK/SCL/PCINT14) 

PB6

PA4 (AIN0/

PCINT4

)

PA3 (ADC3/

PCINT3

)

PA2 (ADC2/

PCINT2

)

PA1 (ADC1/

PCINT1

)

PA0 (ADC0/

PCINT0

)

(INT0/PCINT15)

 PB7

VCC

GND

LSW

VBA

T

PB1 

(OC0A/PCINT9)

PB0 

(T0/PCINT8)

P

A7 

(RESET/dW/PCINT7)

P

A6 (CLKI)

P

A5 (AIN1/PCINT5)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

3

8048CS–AVR–02/12

ATtiny43U

capability except PA7 which has the RESET capability. To use pin PA7 as an I/O pin, instead of
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port A pins that are externally pulled low
will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port A has an alternate functions as analog inputs for the ADC, analog comparator, timer/coun-
ter, SPI and pin change interrupt as described in 

“Alternate Port Functions” on page 69

.

1.1.4

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in 

Table 20-4 on page

161

. Shorter pulses are not guaranteed to generate a reset.

1.1.5

Port B (PB7:PB0)

Port B is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features as listed in 

Section 11.3 “Alternate

Port Functions” on page 69

.

1.1.6

LSW

Boost converter external inductor connection. Connect to ground when boost converter is dis-
abled permanently.

1.1.7

V

BAT

Battery supply voltage. Connect to ground when boost converter is disabled permanently.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

4

8048CS–AVR–02/12

ATtiny43U

2.

Overview

The ATtiny43U is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny43U achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

Figure 2-1.

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting

STACK

POINTER

SRAM

PROGRAM

COUNTER

BOOST

CONVERTER

PROGRAMMING

LOGIC

ISP

INTERFACE

INTERNAL

OSCILLATOR

WATCHDOG

TIMER

MCU CONTROL

REGISTER

MCU STATUS

REGISTER

TIMER/

COUNTER0

TIMER/

COUNTER1

CALIBRATED

OSCILLATOR

TIMING AND

CONTROL

INTERRUPT

UNIT

EEPROM

ANALOG

COMPARATOR

ADC

POWER

SUPERVISION

POR
BOD

RESET

ON-CHIP

DEBUG

VOLTAGE

REFERENCE

GENERAL

PURPOSE

REGISTERS

X

Y

Z

ALU

STATUS

REGISTER

PROGRAM

FLASH

INSTRUCTION

REGISTER

INSTRUCTION

DECODER

CONTROL

LINES

DATA REGISTER

PORT A

DIRECTION REG.

PORT A

DRIVERS

PORT A

V

CC

VBAT

LSW

RESET

DATA REGISTER

PORT B

DIRECTION REG.

PORT B

DRIVERS

PORT B

GND

USI

PA[7:0]

PB[7:0]

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

5

8048CS–AVR–02/12

ATtiny43U

architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATtiny43U provides the following features: 4K byte of In-System Programmable Flash, 64
bytes EEPROM, 256 bytes SRAM, 16 general purpose I/O lines, 32 general purpose working
registers, two 8-bit Timer/Counters with two PWM channels, Internal and External Interrupts, a
4-channel 10-bit ADC, Universal Serial Interface, a programmable Watchdog Timer with internal
Oscillator, internal calibrated oscillator, and three software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator,
and Interrupt system to continue functioning. The Power-down mode saves the register con-
tents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise
Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise
during ADC conversions. 

A special feature of ATtiny43U is the built-in boost voltage converter, which provides 3V supply
voltage from an external, low voltage.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core.

The ATtiny43U AVR is supported by a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

6

8048CS–AVR–02/12

ATtiny43U

3.

General Information

3.1

Resources

A comprehensive set of development tools, drivers and application notes, and datasheets are
available for download on http://www.atmel.com/avr. 

3.2

Code Examples 

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

3.3

Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel
AVR microcontrollers. The QTouch Library includes support for QTouch

®

 and QMatrix

®

 acquisi-

tion methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the
Application Programming Interface (API) of the library to define the touch channels and sensors.
The application then calls the API to retrieve channel information and determine the state of the
touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more informa-
tion and details of implementation, refer to the QTouch Library User Guide – also available from
the Atmel website.

3.4

Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

7

8048CS–AVR–02/12

ATtiny43U

4.

Register Summary

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

0x3F (0x5F)

SREG

I

T

H

S

V

N

Z

C

Page 9

0x3E (0x5E)

SPH

SP8

Page 12

0x3D (0x5D)

SPL

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

Page 12

0x3C (0x5C)

OCR0B

Timer/Counter0 – Output Compare Register B

Page 97

0x3B (0x5B)

GIMSK

INT0

PCIE1

PCIE0

Page 61

0x3A (0x5A)

GIFR

INTF0

PCIF1

PCIF0

Page 61

0x39 (0x59)

TIMSK0

OCIE0B

OCIE0A

TOIE0

Page 97

0x38 (0x58)

TIFR0

OCF0B

OCF0A

TOV0

Page 98

0x37 (0x57)

SPMCSR

CTPB

RFLB

PGWRT

PGERS

SPMEN

Page 139

0x36 (0x56)

OCR0A

Timer/Counter0 – Output Compare Register A

Page 97

0x35 (0x55)

MCUCR

BODS

PUD

SE

SM1

SM0

BODSE

ISC01

ISC00

Pages 

33

60

79

0x34 (0x54)

MCUSR

WDRF

BORF

EXTRF

PORF

Page 55

0x33 (0x53)

TCCR0B

FOC0A

FOC0B

WGM02

CS02

CS01

CS00

Page 95

0x32 (0x52)

TCNT0

Timer/Counter0

Page 96

0x31  (0x51)

OSCCAL

CAL7

CAL6

CAL5

CAL4

CAL3

CAL2

CAL1

CAL0

Page  28

0x30 (0x50)

TCCR0A

COM0A1

COM0A0

COM0B1

COM0B0

WGM01

WGM00

Page 92

0x2F (0x4F)

TCCR1A

COM1A1

COM1A0

COM1B1

COM1B0

WGM11

WGM10

Page 92

0x2E (0x4E)

TCCR1B

FOC1A

FOC1B

WGM12

CS12

CS11

CS10

Page 95

0x2D (0x4D)

TCNT1

Timer/Counter1

Page 97

0x2C (0x4C)

OCR1A

Timer/Counter1 – Output Compare Register A

Page 97

0x2B (0x4B)

OCR1B

Timer/Counter1 – Output Compare Register B

Page 97

0x2A (0x4A)

Reserved

0x29 (0x49)

Reserved

0x28 (0x48)

Reserved

0x27 (0x47)

DWDR

DWDR[7:0]

Page 134

0x26 (0x46)

CLKPR

CLKPCE

CLKPS3

CLKPS2

CLKPS1

CLKPS0

Page 28

0x25 (0x45)

Reserved

0x24 (0x44)

Reserved

0x23 (0x43)

GTCCR

TSM

PSR10

Page 101

0x22 (0x42)

Reserved

0x21 (0x41)

WDTCSR

WDIF

WDIE

WDP3

WDCE

WDE

WDP2

WDP1

WDP0

Page 55

0x20 (0x40)

PCMSK1

PCINT15

PCINT14

PCINT13

PCINT12

PCINT11

PCINT10

PCINT9

PCINT8

Page 62

0x1F (0x3F)

Reserved

0x1E (0x3E)

EEAR

EEAR5

EEAR4

EEAR3

EEAR2

EEAR1

EEAR0

Page 20

0x1D (0x3D)

EEDR

EEPROM Data Register

Page 21

0x1C (0x3C)

EECR

EEPM1

EEPM0

EERIE

EEMPE

EEPE

EERE

Page 21

0x1B (0x3B)

PORTA

PORTA7

PORTA6

PORTA5

PORTA4

PORTA3

PORTA2

PORTA1

PORTA0

Page 79

0x1A (0x3A)

DDRA

DDA7

DDA6

DDA5

DDA4

DDA3

DDA2

DDA1

DDA0

Page 79

0x19 (0x39)

PINA

PINA7

PINA6

PINA5

PINA4

PINA3

PINA2

PINA1

PINA0

Page 79

0x18 (0x38)

PORTB

PORTB7

PORTB6

PORTB5

PORTB4

PORTB3

PORTB2

PORTB1

PORTB0

Page 79

0x17 (0x37)

DDRB

DDB7

DDB6

DDB5

DDB4

DDB3

DDB2

DDB1

DDB0

Page 79

0x16 (0x36)

PINB

PINB7

PINB6

PINB5

PINB4

PINB3

PINB2

PINB1

PINB0

Page 79

0x15 (0x35)

GPIOR2

General Purpose I/O Register 2

Page 22

0x14 (0x34)

GPIOR1

General Purpose I/O Register 1

Page 22

0x13 (0x33)

GPIOR0

General Purpose I/O Register 0

Page 22

0x12 (0x32)

PCMSK0

PCINT7

PCINT6

PCINT5

PCINT4

PCINT3

PCINT2

PCINT1

PCINT0

Page 62

0x11 (0x31)

Reserved

0x10 (0x30)

USIBR

USI Buffer Register

Page 113

0x0F (0x2F)

USIDR

USI Data Register

Page 112

0x0E (0x2E)

USISR

USISIF

USIOIF

USIPF

USIDC

USICNT3

USICNT2

USICNT1

USICNT0

Page 111

0x0D (0x2D)

USICR

USISIE

USIOIE

USIWM1

USIWM0

USICS1

USICS0

USICLK

USITC

Page 109

0x0C (0x2C)

TIMSK1

OCIE1B

OCIE1A

TOIE1

Page 98

0x0B (0x2B)

TIFR1

OCF1B

OCF1A

TOV1

Page 98

0x0A (0x2A)

Reserved

0x09 (0x29)

Reserved

0x08 (0x28)

ACSR

ACD

ACBG

ACO

ACI

ACIE

ACIS1

ACIS0

Page 115

0x07 (0x27)

ADMUX

REFS

MUX2

MUX1

MUX0

Page 128

0x06 (0x26)

ADCSRA

ADEN

ADSC

ADATE

ADIF

ADIE

ADPS2

ADPS1

ADPS0

Page 129

0x05 (0x25)

ADCH

ADC Data Register High Byte

Page 130

0x04 (0x24)

ADCL

ADC Data Register Low Byte

Page 130

0x03 (0x23)

ADCSRB

BS

ACME

ADLAR

ADTS2

ADTS1

ADTS0

Pages 

48

, 115, 131

0x02 (0x22)

Reserved

0x01 (0x21)

DIDR0

AIN1D

AIN0D

ADC3D

ADC2D

ADC1D

ADC0D

Pages 116, 132

0x00 (0x20)

PRR

PRE2

PRE1

PRE0

PRTIM1

PRTIM0

PRUSI

PRADC

Page 34

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

8

8048CS–AVR–02/12

ATtiny43U

Note:

1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 

should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 

registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 

instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The 
CBI and SBI instructions work with registers 0x00 to 0x1F only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

9

8048CS–AVR–02/12

ATtiny43U

5.

Instruction Set Summary

Mnemonics

Operands

Description

Operation

Flags

#Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD

Rd, Rr

Add two Registers

Rd 

← Rd + Rr

Z,C,N,V,H

1

ADC

Rd, Rr

Add with Carry two Registers

Rd 

← Rd + Rr + C

Z,C,N,V,H

1

ADIW

Rdl,K

Add Immediate to Word

Rdh:Rdl 

← Rdh:Rdl + K

Z,C,N,V,S

2

SUB

Rd, Rr

Subtract two Registers

Rd 

← Rd - Rr

Z,C,N,V,H

1

SUBI

Rd, K

Subtract Constant from Register 

Rd 

← Rd - K

Z,C,N,V,H

1

SBC

Rd, Rr

Subtract with Carry two Registers

Rd 

← Rd - Rr - C

Z,C,N,V,H

1

SBCI

Rd, K

Subtract with Carry Constant from Reg.

Rd 

← Rd - K - C

Z,C,N,V,H

1

SBIW

Rdl,K

Subtract Immediate from Word

Rdh:Rdl 

← Rdh:Rdl - K

Z,C,N,V,S

2

AND

Rd, Rr

Logical AND Registers

Rd 

← Rd • Rr

Z,N,V

1

ANDI

Rd, K

Logical AND Register and Constant

Rd 

← Rd • K

Z,N,V

1

OR

Rd, Rr

Logical OR Registers

Rd 

← Rd v Rr

Z,N,V

1

ORI

Rd, K

Logical OR Register and Constant

Rd 

← Rd v K

Z,N,V

1

EOR

Rd, Rr

Exclusive OR Registers

Rd 

← Rd ⊕ Rr

Z,N,V

1

COM

Rd

One’s Complement

Rd 

← 0xFF − Rd

Z,C,N,V

1

NEG

Rd

Two’s Complement

Rd 

← 0x00 − Rd

Z,C,N,V,H

1

SBR

Rd,K

Set Bit(s) in Register

Rd 

← Rd v K

Z,N,V

1

CBR

Rd,K

Clear Bit(s) in Register

Rd 

← Rd • (0xFF - K)

Z,N,V

1

INC

Rd

Increment

Rd 

← Rd + 1

Z,N,V

1

DEC

Rd

Decrement

Rd 

← Rd − 1 

Z,N,V

1

TST

Rd

Test for Zero or Minus

Rd 

← Rd • Rd 

Z,N,V

1

CLR

Rd

Clear Register

Rd  

← Rd ⊕ Rd

Z,N,V

1

SER

Rd

Set Register

Rd 

← 0xFF

None

1

BRANCH INSTRUCTIONS

RJMP

k

Relative Jump

PC

 ← PC + k  + 1

None

2

IJMP

Indirect Jump to (Z)

PC 

← Z 

None

2

RCALL

k

Relative Subroutine Call 

PC 

← PC + k + 1

None

3

ICALL

Indirect Call to (Z)

PC 

←  Z

None

3

RET

Subroutine Return

PC 

← STACK

None

4

RETI

Interrupt Return

PC 

← STACK

I

4

CPSE

Rd,Rr

Compare, Skip if Equal

if (Rd = Rr) PC

 ← PC + 2 or 3

None

1/2/3

CP

Rd,Rr

Compare

Rd 

− Rr

Z, N,V,C,H

CPC

Rd,Rr

Compare with Carry

Rd 

− Rr − C

Z, N,V,C,H

1

CPI

Rd,K

Compare Register with Immediate

Rd 

− K

Z, N,V,C,H

1

SBRC

Rr, b

Skip if Bit in Register Cleared

if (Rr(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBRS

Rr, b

Skip if Bit in Register is Set

if (Rr(b)=1) PC 

← PC + 2 or 3

None

1/2/3

SBIC

P, b

Skip if Bit in I/O Register Cleared

if (P(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBIS

P, b

Skip if Bit in I/O Register is Set

if (P(b)=1) PC 

← PC + 2 or 3

None

1/2/3

BRBS

s, k

Branch if Status Flag Set

if (SREG(s) = 1) then PC

←PC+k + 1

None

1/2

BRBC

s, k

Branch if Status Flag Cleared

if (SREG(s) = 0) then PC

←PC+k + 1

None

1/2

BREQ

 k

Branch if Equal 

if (Z = 1) then PC 

← PC + k + 1

None

1/2

BRNE

 k

Branch if Not Equal

if (Z = 0) then PC 

← PC + k + 1

None

1/2

BRCS

 k

Branch if Carry Set

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRCC

 k

Branch if Carry Cleared

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRSH

 k

Branch if Same or Higher 

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRLO

 k

Branch if Lower

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRMI

 k

Branch if Minus

if (N = 1) then PC 

← PC + k + 1

None

1/2

BRPL

 k

Branch if Plus 

if (N = 0) then PC 

← PC + k + 1

None

1/2

BRGE

 k

Branch if Greater or Equal, Signed

if (N 

⊕ V= 0) then PC ← PC + k + 1

None

1/2

BRLT

 k

Branch if Less Than Zero, Signed

if (N 

⊕ V= 1) then PC ← PC + k + 1

None

1/2

BRHS

 k

Branch if Half Carry Flag Set

if (H = 1) then PC 

← PC + k + 1

None

1/2

BRHC

 k

Branch if Half Carry Flag Cleared

if (H = 0) then PC 

← PC + k + 1

None

1/2

BRTS

 k

Branch if T Flag Set

if (T = 1) then PC 

← PC + k  + 1

None

1/2

BRTC

 k

Branch if T Flag Cleared

if (T = 0) then PC 

← PC + k + 1

None

1/2

BRVS

 k

Branch if Overflow Flag is Set

if (V = 1) then PC 

← PC + k + 1

None

1/2

BRVC

 k

Branch if Overflow Flag is Cleared

if (V = 0) then PC 

← PC + k + 1

None

1/2

BRIE

 k

Branch if Interrupt Enabled

if ( I = 1) then PC 

← PC + k + 1

None

1/2

BRID

 k

Branch if Interrupt Disabled

if ( I = 0) then PC 

← PC + k + 1

None

1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI

P,b

Set Bit in I/O Register

I/O(P,b) 

←  1

None

2

CBI

P,b

Clear Bit in I/O Register

I/O(P,b) 

←  0

None

2

LSL

Rd

Logical Shift Left

Rd(n+1) 

← Rd(n), Rd(0) ← 0

Z,C,N,V

1

LSR

Rd

Logical Shift Right

Rd(n) 

← Rd(n+1), Rd(7) ← 0

Z,C,N,V

1

ROL

Rd

Rotate Left Through Carry

Rd(0)

←C,Rd(n+1)← Rd(n),C←Rd(7)

Z,C,N,V

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8048S-html.html
background image

10

8048CS–AVR–02/12

ATtiny43U

ROR

Rd

Rotate Right Through Carry

Rd(7)

←C,Rd(n)← Rd(n+1),C←Rd(0)

Z,C,N,V

1

ASR

Rd

Arithmetic Shift Right

Rd(n) 

← Rd(n+1), n=0..6

Z,C,N,V

1

SWAP

Rd

Swap Nibbles

Rd(3..0)

←Rd(7..4),Rd(7..4)←Rd(3..0)

None

1

BSET

s

Flag Set

SREG(s) 

← 1

SREG(s)

1

BCLR

s

Flag Clear

SREG(s) 

← 0 

SREG(s)

1

BST

Rr, b

Bit Store from Register to T

← Rr(b)

T

1

BLD

Rd, b

Bit load from T to Register

Rd(b) 

←  T

None

1

SEC

Set Carry

←  1

C

1

CLC

Clear Carry

← 0 

C

1

SEN

Set Negative Flag

←  1

N

1

CLN

Clear Negative Flag

← 0 

N

1

SEZ

Set Zero Flag

←  1

Z

1

CLZ

Clear Zero Flag

← 0 

Z

1

SEI

Global Interrupt Enable

←  1

I

1

CLI

Global Interrupt Disable

I

 ← 0 

I

1

SES

Set Signed Test Flag

←  1

S

1

CLS

Clear Signed Test Flag

← 0 

S

1

SEV

Set Twos Complement Overflow.

←  1

V

1

CLV

Clear Twos Complement Overflow

← 0 

V

1

SET

Set T in SREG

←  1

T

1

CLT

Clear T in SREG

← 0 

T

1

SEH

Set Half Carry Flag in SREG

←  1

H

1

CLH

Clear Half Carry Flag in SREG

← 0 

H

1

DATA TRANSFER INSTRUCTIONS

MOV

Rd, Rr

Move Between Registers

Rd 

← Rr

None

1

MOVW

Rd, Rr

Copy Register Word

Rd+1:Rd 

← Rr+1:Rr

None

1

LDI

Rd, K

Load Immediate

Rd  

←  K

None

1

LD

Rd, X

Load Indirect

Rd 

← (X)

None

2

LD

Rd, X+

Load Indirect and Post-Inc.

Rd 

← (X), X ← X + 1

None

2

LD

Rd, - X

Load Indirect and Pre-Dec.

← X - 1, Rd ← (X)

None

2

LD

Rd, Y

Load Indirect

Rd 

← (Y)

None

2

LD

Rd, Y+

Load Indirect and Post-Inc.

Rd 

← (Y), Y ← Y + 1

None

2

LD

Rd, - Y

Load Indirect and Pre-Dec.

← Y - 1, Rd ← (Y)

None

2

LDD

Rd,Y+q

Load Indirect with Displacement

Rd 

← (Y + q)

None

2

LD

Rd, Z

Load Indirect 

Rd 

← (Z)

None

2

LD

Rd, Z+

Load Indirect and Post-Inc.

Rd 

← (Z), Z ← Z+1

None

2

LD

Rd, -Z

Load Indirect and Pre-Dec.

← Z - 1, Rd ← (Z)

None

2

LDD

Rd, Z+q

Load Indirect with Displacement

Rd 

← (Z + q)

None

2

LDS

Rd, k

Load Direct from SRAM

Rd  

← (k)

None

2

ST

X, Rr

Store Indirect

(X)

 ← Rr

None

2

ST

X+, Rr

Store Indirect and Post-Inc.

(X)

 ← Rr, X ← X + 1

None

2

ST

- X, Rr

Store Indirect and Pre-Dec.

← X - 1, (X) ← Rr

None

2

ST

Y, Rr

Store Indirect

(Y) 

← Rr

None

2

ST

Y+, Rr

Store Indirect and Post-Inc.

(Y) 

← Rr, Y ← Y + 1

None

2

ST

- Y, Rr

Store Indirect and Pre-Dec.

← Y - 1, (Y) ← Rr

None

2

STD

Y+q,Rr

Store Indirect with Displacement

(Y + q) 

← Rr

None

2

ST

Z, Rr

Store Indirect

(Z) 

← Rr

None

2

ST

Z+, Rr

Store Indirect and Post-Inc.

(Z) 

← Rr, Z ← Z + 1

None

2

ST

-Z, Rr

Store Indirect and Pre-Dec.

← Z - 1, (Z) ← Rr

None

2

STD

Z+q,Rr

Store Indirect with Displacement

(Z + q) 

← Rr

None

2

STS

k, Rr

Store Direct to SRAM

(k) 

← Rr

None

2

LPM

Load Program Memory

R0 

← (Z)

None

3

LPM

Rd, Z

Load Program Memory

Rd 

← (Z)

None

3

LPM

Rd, Z+

Load Program Memory and Post-Inc

Rd 

← (Z), Z ← Z+1

None

3

SPM

Store Program Memory

(z) 

← R1:R0

None

IN

Rd, P

In Port

Rd 

←  P

None

1

OUT

P, Rr

Out Port

← Rr

None

1

PUSH

Rr

Push Register on Stack

STACK 

← Rr

None

2

POP

Rd

Pop Register from Stack

Rd 

← STACK

None

2

MCU CONTROL INSTRUCTIONS

NOP

No Operation

None

1

SLEEP

Sleep

(see specific descr. for Sleep function)

None

1

WDR

Watchdog Reset

(see specific descr. for WDR/Timer)

None

1

BREAK

Break

For On-chip Debug Only

None

N/A

Mnemonics

Operands

Description

Operation

Flags

#Clocks

Maker
Microchip Technology Inc.
Datasheet PDF Download