L295 Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

L295

DUAL SWITCH-MODE SOLENOID DRIVER

PRELIMINARY DATA

HIGH CURRENT CAPABILITY (up to 2.5A per

channel)

HIGH VOLTAGE OPERATION (up to 46V for

power stage)

HIGH EFFICIENCY SWITCHMODE OPERATION

REGULATED OUTPUT CURRENT (adjustable)

FEW EXTERNAL COMPONENTS

SEPARATE LOGIC SUPPLY

THERMAL PROTECTION

DESCRIPTION
The L295 is a monolithic integrated circuit in a 15 -
lead Multiwatt ® package; it incorporates all the
functions for direct interfacing between digital cir-
cuitry and inductive loads. The L295 is designed to
accept standard microprocessor logic levels at the
inputs and can drive 2 solenoids. The output current
is completely controlled by means of a switch-

March 1993

Symbol

Parameter

Value

Unit

V

s

Supply voltage

50

V

V

ss

Logic supply voltage

12

V

V

EN

, V

i

Enable and input voltage

7

V

V

ref

Reference voltage

7

V

Io

Peak output current (each channel)

- non repetitive (t = 100 

µ

sec)

3

A

- repetitive (80% on - 20% off; T

on

 = 10 ms)

2.5

A

- DC operation

2

A

Ptot

Total power dissipation (at Tcase = 75 

°

C

25

W

Tstg, Tj

Storage and junction temperature

- 40 to 150

°

C

ABSOLUTE MAXIMUM RATINGS

ing technique allowing very efficient operation.
Furthermore, it includes an enable input and dual
supplies (for interfacing with peripherals running at
a higher voltage than the logic).
The L295 is particularly suitable for applications
such as hammer driving in matrix printers, step
motor driving and electromagnet controllers. 

APPLICATION CIRCUIT

Multiwatt 15

ORDER CODE : L295

1/8

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

CONNECTION DIAGRAM (top view)

BLOCK DIAGRAM

Symbol

Parameter

Value

Unit

R

th-j-case

Thermal resistance junction-case

max

3

°

C/W

R

th-j-amb

Thermal resistance junction-ambient

max

35

°

C/W

THERMAL DATA

2/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

Symbol

Parameter

Test conditions

Min.

Typ.

Max.

Unit

V

s

Supply Voltage

 

 

12

 

46

V

V

ss

Logic Supply Voltage

 

 

4.75

 

10

V

I

d

Quiescent drain current
(from VSS)

V

S

 = 46V; V

i1

 = V

i2

 = V

EN

 = L

 

 

4

mA

I

ss

Quiescent drain current
(from VS)

V

SS

  = 10 V

 

 

 

46

mA

V

i1

,,V

i2

Input Voltage

 

Low

-0.3

 

0.8

V

  

 

High

2.2

 

7

V

EN

Enable Input Voltage

 

Low

-0.3

 

0.8

V

  

 

High

2.2

 

7

I

i1

, I

i2

Input Current

 

V

i1

 = V

i2

 = L

 

 

-100

µ

A

 

 

 

V

i1

 = V

i2

 = H

 

 

10

I

EN

Enable Input Current

 

V

EN

 = L

 

 

-100

µ

A

 

 

 

V

EN

 = H

 

 

10

V

ref1

,

V

ref2

Input Reference Voltage

 

 

0.2

2

V

I

ref1

,

I

ref2

m

Input Reference Voltage

 

 

 

 

-5

µ

A

F

osc

Oscillation Frequency

C = 3.9 nF;

R = 9.1 K

 25

 KHz

I

p

Transconductance (each ch.)

V

ref

 = 1V

1.9

2

2.1

A/V

V

ref

V

drop

Total output voltage drop
(each channel) (*)

I

o

 = 2 A

 

 

2.8

3.6

V

V

sens1

V

sens2

External sensing resistors
voltage drop

 

 

 

 

2

V

(*) V

drop

 = V

CEsat

 

Q1

 + V

CEsat Q2.

ELECTRICAL CHARACTERISTICS (Refer to the application circuit, V

ss

 = 5V, V

s

 = 36V; T

= 25

°

C; L =

Low; H = High; unless otherwise specified)

3/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

APPLICATION CIRCUIT

D2, D4 = 2A High speed diodes
D1, D3 = 1A High speed diodes

R1 = R2 = 2

L1 = L2 = 5 mH

)

trr 

 200 ns

FUNCTIONAL DESCRIPTION

The L295 incorporates two indipendent driver
channals with separate inputs and outputs, each
capable of driving an inductive load (see block
diagram).
The device is controlled by three micriprocessor
compatible digital inputs and two analog inputs.
These inputs are:

EN

chip enable (digital input, active low),
enables both channels when in the low
state.

V

in1

, V

in2

 

channel inputs (digital inputs, active
high), enable each channel inde-
pendently. A channel is actived when
both EN and the appropriate channel
input are active.

V

ref1

, V

ref2

 referce 

voltages 

(analog 

inputs), 

used

to program the peak load currents.
Peak load current is proportional to V

ref

.

Since the two channels are identical, only channel
one will be described.
The following description applies also the channel
two, replacing FF2 for FF1, V

ref

 for V

ref1

 etc.

When the channel is avtivated by low level on the
EN input and a high level on the channel input, V

in2

,

the output transistors Q1 and Q2 switch on and

current flows in the load according to the exponen-
tial law:

I  

=

            

V

R1

          

(

 1  

  e        

  R1  t

L1

          

)

where:

R1 and R2 are the resistance and in-
ductance of the load and V is the volt-
age available on the load (V

s

 - V

drop

 -

V

sense

).

The current increases until the voltage on the ex-
ternal sensing resistor, R

S1

, reaches the reference

voltage, V

ref1

. This peak current, I

p1

, is given by:

I

p1

 

 

=

       

V

ref1

R

S1

At this point the comparator output, Vomp1, sete
the RS flip-flop, FF1, that turns off the output tran-
sistor, Q1. The load current flowing through D2, Q2,
R

S1

, decreases according to the law:

 

=

 

 

(

     

V

A

R

1

     

+

  I

p1

 

)

 

 

 e

 

  

 R1 

 

t

L1

   

 

  

      

V

A

R1

where V

A

 = V

CEsat Q2

 + V

sense

 + V

D2

4/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

If the oscillator pin (9) is connected to ground the
load current falls to zero as shown in fig. 1.
At this time t

2

 the channel 1 is disabled, by taking

the inputs V

in1

 low and/or EN high, and the output

transistor Q2 is turned off. The load current flows
through D2 and D1 according to the law:

 

=

 

 

(

     

V

B

R

1

     

+

  I

T2

 

)

 

 

 e

 

  

 R1 

 

t

L1

   

 

  

      

V

B

R1

where V

B

 = V

S

 + V

D1

 + V

D2

I

T2

 = current value at the time t

2

.

Fig. 2 in shows the current waveform obtained with
an RC network connected between pin 9 and
ground. From to t

1

 the current increases as in fig.

1. A difference exists at the time t

2

 because the

current starts to increase again. At this time a pulse
is produced by the oscillator circuit that resets the
flip.flop, FF1, and switches on the outout transistor,
Q1. The current increases until the drop on the
sensing resistor R

S1

 is equal to V

ref1

 (t

3

) and the

cycle repeats.

SIGNAL WAVEFORMS

The switching frequency depends on the value R
and C, as shown in fig. 4 and must be chosen in
the range 10 to 30 KHz.
It is possible with external hardware to change the
reference voltage V

ref

 in order to obtain a high peak

current I

p

 and a lower holding current I

h

 (see fig. 3).

The L295 is provided with a thermal protection that
switches off all the output transistors when the
junction temperature exceeds 150

°

C. The pres-

ence of a hysteresis circuit makes the IC work again
aftera fall of the junction temperature of about
20

°

C.

The analog input pins (V

ref1

 , V

ref2

) can be left open

or connected to V

ss

; in this case the circuit works

with an internal reference voltage of about 2.5V and
the peak current in the load is fixed only by the value
of R

s

:

I

p

  

=

         

 

  

 

2.5   

R

S

Figure 1. Load current waveform with pin 9
connected to GND.

Figure 2. Load current waveform with external
R-C network connected between pin 9 and
ground.

5/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

SIGNAL WAVEFORMS (continued)

Figure 3. With V

ref

 changed by hardware.

Figure 4. Switching frequency vs. values of R
and C.

6/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

DIM.

mm

inch

MIN.

TYP.

MAX.

MIN.

TYP.

MAX.

A

5

0.197

B

2.65

0.104

C

1.6

0.063

D

1

0.039

E

0.49

0.55

0.019

0.022

F

0.66

0.75

0.026

0.030

G

1.02

1.27

1.52

0.040

0.050

0.060

G1

17.53

17.78

18.03

0.690

0.700

0.710

H1

19.6

0.772

H2

20.2

0.795

L

21.9

22.2

22.5

0.862

0.874

0.886

L1

21.7

22.1

22.5

0.854

0.870

0.886

L2

17.65

18.1

0.695

0.713

L3

17.25

17.5

17.75

0.679

0.689

0.699

L4

10.3

10.7

10.9

0.406

0.421

0.429

L7

2.65

2.9

0.104

0.114

M

4.25

4.55

4.85

0.167

0.179

0.191

M1

4.63

5.08

5.53

0.182

0.200

0.218

S

1.9

2.6

0.075

0.102

S1

1.9

2.6

0.075

0.102

Dia1

3.65

3.85

0.144

0.152

MULTIWATT15 PACKAGE MECHANICAL DATA

7/8

L295

/var/www/html/datasheet/sites/default/files/pdfhtml_images/1332-html.html
background image

8/8

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.

©  1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -

Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

L295

Maker
ST Microelectronics
Datasheet PDF Download