Quadruple 8-Bit Digital-to-Analog Converters (Rev. E) Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

1

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

D

Four 8-Bit Voltage Output DACs

D

5-V Single-Supply Operation

D

Serial Interface

D

High-Impedance Reference Inputs

D

Programmable 1 or 2 Times Output Range

D

Simultaneous Update Facility

D

Internal Power-On Reset

D

Low-Power Consumption

D

Half-Buffered Output

applications

D

Programmable Voltage Sources

D

Digitally Controlled Amplifiers/Attenuators

D

Mobile Communications

D

Automatic Test Equipment

D

Process Monitoring and Control

D

Signal Synthesis

     

description

The TLC5620C and TLC5620I are quadruple 8-bit voltage output digital-to-analog converters (DACs) with
buffered reference inputs (high impedance). The DACs produce an output voltage that ranges between either
one or two times the reference voltages and GND, and the DACs are monotonic. The device is simple to use,
running from a single supply of 5 V. A power-on reset function is incorporated to ensure repeatable start-up
conditions.

Digital control of the TLC5620C and TLC5620I are over a simple three-wire serial bus that is CMOS compatible
and easily interfaced to all popular microprocessor and microcontroller devices. The 11-bit command word
comprises eight bits of data, two DAC-select bits, and a range bit, the latter allowing selection between the times
1 or times 2 output range. The DAC registers are double buffered, allowing a complete set of new values to be
written to the device, then all DAC outputs are updated simultaneously through control of LDAC. The digital
inputs feature Schmitt triggers for high noise immunity.

The 14-terminal small-outline (D) package allows digital control of analog functions in space-critical
applications. The TLC5620C is characterized for operation from 0

°

C to 70

°

C. The TLC5620I is characterized

for operation from – 40

°

C to 85

°

C. The TLC5620C and TLC5620I do not require external trimming.

AVAILABLE OPTIONS

PACKAGE

TA

SMALL OUTLINE

(D)

PLASTIC DIP

(N)

0

°

C to 70

°

C

TLC5620CD

TLC5620CN

– 40

°

C to 85

°

C

TLC5620ID

TLC5620IN

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1

2

3

5

6

7

14

13

12

11

10

9

8

GND

REFA

REFB

REFC
REFD

DATA

CLK

V

DD

LDAC
DACA
DACB
DACC
DACD
LOAD

N OR D PACKAGE

(TOP VIEW)

 

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Copyright 

 2001, Texas Instruments Incorporated

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

2

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

functional block diagram

DAC

DAC

Power-On

Reset

Serial

Interface

×

 2

Latch

Latch

Latch

Latch

DAC

×

 2

×

 2

Latch

Latch

Latch

Latch

DAC

×

 2

LDAC

 REFA

+

+

+

+

+

+

+

+

 REFB

 REFC

 CLK

REFD

DATA

LOAD

DACA

DACB

DACC

DACD

8

8

8

8

8

8

8

8

2

3

4

5

7

6

8

13

12

11

10

9

Terminal Functions

TERMINAL

I/O

DESCRIPTION

NAME

NO.

I/O

DESCRIPTION

CLK

7

I

Serial interface clock. The input digital data is shifted into the serial interface
register on the falling edge of the clock applied to the CLK terminal.

DACA

12

O

DAC A analog output

DACB

11

O

DAC B analog output

DACC

10

O

DAC C analog output

DACD

9

O

DAC D analog output

DATA

6

I

Serial interface digital data input. The digital code for the DAC is clocked into the
serial interface register serially. Each data bit is clocked into the register on the
falling edge of the clock signal.

GND

1

I

Ground return and reference terminal

LDAC

13

I

Load DAC. When the LDAC signal is high, no DAC output updates occur when
the input digital data is read into the serial interface. The DAC outputs are only
updated when LDAC is taken from high to low.

LOAD

8

I

Serial Interface load control. When LDAC is low, the falling edge of the LOAD
signal latches the digital data into the output latch and immediately produces the
analog voltage at the DAC output terminal.

REFA

2

I

Reference voltage input to DAC A. This voltage defines the output analog range.

REFB

3

I

Reference voltage input to DAC B. This voltage defines the output analog range.

REFC

4

I

Reference voltage input to DAC C. This voltage defines the output analog range.

REFD

5

I

Reference voltage input to DAC D. This voltage defines the output analog range.

VDD

14

I

Positive supply voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

3

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

detailed description

The TLC5620 is implemented using four resistor-string DACs. The core of each DAC is a single resistor with
256 taps, corresponding to the 256 possible codes listed in Table 1. One end of each resistor string is connected
to the GND terminal and the other end is fed from the output of the reference input buffer. Monotonicity is
maintained by use of the resistor strings. Linearity depends upon the matching of the resistor elements and upon
the performance of the output buffer. Since the inputs are buffered, the DACs always present a high-impedance
load to the reference source.

Each DAC output is buffered by a configurable-gain output amplifier that can be programmed to times 1 or times
2 gain.

On power up, the DACs are reset to CODE 0.

Each output voltage is given by:

V

O

(DACA|B|C|D)

+

REF

 

CODE

256

 

(1

)

RNG bit value)

where CODE is in the range 0 to 255 and the range (RNG) bit is 0 or 1 within the serial control word.

Table 1. Ideal Output Transfer

D7

D6

D5

D4

D3

D2

D1

D0

OUTPUT VOLTAGE

0

0

0

0

0

0

0

0

GND

0

0

0

0

0

0

0

1

(1/256) 

×

 REF (1+RNG)

0

1

1

1

1

1

1

1

(127/256) 

×

 REF (1+RNG)

1

0

0

0

0

0

0

0

(128/256) 

×

 REF (1+RNG)

1

1

1

1

1

1

1

1

(255/256) 

×

 REF (1+RNG)

data interface

With LOAD high, data is clocked into the DATA terminal on each falling edge of CLK. Once all data bits have
been clocked in, LOAD is pulsed low to transfer the data from the serial input register to the selected DAC as
shown in Figure 1. When LDAC is low, the selected DAC output voltage is updated when LOAD goes low. When
LDAC is high during serial programming, the new value is stored within the device and can be transferred to
the DAC output at a later time by pulsing LDAC low as shown in Figure 2. Data is entered most significant bit
(MSB) first. Data transfers using two 8-clock cycle periods are shown in Figures 3 and 4.

RNG

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

DAC Update

CLK

DATA

LOAD

tsu(DATA-CLK)

tv(DATA-CLK)

tsu(CLK-LOAD)

tw(LOAD)

tsu(LOAD-CLK)

Figure 1. LOAD-Controlled Update (LDAC = Low)

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

4

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

RNG

CLK

DATA

LOAD

LDAC

DAC Update

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

tsu(DATA-CLK)

tv(DATA-CLK)

tw(LDAC)

tsu(LOAD-LDAC)

Figure 2. LDAC-Controlled Update

ÎÎÎÎÎÎ

ÎÎÎ

ÎÎÎ

A1

A0

RNG

D7

D6

D5

D4

D3

D2

D1

D0

CLK

DATA

LOAD

LDAC

CLK Low

Figure 3. Load-Controlled Update Using 8-Bit Serial Word (LDAC = Low)

ÎÎÎÎÎÎÎ

ÎÎÎÎ

ÎÎÎÎ

A1

A0

RNG

D7

D6

D5

D4

D3

D2

D1

D0

CLK

DATA

LOAD

LDAC

CLK Low

Figure 4. LDAC-Controlled Update Using 8-Bit Serial Word

Table 2 lists the A1 and A0 bits and the selection of the updated DACs. The RNG bit controls the DAC output
range. When RNG = low, the output range is between the applied reference voltage and GND, and when
RNG = high, the range is between twice the applied reference voltage and GND.

Table 2. Serial Input Decode

A1

A0

DAC UPDATED

0

0

DACA

0

1

DACB

1

0

DACC

1

1

DACD

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

5

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

linearity, offset, and gain error using single-end supplies

When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With
a positive offset voltage, the output voltage changes on the first code change. With a negative offset the output
voltage may not change with the first code depending on the magnitude of the offset voltage.

The output amplifier attempts to drive the output to a negative voltage. However, because the most negative
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.

The output voltage then remains at zero until the input code value produces a sufficient positive output voltage
to overcome the negative offset voltage, resulting in the  transfer function shown in Figure 5.

DAC Code

Output

Voltage

0 V

Negative

Offset

Figure 5. Effect of Negative Offset (Single Supply)

This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the
dotted line if the output buffer could drive below ground.

For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after
offset and full scale are adjusted out or accounted for in some way. However, single-supply operation does not
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity
is measured between full-scale code and the lowest code that produces a positive output voltage. The code is
calculated from the maximum specification for the negative offset voltage.

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

6

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

equivalent inputs and outputs

GND

Vref

Input

VDD

To DAC
Resistor
String

_

+

VDD

DAC
Voltage Output

ISINK
60 

µ

A

Typical

84 k

84 k

×

 1

×

 2

Output

Range

Select

Input from

Decoded DAC

Register String

INPUT CIRCUIT

OUTPUT CIRCUIT

GND

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (V

DD

 – GND) 

7 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Digital input voltage range 

GND – 0.3 V to V

DD

 + 0.3 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Reference input voltage range, V

ID

 GND 

– 0.3 V to V

DD

 + 0.3 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Operating free-air temperature range, T

A

: TLC5620C 0

°

C to 70

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

TLC5620I 

– 40

°

C to 85

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Storage temperature range, T

stg

 

– 50

°

C to 150

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 

260

°

C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

MIN

NOM

MAX

UNIT

Supply voltage, VDD

4.75

5.25

V

High-level input voltage, VIH

0.8 VDD

V

Low-level input voltage, VIL

0.8

V

Reference voltage, Vref [A|B|C|D]

VDD – 1.5

V

Analog full-scale output voltage, RL = 10 k

3.5

V

Load resistance, RL

10

k

Setup time, data input, tsu(DATA-CLK) (see Figures 1 and 2)

50

ns

Valid time, data input valid after CLK

, tv(DATA-CLK) (see Figures 1 and 2)

50

ns

Setup time, CLK eleventh falling edge to LOAD, tsu(CLK-LOAD) (see Figure 1)

50

ns

Setup time, LOAD

 to CLK

, tsu(LOAD-CLK) (see Figure 1)

50

ns

Pulse duration, LOAD, tw(LOAD) (see Figure 1)

250

ns

Pulse duration, LDAC, tw(LDAC) (see Figure 2)

250

ns

Setup time,  LOAD

 to LDAC

, tsu(LOAD-LDAC) (see Figure 2)

0

ns

CLK frequency

1

MHz

Operating free air temperature TA

TLC5620C

0

70

°

C

Operating free-air temperature, TA

TLC5620I

– 40

85

°

C

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

7

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, V

DD

 = 5 V 

±

5%,

V

ref

 = 2 V, 

×

 1 gain output range (unless otherwise noted)

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

IIH

High-level input current

VI = VDD

±

10

µ

A

IIL

Low-level input current

VI = 0 V

±

10

µ

A

IO(sink)

Output sink current

Each DAC output

20

µ

A

IO(source)

Output source current

Each DAC output

2

mA

Ci

Input capacitance

15

pF

Ci

Reference input capacitance

15

pF

IDD

Supply current

VDD = 5 V

2

mA

Iref

Reference input current

VDD = 5 V,

Vref = 2 V

±

10

µ

A

EL

Linearity error (end point corrected)

Vref = 2 V,

×

2 gain (see Note 1)

±

1

LSB

ED

Differential-linearity error

Vref = 2 V,

×

2 gain (see Note 2)

±

0.9

LSB

EZS

Zero-scale error

Vref = 2 V,

×

2 gain (see Note 3)

0

30

mV

Zero-scale-error temperature coefficient

Vref = 2 V,

×

2 gain (see Note 4)

10

µ

V/

°

C

EFS

Full-scale error

Vref = 2 V,

×

2 gain (see Note 5)

±

60

mV

Full-scale-error temperature coefficient

Vref = 2 V,

×

2 gain (see Note 6)

±

25

µ

V/

°

C

PSRR

Power-supply rejection ratio

See Notes 7 and 8

0.5

mV/V

NOTES:

1. Integral nonlinearity (INL) is the maximum deviation of the output from the line between zero and full scale (excluding the effects

of zero code and full-scale errors).

2. Differential nonlinearity (DNL) is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes.

Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.

3. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.
4. Zero-scale-error temperature coefficient is given by: ZSETC = [ZSE(Tmax) – ZSE(Tmin)]/Vref 

×

 106/(Tmax – Tmin).

5. Full-scale error is the deviation from the ideal full-scale output (Vref – 1 LSB) with an output load of 10 k

.

6. Full-scale-error temperature coefficient is given by: FSETC = [FSE(Tmax) – FSE (Tmin)]/Vref 

×

 106/(Tmax – Tmin).

7. Zero-scale-error rejection ratio (ZSE RR) is measured by varying the VDD from 4.5 V to 5.5 V dc and measuring the proportion of

this signal imposed on the zero-code output voltage.

8. Full-scale-error rejection ratio (FSE RR) is measured by varying the VDD from 4.5 V to 5.5 V dc and measuring the proportion of

this signal imposed on the full-scale output voltage.

operating characteristics over recommended operating free-air temperature range, V

DD

 = 5 V 

±

5%,

V

ref

 = 2 V, 

×

 1 gain output range (unless otherwise noted)

TEST CONDITIONS

MIN

TYP

MAX

UNIT

Output slew rate

CL = 100 pF,

RL = 10 k

1

V/

µ

s

Output settling time

To 

±

0.5 LSB,

CL = 100 pF,

RL = 10 k

,

See Note 9

10

µ

s

Large-signal bandwidth

Measured at – 3 dB point

100

kHz

Digital crosstalk

CLK = 1-MHz square wave measured at DACA-DACD

– 50

dB

Reference feedthrough

See Note 10

– 60

dB

Channel-to-channel isolation

See Note 11

– 60

dB

Reference input bandwidth

See Note 12

100

kHz

NOTES:

9. Settling time is the time between a LOAD falling edge and the DAC output reaching full scale voltage within +/– 0.5 LSB starting from

an initial output voltage equal to zero.

10. Reference feedthrough is measured at any DAC output with an input code = 00 hex with a Vref input = 1 V dc + 1 Vpp at 10 kHz.

11. Channel-to-channel isolation is measured by setting the input code of one DAC to FF hex and the code of all other DACs to 00 hex

with Vref input = 1 V dc + 1 Vpp at 10 kHz.

12. Reference bandwidth is the –3 dB bandwidth with an input at Vref = 1.25 V dc + 2 Vpp and with a full-scale digital-input code.

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

8

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

10 k

CL = 100 pF

TLC5620

DACA
DACB

DACD

Figure 6. Slew, Settling Time, and Linearity Measurements

TYPICAL CHARACTERISTICS

Figure 7

0

2

4

6

8

10

12

14

16

18

t – Time – 

µ

s

VDD = 5 V
TA = 25

°

C

Code 00 to FF Hex
Range = 

×

2

Vref = 2 V

3

1

0

2

LDAC

 Output V

oltage 

 V

V

O

POSITIVE RISE AND SETTLING TIME

Figure 8

0

2

4

6

8

10

12

14

16

18

t – Time – 

µ

s

3

1

0

2

LDAC

VDD = 5 V
TA = 25

°

C

Code FF to 00 Hex
Range = 

×

2

Vref = 2 V

 Output V

oltage 

 V

V

O

NEGATIVE FALL AND SETTLING TIME

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

9

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 9

4

3.8

3.4

3.2

3

4.8

3.6

0

10

20

30

40

50

60

 DAC Output V

oltage 

 V

4.4

4.2

4.6

DAC OUTPUT VOLTAGE

vs

OUTPUT LOAD

5

70

80

90

100

V

O

RL – Output Load – k

VDD = 5 V,
Vref = 2.5 V,
Range = 2x

Figure 10

2

1.5

0.5

0

0

10

20

30

40

50

60

2.5

3.5

4

70

80

90

100

1

3

DAC OUTPUT VOLTAGE

vs

OUTPUT LOAD

VDD = 5 V,
Vref = 3.5 V,
Range = 1x

 DAC Output V

oltage 

 V

V

O

RL – Output Load – k

Figure 11

4

3

1

0

0

1

2

3

 Output Source Current 

 mA

5

7

OUTPUT SOURCE CURRENT

vs

OUTPUT VOLTAGE

8

4

5

2

6

VDD = 5 V
TA = 25

°

C

Vref = 2 V
Range = 

×

2

Input Code = 255

I O(source)

VO – Output Voltage – V

Figure 12

1

0.9

0.85

0.8

 Supply Current 

 mA

1.1

1.15

SUPPLY CURRENT

vs

TEMPERATURE

1.2

1.05

0.95

– 50

0

50

100

VDD = 5 V
Vref  2 V

Range = 

×

2

Input Code = 255

I DD

t – Temperature – 

°

C

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

10

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

Figure 13

1

10

100

 Relative Gain 

 dB

f – Frequency – kHz

RELATIVE GAIN

vs

FREQUENCY

1000

0

– 2

– 4

– 6

– 8

– 10

– 12

– 14

– 16

– 18

– 20

VDD = 5 V
TA = 25

°

C

Vref = 1.25 Vdc + 2 Vpp
Input Code = 255

Figure 14

1

10

100

1000

 Relative Gain 

 dB

f – Frequency – kHz

RELATIVE GAIN

vs

FREQUENCY

10000

10

0

– 10

– 20

– 30

– 40

– 50

– 60

VDD = 5 V
TA = 25

°

C

Vref = 2 Vdc + 0.5 Vpp
Input Code = 255

APPLICATION INFORMATION

NOTE A: Resistor R 

w

 10 k

R

TLC5620

DACA
DACB

DACD

_

+

VO

Figure 15. Output Buffering Scheme

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I

QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

11

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

D (R-PDSO-G**)    

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

4040047 / B 10/94

0.228 (5,80)

0.244 (6,20)

0.069 (1,75) MAX

0.010 (0,25)

0.004 (0,10)

1

14

0.014 (0,35)

0.020 (0,51)

A

0.157 (4,00)

0.150 (3,81)

7

8

0.044 (1,12)

0.016 (0,40)

Seating Plane

0.010 (0,25)

PINS **

0.008 (0,20) NOM

A  MIN

A  MAX

DIM

Gage Plane

0.189

(4,80)

(5,00)

0.197

8

(8,55)

(8,75)

0.337

14

0.344

(9,80)

16

0.394

(10,00)

0.386

0.004 (0,10)

M

0.010 (0,25)

0.050 (1,27)

0

°

– 8

°

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
D. Four center pins are connected to die mount pad.

E. Falls within JEDEC MS-012

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

TLC5620C, TLC5620I
QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS
 

 

SLAS081E – NOVEMBER 1994 – REVISED NOVEMBER 2001

12

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

MECHANICAL DATA

N (R-PDIP-T**)   

PLASTIC DUAL-IN-LINE PACKAGE

20

0.975

(24,77)

0.940

(23,88)

18

0.920

0.850

14

0.775

0.745

(19,69)

(18,92)

16

0.775

(19,69)

(18,92)

0.745

A  MIN

DIM

A  MAX

PINS **

0.310 (7,87)
0.290 (7,37)

(23.37)

(21.59)

Seating Plane

0.010 (0,25) NOM

14/18 PIN ONLY

4040049/C 08/95

9

8

0.070 (1,78) MAX

A

0.035 (0,89) MAX

0.020 (0,51) MIN

16

1

0.015 (0,38)

0.021 (0,53)

0.200 (5,08) MAX

0.125 (3,18) MIN

0.240 (6,10)

0.260 (6,60)

M

0.010 (0,25)

0.100 (2,54)

0

°

– 15

°

16 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001)

/var/www/html/datasheet/sites/default/files/pdfhtml_images/tlc5620-html.html
background image

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters  stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 

 2001, Texas Instruments Incorporated

Maker
Texas Instruments
Datasheet PDF Download