HV257 32-Channel High-Voltage Sample-and-Hold Amplifier Array Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

 2017 Microchip Technology Inc.

DS20005827A-page  1

HV257

Features

• Thirty-two Independent High-voltage Amplifiers
• 300V Operating Voltage
• 295V Output Voltage
• 2.2V/µs Typical Output Slew Rate
• Adjustable Output Current Source Limit
• Adjustable Output Current Sink Limit
• Internal Closed-loop Gain of 72V/V
• 12 MΩ Feedback Impedance
• Layout Ideal for Die Applications

Applications

• Microelectromechanical Systems (MEMS) Driver
• Piezoelectric Transducer Driver
• Optical Crosspoint Switches                             

(Using MEMS Technology)

General Description

The 

HV257 is a 32-channel, high-voltage 

sample-and-hold amplifier array integrated circuit. It 
operates on a single high-voltage supply, up to 300V, 
and two low-voltage supplies, V

DD

 and V

NN

.

All 32 sample-and-hold circuits share a common 
analog input, V

SIG

. The individual sample-and-hold 

circuits are selected by a five-to-32 logic decoder. The 
sampled voltage on the holding capacitor is buffered by 
a low-voltage amplifier and is magnified by a 
high-voltage amplifier with a closed-loop gain of 72V/V. 
The internal closed-loop gain is set for an input voltage 
range of 0V to 4.096V. The input voltage can be up to 
5V, but the output will saturate. The maximum output 
voltage swing is 5V below the V

PP

 high-voltage supply. 

The outputs can drive capacitive loads of up to 
3000 pF.
The maximum output source and sink current can be 
adjusted by using two external resistors. An external 
R

SOURCE

 resistor controls the maximum sourcing 

current, and an external R

SINK

 resistor controls the 

maximum sinking current. The current limit is 
approximately 12.5V divided by the external resistor 
value. The setting is common for all 32 outputs. A 
low-voltage silicon junction diode is made available to 
help monitor the die temperature.

Package Type

100-lead MQFP

(Top view)

100 

See 

Table 3-1

 for pin information.

32-Channel High-Voltage Sample-and-Hold Amplifier Array 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

R

HV

OUT

0

AV

NN

AV

DD

S/H-0 

5 to 32

Decoder

VSIG

A

0

A

1

A

2

A

3

EN

A

4

R

S/H-1 

HV

OUT

1

R

S/H-31

HV

OUT

31

V

PP

AV

DD

AV

NN

AV

NN

C

H

-

+

-

+

Q

0

Q

1

Q

31

HV

OUT

Current

Sink

Limiting

To all HV

OUT

amplifiers

RSOURCE

RSINK

DVDD

AVNN

DGND

AGND

VPP

AVDD

To internal VPP bus

To internal analog VDD bus

To internal analog VNN bus

To internal digital VDD bus

To internal digital VNN bus

DV

DD

DVNN

AV

DD

AV

NN

C

H

C

H

BYP-VPP     BYP-AVDD      BYP-AVNN                                  Anode          Cathode  

Bias Circuit

-

+

-

+

-

+

-

+

HV

OUT

Current

Source

Limiting

To all HV

OUT

amplifiers

71R

V

PP

AV

NN

71R

V

PP

AV

NN

71R

HV257

DS20005827A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

 2017 Microchip Technology Inc.

DS20005827A-page  3

HV257

Typical Application Circuit

VSIG

A0

EN

A3

A2

A4

HV

OUT

0

HV257

High Voltage

Power Supply

Low Voltage

Power Supply

32

DGND

AGND

HV

OUT

1

MEMS

Array

y

y

x

x

HV

OUT

2

HV

OUT

3

HV

OUT

30

HV

OUT

31

A1

VNN

Low Voltage

Channel

Select

Sample

and Hold

High

Voltage

OpAmp

Array

RSOURCE

RSINK

Micro

Processor

DAC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

HV257

DS20005827A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

High-voltage Supply, V

PP 

.......................................................................................................................................  310V 

Analog Low-voltage Positive Supply, AV

DD 

................................................................................................................ 8V

Digital Low-voltage Positive Supply, DV

DD

 ................................................................................................................. 8V 

Analog Low-voltage Negative Supply, AV

NN

 ............................................................................................................ –7V

Digital Low-voltage Negative Supply, DV

NN

 ............................................................................................................  –7V

Logic Input Voltage..................................................................................................................................  –0.5V to DV

DD

Analog Input Signal, V

SIG

 ................................................................................................................................. 0V to 6V

Maximum Junction Temperature, T

J

..................................................................................................................... 150°C

Storage Temperature, T

....................................................................................................................  –65°C to +150°C

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

High-voltage Positive Supply

V

PP

125

300

V

Low-voltage Positive Supply

V

DD

6

7.5

V

Low-voltage Negative Supply

V

NN

–4.5

–6.5

V

V

PP

 Supply Current

I

PP

0.8

mA

V

PP

 = 300V, All HV

OUT

 = 0V, No load

V

DD

 Supply Current

I

DD

5

mA

V

DD

 = 6V to 7.5V

V

NN 

Supply Current

I

NN

–6

mA

V

NN

 = –4.5V to –6.5V

Operating Temperature Range

T

J

–10

85

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over operating conditions unless otherwise noted

Parameter

Sym.

Min.

Typ. Max.

Unit

Conditions

HV

OUT

 Voltage Swing

HV

OUT

0

V

PP

–5

V

Input Voltage Offset

V

INOS

±40

mV

Input referred

Feedback Resistance from HV

OUT

            

to Ground 

R

FB

9.6

12

MΩ

HV

OUT

 Capacitive Load

C

LOAD

0

3000

pF

HV

OUT

 Sourcing Current Limiting Range

I

SOURCE

50

500

µA

I

SOURCE

 = 12.5V/R

SOURCE

 

HV

OUT

 Sinking Current Limiting Range

I

SINK

50

500

µA

I

SINK

 = 12.5V/R

SINK

 

External Resistance Range                      
for Setting Maximum Current Source

R

SOURCE

25

250

kΩ

External Resistance Range for Setting 
Maximum Current Sink

R

SINK

25

250

kΩ

 2017 Microchip Technology Inc.

DS20005827A-page  5

HV257

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over operating conditions unless otherwise noted

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

HV

OUT

 Slew Rate Rise

SR

2.2

V/µs

No load

HV

OUT

 Slew Rate Fall

2

V/µs

No load

HV

OUT

 –3 dB Channel Bandwidth

BW

4

kHz

V

PP

 = 300V

Open-loop Gain

A

O

70

100

dB

Closed-loop Gain

A

V

68.4

72

75.6

V/V

DC Channel-to-channel Crosstalk

CT

DC

–80

dB

Power Supply Rejection Ratio for V

PP

V

DD

 and V

NN

PSRR

–40

dB

SAMPLE AND HOLD
Acquisition Time

t

AQ

4

µs

Pedestal Voltage

V

PED

1

mV

Input referred

Sample-and-Hold Switch Resistance

R

SW

5

kΩ

Sample-and-Hold Capacitor

C

H

10

12

pF

Voltage Droop Rate During Hold Time                       
Relative to Input

V

DROOP

6

V/s

Output referred

Input Signal Voltage Range

V

SIG

0

5

V

V

SIG

 Input Capacitance

C

SIG

33

pF

LOGIC DECODER
Set-up Time-address to Enable

t

SU

75

ns

Hold Time-address to Enable Bar

t

H

75

ns

Input Logic High Voltage

V

IH

2.4

V

DD

V

Input Logic Low Voltage

V

IL

0

1.2

V

Input Logic High Current

I

IH

1

µA

V

IH

 = V

DD

Input Logic Low Current

I

IL

–1

µA

V

IL

 = 0V

Logic Input Capacitance

C

IN

15

pF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

HV257

DS20005827A-page  6

 2017 Microchip Technology Inc.

Timing Waveforms of 

t

SU

t

H

Hold Step
(V

PEDESTAL

Hold

Hold

Sample

A0-A4

EN

HVOpamp

t

R/F

Acquisition Window

Sample-and-Hold

DECODER FUNCTION TABLE

A

4

A

3

A

2

A

1

A

0

EN

Selected S/H

L

L

L

L

L

H

0

L

L

L

L

H

H

1

L

L

L

H

L

H

2

L

L

L

H

H

H

3

H

H

H

H

L

H

30

H

H

H

H

H

H

31

X

X

X

X

X

L

All Open

TEMPERATURE DIODE
Peak Inverse Voltage

PIV

5

V

Cathode to anode

Forward Diode Drop

V

F

0.6

V

I

F

 = 100 µA, anode to cath-

ode at T

A

 = 25°C

Forward Diode Current

I

F

100

µA

Anode to cathode

V

F

 Temperature Coefficient

T

C

–2.2

mV/°C Anode to cathode

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Maximum Junction Temperature

T

J

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
100-lead MQFP

JA

39

°C/W

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Over operating conditions unless otherwise noted

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

 2017 Microchip Technology Inc.

DS20005827A-page  7

HV257

2.0

TYPICAL PERFORMANCE CURVES

(V

PP

 = 300V, V

DD

 = 6.5V, V

NN

  = 5.5V, T

A

 = 25

O

C)

R

SINK 

(kΩ)

I

SINK 

(μA)

600

500

400

300

200

100

0

25                                                  150                                                  250

min

max

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1:

I

SINK 

vs. R

SINK

.

                                                                     

min

max

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

R

SOURCE 

(kΩ)

  I

SOURCE

 (μA)

600

500

400

300

200

100

0

25                                                   150                                                 250

                                             

FIGURE 2-2:

I

SOURCE 

vs. R

SOURCE

120

100

80

60

40

20

0

0                                                                  2.0                                                                4.0

(”one RC” response to one volt input step) (V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

V

SIG 

(V)

HV

OUT  

(mV)

+85

O

C

+25

O

C

-10

O

C

    

FIGURE 2-3:

Acquisition Window.

FIGURE 2-4:

Temperature Diode vs. 

Temperature. 

700

600

500

400

300

1.0                      20                      40                      60                     80                      100

Diode Biasing Current (μA)

V

f

 (mV)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V)

-10

O

C

85

O

C

25

O

C

min

max

min

max

min

max

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

V

SIG 

Level (V)

HV

OUT 

(mV)

40

20

0

-20

-40

0                            1.0                           2.0                            3.0                           4.0

FIGURE 2-5:

HV

OUT

 Charge Injection vs. 

V

SIG

.

HV

OUT 

(V/sec)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V)

HV

OUT 

Level (V)

3.0

2.0

1.0

0

-1.0

-2.0

0                                                         150                                                       280

-10

O

C

85

O

C

25

O

C

FIGURE 2-6:

H

VOUT 

Droop.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

HV257

DS20005827A-page  8

 2017 Microchip Technology Inc.

FIGURE 2-7:

Frequency (Hz) 

-50

-40

-30

-20

-10

0

10                   100                   1k                   10k                 100k               1M

V

PP

 

PSRR (dB)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

V

PP

 PSRR vs. Frequency.

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

Frequency 

V

DD 

PSRR (dB)

-50

-40

-30

-20

-10

0

10                   100                   1k                   10k                 100k               1M

FIGURE 2-8:

V

DD

 PSRR vs. Frequency. 

Frequency 

V

NN 

PSRR (dB)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

-50

-40

-30

-20

-10

0

10                   100                   1k                   10k                 100k               1M

FIGURE 2-9:

V

NN

 PSRR vs. Frequency.

FIGURE 2-10:

3.5

3.0

2.5

2.0

1.5

-2.0

-2.5

-3.0

-3.5

-4.0

-4.5

1.0                            2.0                              3.0 

V

IN

 (Volts)

Input Offset (mV)

Offset at -10

O

C

Offset at   25

O

C

Offset at   85

O

C

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V ) 

Input Offset vs. V

IN

 and 

Temperature.

1.0                           2.0                          3.0

V

IN 

(Volts)

Gain

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= -10

O

, +25

O

, +85

O

C ) 

73.97

73.96

73.95

73.94

73.93

72.74

72.73

72.72

72.71

72.70

72.69

FIGURE 2-11:

Gain vs. V

IN

HV257DFG-5037047 Q3 Dev # 3, Channel 16

(V

PP

 = 300V, V

DD

 = 6.5V, V

NN

 = -5.0V, V

SIG

 = 1.0V, T

A

 = 25

O

C)

73.030

73.028

73.026

73.024

73.022

73.020

73.018

73.016

73.014

Time (hours)

0

8

HV

OUT

 (V)

FIGURE 2-12:

HV

OUT

 Drift.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

 2017 Microchip Technology Inc.

DS20005827A-page  9

HV257

3.0

PIN DESCRIPTION

The details on the pins of HV257 are listed on 

Table 3-1

. Refer to 

Package Type

 for the location of 

pins.

TABLE 3-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

HVOUT31

Amplifier output

2

HVOUT30

Amplifier output

3

HVOUT29

Amplifier output

4

HVOUT28

Amplifier output

5

HVOUT27

Amplifier output

6

HVOUT26

Amplifier output

7

HVOUT25

Amplifier output

8

HVOUT24

Amplifier output

9

HVOUT23

Amplifier output

10

HVOUT22

Amplifier output

11

HVOUT21

Amplifier output

12

HVOUT20

Amplifier output

13

HVOUT19

Amplifier output

14

HVOUT18

Amplifier output

15

HVOUT17

Amplifier output

16

HVOUT16

Amplifier output

17

HVOUT15

Amplifier output

18

HVOUT14

Amplifier output

19

HVOUT13

Amplifier output

20

HVOUT12

Amplifier output

21

HVOUT11

Amplifier output

22

HVOUT10

Amplifier output

23

HVOUT9

Amplifier output

24

HVOUT8

Amplifier output

25

HVOUT7

Amplifier output

26

HVOUT6

Amplifier output

27

HVOUT5

Amplifier output

28

HVOUT4

Amplifier output

29

HVOUT3

Amplifier output

30

HVOUT2

Amplifier output

31

HVOUT1

Amplifier output

32

HVOUT0

Amplifier output

33

VPP

High-voltage positive supply. There are two pads.

34

NC

No connection

35

NC

No connection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005827A-html.html
background image

HV257

DS20005827A-page  10

 2017 Microchip Technology Inc.

36

NC

No connection

37

NC

No connection

38

NC

No connection

39

AGND

Analog ground. There are three pads. They need to be externally connected.

40

AVNN

Analog low-voltage negative supply. This should be at the same potential as 
DVNN. There are two pads.

41

NC

No connection

42

AVDD

Analog low-voltage positive supply. This should be at the same potential as 
DVDD. There are two pads.

43

AGND

Analog ground. There are three pads. They need to be externally connected.

44

DVNN

Digital low-voltage negative supply. This should be at the same potential as 
AVNN. There are two pads.

45

DVDD

Digital low-voltage positive supply. This should be at the same potential as AVDD. 
There are two pads.

46

NC

No connection

47

NC

No connection

48

NC

No connection

49

NC

No connection

50

NC

No connection

51

NC

No connection

52

NC

No connection

53

NC

No connection

54

NC

No connection

55

NC

No connection

56

NC

No connection

57

NC

No connection

58

NC

No connection

59

NC

No connection

60

NC

No connection

61

NC

No connection

62

NC

No connection

63

NC

No connection

64

NC

No connection

65

NC

No connection

66

NC

No connection

67

NC

No connection

68

NC

No connection

69

NC

No connection

70

NC

No connection

71

NC

No connection

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

Pin Name

Description

Maker
Microchip Technology Inc.