SN75174 Quadruple Differential Line Driver Datasheet


background image

SN75174

QUADRUPLE DIFFERENTIAL LINE DRIVER

 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Meets or Exceeds the Requirements of
ANSI Standards EIA/TIA-422-B and RS-485
and ITU Recommendation V.11.

D

Designed for Multipoint Transmission on
Long Bus Lines in Noisy Environments

D

3-State Outputs

D

Common-Mode Output Voltage Range of
– 7 V to 12 V

D

Active-High Enable

D

Thermal Shutdown Protection

D

Positive- and Negative-Current Limiting

D

Operates From Single 5-V Supply

D

Low Power Requirements

D

Functionally Interchangeable With MC3487

     

description

The SN75174 is a monolithic quadruple
differential line driver with 3-state outputs. It is
designed to meet the requirements of ANSI
Standards EIA/TIA-422-B and RS-485 and ITU
Recommendation V.11. The device is optimized
for balanced multipoint bus transmission at rates
up to 4 megabaud. Each driver features wide
positive and negative common-mode output
voltage ranges making it suitable for party-line
applications in noisy environments.

The SN75174 provides positive- and negative-current limiting and thermal shutdown for protection from line
fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately
150

°

C. This device offers optimum performance when used with the SN75173 or SN75175 quadruple

differential line receivers.

The SN75174 is characterized for operation from 0

°

C to 70

°

C.

FUNCTION TABLE

(each driver)

INPUT

ENABLE

OUTPUTS

INPUT

ENABLE

Y

Z

H

H

H

L

L

H

L

H

X

L

Z

Z

H = TTL high level, X = irrelevant, 
L = TTL low level, Z = high impedance (off)

Copyright 

 1995, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

 

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1

2

3

5

6

7

8

16

15

14

13

12

11

10

9

1A
1Y

1Z

1, 2EN

2Z

2Y
2A

GND

V

CC

4A
4Y
4Z
3, 4EN
3Z
3Y
3A

N PACKAGE

(TOP VIEW)

1

2

3

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

1A
1Y

NC

1Z

1, 2EN

2Z

NC

2Y
2A

GND

V

CC

4A
4Y
NC
4Z
3, 4EN
3Z
NC
3Y
3A

DW PACKAGE

(TOP VIEW)

NC – No internal connection


background image

SN75174
QUADRUPLE DIFFERENTIAL LINE DRIVER
 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

logic symbol

EN

EN

4A

3A

3, 4EN

2A

1A

1, 2EN

15

9

12

7

1

4

4Z

4Y

3Z

3Y

2Z

2Y

1Z

1Y

13

14

11

10

5

6

3

2

† This symbol is in accordance with ANSI/IEEE Std 91-1984

and IEC Publication 617-12.

logic diagram, each driver (positive logic)

A

EN

Y

Z

schematics of inputs and outputs

Enable Inputs: R(eq) = 8 k

 NOM

R(eq) = equivalent resistor

Data Inputs: R(eq) = 3 k

 NOM

Input

VCC

R(eq)

EQUIVALENT OF EACH INPUT

TYPICAL OF ALL OUTPUTS

GND

Output

VCC


background image

SN75174

QUADRUPLE DIFFERENTIAL LINE DRIVER

 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V

CC 

(see Note 1) 

7 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Output voltage range,V

O

 

– 10 V to 15 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Input voltage, V

I

 

5.5 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Continuous total dissipation 

See Dissipation Rating Table

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range, T

A

 

0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

  – 65

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE

TA 

 25

°

C

POWER RATING

DERATING FACTOR

ABOVE TA = 25

°

C

TA = 70

°

C

POWER RATING

DW

1125 mW

9.0 mW/

°

C

720 mW

N

1150 mW

9.2 mW/

°

C

736 mW

recommended operating conditions

MIN

NOM

MAX

UNIT

Supply voltage, VCC

4.75

5

5.25

V

High-level input voltage, VIH

2

V

Low-level input voltage, VIL

0.8

V

Common-mode output voltage, VOC

– 7 to 12

V

High-level output current, IOH

– 60

mA

Low-level output current, IOL

60

mA

Operating free-air temperature, TA

0

70

°

C


background image

SN75174
QUADRUPLE DIFFERENTIAL LINE DRIVER
 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)

PARAMETER

TEST CONDITIONS

MIN

TYP†

MAX

UNIT

VIK

Input clamp voltage

II = – 18 mA

– 1.5

V

VOH

High level output voltage

VIH = 2 V,

VIL= 0.8 V,

3 7

V

VOH

High-level output voltage

IH

,

IL

,

IOH = – 33 mA

3.7

V

VOL

Low level output voltage

VIH = 2 V,

VIL= 0.8 V,

1 1

V

VOL

Low-level output voltage

IH

,

IL

,

IOL = 33 mA

1.1

V

VO

Output voltage

IO = 0

0

6

V

|VOD1|

Differential output voltage

IO = 0

1.5

6

 6

V

RL = 100

See Figure 1

1/2

 

VOD1

V

|VOD2|

Differential output voltage

RL = 100 

,

See Figure 1

OD1

or 2‡

V

RL = 54 

Ω,

See Figure 1

1.5

2.5

5

V

VOD3

Differential output voltage

See Note 2

1.5

5

V

|VOD|

Change in magnitude of differential output
voltage§

±

0.2

V

VOC

Common mode output voltage¶

R

54

or 100

See Figure 1

+ 3

V

VOC

Common-mode output voltage¶

RL = 54 

 or 100 

Ω,

See Figure 1

– 1

V

|VOC|

Change in magnitude of common-mode output

±

0 2

V

|VOC|

Change in magnitude of common mode out ut
voltage§

±

0.2

V

IO

Output current with power off

VCC = 0,

VO = – 7 V to 12 V

±

100

µ

A

IOZ

High-impedance-state output current

VO = – 7 V to 12 V

±

100

µ

A

IIH

High-level input current

VI = 2.7 V

20

µ

A

IIL

Low-level input current

VI = 0.5 V

 

– 360

µ

A

VO = – 7 V

– 180

IOS

Short-circuit output current

VO =  VCC

180

mA

VO = 12 V

500

ICC

Supply current (all drivers)

No load

Outputs enabled

38

60

mA

ICC

Supply current (all drivers)

No load

Outputs disabled

18

40

mA

† All typical values are at VCC = 5 V and TA = 25

°

C.

‡ The minimum VOD2 with a 100-

 load is either 1/2 VOD1 or 2 V, whichever is greater.

§

|VOD| and 

|VOC| are the changes in magnitude of VOD and VOC, respectively, that occur when the input is changed from a high level to a low

level.

¶ In ANSI Standard EIA/TIA-422-B, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage,

VOS.

NOTE 2: See EIA Standard RS-485.

switching characteristics, V

CC

 = 5 V, T

A

 = 25

°

C

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

td(OD)

Differential-output delay time

RL = 54

See Figure 2

45

65

ns

tt(OD)

Differential-output transition time

 RL = 54 

,

See Figure 2

80

120

ns

tPZH

Output enable time to high level

 RL = 110 

,

See Figure 3

80

120

ns

tPZL

Output enable time to low level

 RL = 110 

Ω,

See Figure 4

55

80

ns

tPHZ

Output disable time from high level

 RL = 110 

,

See Figure 3

75

115

ns

tPLZ

Output disable time from low level

 RL = 110 

,

See Figure 3

18

30

ns


background image

SN75174

QUADRUPLE DIFFERENTIAL LINE DRIVER

 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER

EIA/TIA-422-B

RS-485

VO

Voa, Vob

Voa, Vob

|VOD1|

Vo

Vo

|VOD2|

Vt (RL = 100 

)

Vt (RL = 54 

)

|VOD3|

Vt (Test Termination)

Measurement 2)

|VOD|

| |Vt| – |Vt| |

| |Vt| – |Vt| |

VOC

|Vos|

|Vos|

|VOC|

|Vos – Vos|

|Vos – Vos|

IOS

|Isa|,|Isb|

IO

|Ixa|,|Ixb|

Iia,Iib

PARAMETER MEASUREMENT INFORMATION

VOC

2

RL

2

RL

VOD2

Figure 1. Differential and Common-Mode Output Voltages

VOLTAGE WAVEFORMS

TEST CIRCUIT

10%

50%

90%

1.5 V

1.5 V

tt(OD)

td(OD)

tt(OD)

~

2.5 V

0 V

3 V

td(OD)

Output

Input

CL = 50 pF
(see Note B)

Output

54  

RL =

3 V

50 

~

2.5 V

Generator

(see Note A)

90%

50%

10%

NOTES: A. The input pulse is supplied by a generator having the following characteristics: tr 

 5 ns, tf 

 5 ns, PRR 

 1 MHz, duty cycle = 50%,

ZO = 50 

.

B. CL includes probe and stray capacitance.

Figure 2. Differential-Output Test Circuit and Voltage Waveforms


background image

SN75174
QUADRUPLE DIFFERENTIAL LINE DRIVER
 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

TEST CIRCUIT

Output

Input

1.5 V

2.3 V

1.5 V

tPHZ

tPZH

0.5 V

Voff  

 0 V

VOH

0 V

3 V

3 V to 0 V

50 

S1

RL = 110 

Output

Generator

(see Note A)

CL = 50 pF

(see Note B)

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR 

 1 MHz, duty cycle = 50%, tr 

 5 ns,

tf 

 5 ns, ZO = 50 

.

B. CL includes probe and stray capacitance.

Figure 3. Test Circuit and Voltage Waveforms

RL = 110 

VOLTAGE WAVEFORMS

TEST CIRCUIT

Output

Input

tPZL

1.5 V

2.3 V

0.5 V

tPLZ

1.5 V

VOL

5 V

0 V

3 V

50 

S1

Output

5 V

0 V to 3 V

Generator

(see Note A)

CL = 50 pF

(see Note B)

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR 

 1 MHz, duty cycle = 50%, tr 

 5 ns,

tf 

 5 ns, ZO = 50 

.

B. CL includes probe and stray capacitance.

Figure 4. Test Circuit and Voltage Waveforms


background image

SN75174

QUADRUPLE DIFFERENTIAL LINE DRIVER

 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 5

TA = 25

°

C

VCC = 5 V

4.5

4

3.5

3

2.5

2

1.5

1

0.5

– 100

– 80

– 60

– 40

– 20

0

– 120

5

IOH – High-Level Output Current – mA

  – High-Level Output V

oltage – V

0

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

ÁÁ

ÁÁ

ÁÁ

V

OH

Figure 6

IOL – Low-Level Output Current – mA

  – Low-Level Output V

oltage – V

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

5

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

100

80

60

40

20

120

0

ÁÁ

ÁÁ

ÁÁ

V

OL

TA = 25

°

C

VCC = 5 V

Figure 7

IO – Output Current – mA

DIFFERENTIAL OUTPUT VOLTAGE

vs

OUTPUT CURRENT

3.5

3

2.5

2

1.5

1

0.5

90

80

70

60

50

40

30

20

10

0

4

VOD – Differential Output V

oltage – V

0

ÁÁ

ÁÁ

ÁÁ

OD

V

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VCC = 5 V
TA = 25

°

C

Figure 8

IO – Output Current – 

A

VO – Output Voltage – V

OUTPUT CURRENT

vs

OUTPUT VOLTAGE

VCC = 5 V

VCC = 0 V

40

30

20

10

0

– 10

– 20

– 30

– 40

20

15

10

5

0

– 5

– 10

– 15

– 20

– 50

25

50

– 25

ÁÁ

ÁÁ

ÁÁ

I O

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

Output Disabled

TA = 25

°

C

ÁÁ

ÁÁ

A

µ


background image

SN75174
QUADRUPLE DIFFERENTIAL LINE DRIVER
 

 

SLLS039B – OCTOBER 1980 – REVISED MAY 1995

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 9

VCC – Supply Voltage – V

ICC – Supply Current – mA

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

Grounded

Inputs

90

80

70

60

50

40

30

20

10

7

6

5

4

3

2

1

0

8

100

0

ÁÁÁÁÁ

ÁÁÁÁÁ

TA = 25

°

C

Outputs Enabled

No Load

ÁÁÁ

ÁÁÁ

ÁÁÁ

CCI

Inputs Open

Figure 10

VCC – Supply Voltage – V

SUPPLY CURRENT

vs

SUPPLY VOLTAGE

25

20

15

10

5

7

6

5

4

3

2

0

8

30

0

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

Outputs Disabled
TA = 25

°

C

Input Open

No Load

ICC – Supply Current – mA

ÁÁ

ÁÁ

ÁÁ

CCI

1

APPLICATION INFORMATION

1/4 SN75175

1/4 SN75174

RS-485 Unit Loads

Up to  32

1/4 SN75174

1/4 SN75173

1/4 SN75172

1/4 SN75173

1/4 SN75173

1/4 SN75172

RT

RT

NOTE: The line length should be terminated at both ends in its characteristic impedance (RT = ZO). Stub lengths off the main line should be

kept as short as possible.

Figure 11. Typical Application Circuit


background image

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 

 1998, Texas Instruments Incorporated

Maker
Texas Instruments
Datasheet PDF Download