C167 FAMILY PRELIMINARY USER MANUAL

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics.

As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

ТА	TABLE OF CONTENTS		
ST	10167	5	
1. 2.	Instruction Set	7 8 8 .23 .23 .24 .26 .26	
3.	2.5 Internal Address Space Bus Control Unit	.29 .31 .33 .33 .33 .33 .33 .33 .33 .33 .33	
4.	PWM Module	.62 .63 .71 .76 .78	
5.	Second Capture/Compare Unit, CAPCOM2	.79	
6.	 Asynchronous/Synchronous Serial Interface	87 .87 .88	
7.	Synchronous Serial Channel, SSC7.1SSC Block Diagram7.2General Operation of the SSC7.3SSC Control, Status and Data Registers	.91 .91 .93 .94	

	7.3.1	SSC Control Register SSCCON94	
	7.3.2	Buffer Registers SSCTB and SSCRB100	
	7.3.3	Baud Rate Register SSCBR	
	7.3.4	Interrupt Control Registers101	
	7.3.5	Port Control Registers	
	7.4 Detai	lled Operation of the SSC105	
	7.4.1	Single Master, Full-Duplex Operation106	
	7.4.2	Multi-Master, Full-Duplex Operation109	
	7.4.3	Half-Duplex Operation	
	7.4.4	Continuous Transfers	
	7.5 Error	Detection	13
	7.5.1	Receive Error (Master and Slave Mode)	
	7.5.2	Phase Error (Master and Slave Mode)	
	7.5.3	Baud Rate Error (Slave Mode)	
	7.5.4	Transmit Error (Slave Mode))
8.	A/D Conv	erter (ADC)117	,
	8.1 Addit	onal A/D Input Channels117	
	8.2 Wait	or ADDAT Read Mode118	
	8.3 Chan	nel Injection Mode122	
9.	GPT1 and	I GPT2 Enhancements127	
9. 10.	GPT1 and Interrupt	I GPT2 Enhancements127 System	
9. 10.	GPT1 and Interrupt 10.1 Exte	I GPT2 Enhancements	33
9. 10.	GPT1 and Interrupt 10.1 Exter 10.2 Add	I GPT2 Enhancements	33
9. 10.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports	I GPT2 Enhancements	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports	I GPT2 Enhancements 127 System 133 Irnal Interrupts 13 itional Peripheral Interrupts 134 137 134 137 134 137 134	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF	I GPT2 Enhancements 127 System 133 Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF	I GPT2 Enhancements 127 System 133 Innal Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 <t< th=""><th>33</th></t<>	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF	I GPT2 Enhancements 127 System 133 Innal Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 <t< th=""><th>33</th></t<>	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.4 POF	I GPT2 Enhancements 127 System 133 strnal Interrupts 13 itional Peripheral Interrupts 134 CT0: Ports P0L and P0H RT1: Ports P1L and P1H RT2 146 RT3 148 RT4 151	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.3 POF 11.4 POF 11.5 POF	I GPT2 Enhancements 127 System 133 Innal Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 <t< th=""><th>33</th></t<>	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.4 POF 11.5 POF 11.6 POF	I GPT2 Enhancements 127 System 133 Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.3 POF 11.4 POF 11.5 POF 11.6 POF 11.7 POF	I GPT2 Enhancements 127 System 133 strinal Interrupts 134 itional Peripheral Interrupts 134 RT0: Ports P0L and P0H 141 RT1: Ports P1L and P1H 144 RT3 148 RT4 151 RT5 153 RT6 154 RT7 159	33
9. 10. 11.	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.3 POF 11.4 POF 11.5 POF 11.6 POF 11.7 POF 11.8 POF	I GPT2 Enhancements 127 System 133 Innal Interrupts 13 Itional Peripheral Interrupts 134 Itional Peripheral Interrupts 141 Itional Peripheral Interrupts 141 <t< th=""><th>33</th></t<>	33
 9. 10. 11. 11. 12. 	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.4 POF 11.5 POF 11.5 POF 11.6 POF 11.7 POF 11.8 POF Dedicated	I GPT2 Enhancements 127 System 133 strnal Interrupts 13 itional Peripheral Interrupts 134 CTO: Ports POL and POH RTO: Ports POL and POH RT1: Ports P1L and P1H RT2 146 RT3 148 RT4 151 RT5 153 RT6 154 RT7 159 RT8 163 d Pins 167	33
 9. 10. 11. 11. 12. 13. 	GPT1 and Interrupt 10.1 Exte 10.2 Add Ports 11.0 POF 11.1 POF 11.2 POF 11.3 POF 11.3 POF 11.4 POF 11.5 POF 11.6 POF 11.7 POF 11.8 POF Dedicated Pinout	I GPT2 Enhancements 127 System 133 stral Interrupts 13 stional Peripheral Interrupts 134 CT0: Ports POL and POH 141 RT0: Ports P1L and P1H 144 RT2 146 RT3 148 RT4 151 RT5 153 RT6 154 RT7 159 RT8 163 d Pins 167 169 169	333

ST10167

This Preliminary User Manual describes the enhancements bring to the new ST10 Family, the C167 Family and specially the ST10167 which is the first derivative component of the C167 Family. Compared to the ST10x166, besides adding more functionality in the peripheral and bus controller section, some enhancements and changes are made in the CPU core of the C167. The following list gives a short overview on the additional features and functions of the ST10167:

- 8 KByte On-Chip Mask-Programmable ROM

- 2 KByte On-Chip RAM

Extended System Stack, Variable, and Register Bank Space PEC Pointers Mapped to Non-Bitaddressable Space

- Additional Instructions to Support HLL and Operating Systems
- Extended Address Range up to 16 MByte
- Five Bus Configuration Registers
- Five Selectable Chip Select Signals
- Extended SFR Space
- Enhanced A/D Converter Operation:
 - 16 Analog Input Channels

Wait for Read Mode: Start New Conversion after ADDAT Read Channel Injection: Convert Specific Channel during Auto Scan or Continuous Mode

- Second Capture/Compare Unit with 16 Channels

- Serial Interfaces:

One Synchronous/Asynchronous Serial Interface (ASC0) with Even/Odd Parity Selection

One Synchronous Serial Interface (SSC) with Master/Slave Option

- Pulse Width Modulation (PWM) Unit with 4 Independent Channels: Up to 78 KHz Frequency with 8-Bit Resolution
- Four Modes of Operation: Standard, Symetrical, Burst Mode, Single Shot

- Extended Interrupt System:

- 8 Fast External Interrupt Inputs, 50 ns Sample Rate 24 Additional Interrupt Sources and Vectors
- On-Chip Bootstrap Loader
- 144-Pin MQFP Package (EIAJ)

In this document, only these add-on features and differences of the C167 compared to the ST10x166 are described. For more detailled information about features and functions of the ST10 family please refer to the ST10 User Manual.

ROM			CPU CORE					RAM
OSC		Interrupt Co	ntroller			PEC		WDT
P0	BUS	CAPCOM2	ADC	P	WM	GF	PT1	P8
P1	CTL	CAPCOM1	ASC	S	sc	GP	PT2	P7
P4		P6	P2		P3			P5
								VR001925

Figure 1. Block diagram of the major units of the ST10167

1. INSTRUCTION SET

The instruction set of the C167 is enhanced by a number of instructions, which can greatly reduce the code size generated by C-Compilers, and which enable the user to write uninterruptable instruction sequences in a very effective way. A further instruction is used to support the Extended SFR space in the C167 (see Chapter 2.4). The new instructions are described below, the syntax and formats of these instructions are detailled on the next pages.

1.1 Atomic Instruction

This instruction is intended to allow the user to write an uninterruptable sequence of code. The execution of this instruction causes the interrupt system (standard interrupts and PEC requests) **and Class A Traps** to be disabled for a specific number of instructions, between 1 to 4 instructions. All instructions requiring multiple cycles or hold states are regarded as one instruction in this sense (e.g. MUL is one instruction). The atomic instruction is immediately active such that no NOPs are required. Any instruction type can be used with this instruction.

Note that, while Class A Traps (NMI#, Stack Overflow/Underflow) are disabled during the scope of the atomic instruction, the occurence of a Class B Trap (Illegal Opcode, Illegal Bus Access, etc.) will interrupt the atomic sequence, since it indicates a severe hardware problem.

The operation of the atomic instruction is the basis also for the Extend instructions.

Example:

ATOMIC	#3	; scope is 3 instructions
		; the following 3 instructions are uninterruptable
MOV	R0,#1234h	; instr. 1
MOV	R1,#5678h	; instr. 2
MUL	R0,R1	; instr. 3: MUL regarded as one instruction
MOV	R2,MDL	; this instruction is out of the scope of the atomic sequence

1.2 Extend Segment/Extend Page Instructions

These instructions allow the user to bypass the code segment and data page scheme for a specific number of instructions (between 1 to 4). These instructions will mainly be used by HLL-Compilers to access large data areas without the overhead of data page pointer swapping. As with the atomic instruction, interrupts and Class A Traps are disabled for up to 4 instructions after the extend instructions. Additional instruction formats are implemented for a combination of the Extend Segment/Extend Page instructions with the Extend Register instruction.

1.3 Extend Register Instructions

In the C167, due to the amount of Special Function Registers (SFRs) required to control the on-chip peripherals, the SFR space is extended. This new Extended SFR range, **ESFR**, can be accessed like any other memory location with a 16-bit address (**mem** or **[Rw]**). However, when using short 8-bit addresses (**REG** or **BITOFF**), a distinction has to be made between the normal and the extended SFR space (see also Chapter 2.4). For this purpose, Extend Register instructions are implemented, which allow access to the ESFR space with short 8-bit addresses for a specific number of instructions (between 1 and 4). Again, interrupts and Class A Traps are disabled during execution of this code sequence. Additional instruction formats are implemented for a combination of the Extend Register instructions with the Extend Segment/Extend Page instructions. Examples for these instructions can be found in section 2.4.

Note:

Signal active low will be marked in the text with # and with - in the figures.

ATOMIC

begin ATOMIC sequence

АТОМІС	ор1
OPERATION	<pre>(count) <= op1(1 <= op1 <= 4) Disable Interrupts and Class A Traps DO WHILE (count != 0 AND Class B Trap Condition != TRUE)</pre>
	Causes standard and PEC interrupts and class A hardware traps to be disabled for a specified number of instructions. The ATOMIC instruction becomes immediately active such that no additional NOPs are required.
	Depending on the value of op1, the period of validity of the ATOMIC sequence extends over the sequence of the next 1 to 4 instructions being executed after the ATOMIC instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the ATOMIC instruction.
	NOTE: A lot of care must be taken over the use of the ATOMIC instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the ATOMIC instruction sequence is completed. In such a case, the ATOMIC instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An ATOMIC instruction sequence can normally not be continued properly if it was interrupted!

ATOMIC

begin ATOMIC sequence

FLAGS

Е	Z	V	С	Ν
-	-	-	-	-
E Z V C	Not affe Not affe Not affe Not affe	ected ected ected ected		

N Not affected

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
ATOMIC	#data2	D1 :00##-0	2

EXTR

begin EXTended Register sequence

EXTR	op1
OPERATION	<pre>(count) <= op1(1 <= op1 <= 4) Disable Interrupts and Class A Traps SFR range = Extended DO WHILE (count != 0 AND Class B Trap Condition != TRUE)</pre>
	Causes all SFR or SFR bit accesses via the 'reg', 'bitoff' or 'bitaddr' addressing modes being made to the Extended SFR space for a specified number of instructions. During their execution, both standard and PEC interrupts and class A hardware traps are locked. The EXTR instruction becomes immediately active such that no additional NOPs are required.
	Depending on the value of op1, the period of validity of the EXTR instruction extends over the sequence of the next 1 to 4 instructions being executed after the EXTR instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the EXTR instruction.
	NOTE: A lot of care must be taken over the use of the EXTR instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the EXTR instruction sequence is completed. In such a case, the EXTR instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An EXTR instruction sequence can normally not be continued properly if it was interrupted!

SGS-THOMSON MICROELECTROMICS

EXTR

begin EXTended Register sequence

FLAGS

	Е	Z	V	С	Ν
	-	-	-	-	-
E		Not aff	ected		
Z		Not aff	ected		
V		Not aff	ected		
С	,	Not aff	ected		
N		Not aff	ected		

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
EXTR	#data2	D1 :10##-0	2

EXTP

begin EXTended Page sequence

EXTP	op1, op2
OPERATION	<pre>(count) <= op2(1 <= op2 <= 4) Disable Interrupts and Class A Traps Data Page = (op1) DO WHILE (count != 0 AND Class B Trap Condition != TRUE)</pre>
	Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified number of instructions. During their execution, both standard and PEC interrupts and class A hardware traps are locked. The EXTP instruction becomes immediately active such that no additional NOPs are required.
	For any long ('mem') or indirect ([]) address in the EXTP instruction sequence, the 10-bit page number (address bits $A_{23} - A_{14}$) is not determined by the contents of a DPP register but by the value of op1 itself. The 14-bit page offset (address bits $A_{-} - A_{0}$) is derived from the long or indirect address as usual.
	Depending on the value of op2, the period of validity of the EXTP instruction extends over the sequence of the next 1 to 4 instructions being executed after the EXTP instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the EXTP instruction.

EXTP

begin EXTended Page sequence

NOTE: A lot of care must be taken over the use of the EXTP instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the EXTP instruction sequence is completed. In such a case, the EXTP instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An EXTP instruction sequence can normally not be continued properly if it was interrupted!

FLAGS

Е	Not affected
Z	Not affected
V	Not affected
С	Not affected
Ν	Not affected

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
EXTP	Rwm, #data2	DC :01##-m	2
EXTP	#pag,#data2	D7 :01##-0 pp 0:00pp	4

EXTPR

begin EXTended Page and Register sequence

EXTPR	op1, op2
OPERATION	<pre>(count) <= op2(1 <= op2 <= 4) Disable Interrupts and Class A Traps Data Page = (op1) AND SFR range = Extended DO WHILE (count != 0 AND Class B Trap Condition != TRUE)</pre>
	Overrides the standard DPP addressing scheme of the lor

Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes all SFR or SFR bit accesses via the 'reg', 'bitoff' or 'bitaddr' addressing modes being made to the Extended SFR space for a specified number of instructions. During their execution, both standard and PEC interrupts and class A hardware traps are locked. The EXTPR instruction becomes immediately active such that no additional NOPs are required.

For any long ('mem') or indirect ([...]) address in the EXTPR instruction sequence, the 10-bit page number (address bits A $_{23}^{-A}$) is not determined by the contents of a DPP register but by the value of op1 itself. The 14-bit page offset (address bits A $_{-A}^{-A}$) is derived from the long or indirect address as usual.¹³

Depending on the value of op2, the period of validity of the EXTPR instruction extends over the sequence of the next 1 to 4 instructions being executed after the EXTPR instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the EXTPR instruction.

SGS-THOMSON

EXTPR

begin EXTended Page and Register sequence

NOTE: A lot of care must be taken over the use of the EXTPR instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the EXTPR instruction sequence is completed. In such a case, the EXTPR instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An EXTPR instruction sequence can normally not be continued properly if it was interrupted!

FLAGS

Е	Z	V	С	Ν
-	-	-	-	-

Е	Not affected
Ζ	Not affected
V	Not affected
С	Not affected
Ν	Not affected

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
EXTPR	Rwm, #data2	DC :11##-m	2
EXTPR	#pag,#data2	D7 :11##-0 pp 0:00pp	4

EXTS

begin EXTended Segment sequence

EXIS	op1, op2
OPERATION	(count) <= op2(1 <= op2 <= 4)
	Disable Interrupts and Class A Traps
	Data Segment = (op1)
	DO WHILE (count != 0 AND Class B Trap Condition != TRUE)
	next instruction
	(count) <= (count) - 1
	END WHILE
	(count) = 0
	Data Page= (DPPx)
	Enable Interrupts and Traps

Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified number of instructions. During their execution, both standard and PEC interrupts and class A hardware traps are locked. The EXTS instruction becomes immediately active such that no additional NOPs are required.

For any long ('mem') or indirect ([...]) address in an EXTS instruction sequence, the value of op1 determines the 8-bit segment (address bits A_{23} - A_{16}) valid for the corresponding data access. The long or indirect address itself represents the 16-bit segment offset (address bits A_{15} - A_{0}).

Depending on the value of op2, the period of validity of the EXTS instruction extends over the sequence of the next 1 to 4 instructions being executed after the EXTS instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the EXTS instruction.

EXTS

begin EXTended Segment sequence

NOTE: A lot of care must be taken over the use of the EXTS instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the EXTS instruction sequence is completed. In such a case, the EXTS instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An EXTS instruction sequence can normally not be continued properly if it was interrupted!

FLAGS

Z Not affected

V Not affected

C Not affected

N Not affected

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
EXTS	Rwm, #data2	DC :00##-m	2
EXTS	#seg,#data2	D7 :00##-0 ss 00	4

EXTSR begin EXTended Segment and Register sequence

EXTSR	op1, op2
-------	----------

OPERATION	

Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes all SFR or SFR bit accesses via the 'reg', 'bitoff' or 'bitaddr' addressing modes being made to the Extended SFR space for a specified number of instructions. During their execution, both standard and PEC interrupts and class A hardware traps are locked. The EXTSR instruction becomes immediately active such that no additional NOPs are required.

For any long ('mem') or indirect ([...]) address in the EXTSR instruction sequence, the value of op1 determines the 8-bit segment (address bits A_{23} - A_{16}) valid for the corresponding data access. The long or indirect address itself represents the 16-bit segment offset (address bits A_{15} - A_{0}).

Depending on the value of op2, the period of validity of the EXTSR instruction extends over the sequence of the next 1 to 4 instructions being executed after the EXTSR instruction. All instructions requiring multiple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type can be used with the EXTSR instruction.

SGS-THOMSON

EXTSR

begin EXTended Segment and Register sequence

NOTE: A lot of care must be taken over the use of the EXTSR instruction with other system control or branch instructions. One must also be very careful when a class B trap condition becomes present before the EXTSR instruction sequence is completed. In such a case, the EXTSR instruction ceases its validity, the interrupt locking is removed, and the class B trap is executed. An EXTSR instruction sequence can normally not be continued properly if it was interrupted!

FLAGS

Е	Not affected
Z	Not affected
V	Not affected
С	Not affected
Ν	Not affected

INSTRUCTION FORMAT

Mnemonic	Operands	Format	Bytes
EXTSR	Rwm, #data2	DC :10##-m	2
EXTSR	#seg,#data2	D7 :10##-0 ss 00	4

2. ON-CHIP MEMORY

2.1 On-Chip ROM

In this version of the ST10167, 8 KByte of internal ROM are implemented (depending on market needs, future versions with different ROM sizes may follow). The ROM can either be mapped to segment 0, addresses 000000 - 001FFFh, or to segment 1, addresses 010000 - 011FFFh.

Although the ROM is 8 Kbyte in size, a full 32 KByte address range will be reserved for it. When mapping the ROM to segment 0, the address range 000000h through 007FFFh will be mapped internally, that is, no external addresses will be generated within this range. When mapping the ROM to segment 1, the address range 010000h through 017FFFh will be reserved, and no external addresses are generated within this range. In either case, the internal ROM is multiple mapped to this 32 KByte range. Crossing the ROM boundary at n * 8K (n = 1..3) results to an access in the respective address range 000000h - 007FFFh (010000h - 017FFFh in segment 1, respectively). See also Chapter 2.5, Internal Address Space.

Figure 2. On-chip ROM Address Range, Mapping Option, and Expandability

2.2 On-Chip RAM

The C167 incorporates a total of 2 KByte on-chip RAM, located in the address range from 00F600h through 00FDFFh, shown in Figure 3. The stack size options are extended accordingly, described in detail in section 3.3. The entire 2 KByte of internal RAM can be used for variables, stack, and general purpose register banks.

SGS-THOMSON MIGROELECTRONICS

Figure 3. On-Chip RAM Address Map

2.3 PEC Pointer Address Space

The source and destination pointers for the PEC channels, which in the ST10x166 occupy the bitaddressable address range 0FDE0h through 0FDFFh, are remapped in the C167 to the address range 0FCE0h through FCFFh, as illustrated in Figure 3. This change enables the user to utilize all 2048 bits in the RAM without having to sacrifice this valuable space when using the PEC channels.

Note: This change is an incompatibility with the ST10x166 !

2.4 Extended Special Function Register Space (ESFR)

In the C167, due to the amount of registers required to control the additional on-chip peripherals, the address range for the special function registers (SFRs) is extended. This new Extended SFR range, **ESFR**, is located in the address range 00F000h through 00F1FFh. It has the same size as the normal SFR range, and it is also split into a bitaddressable and a non-bitaddressable section.

Due to the special addressing modes available for SFRs, some exceptions have to be taken into account when accessing registers in the ESFR space. SFRs can be addressed via a 16-bit direct (**MEM**) or indirect address (**[Rw]**), via a bit address (**BITOFF**), or via a short 8-bit address (**REG**). Accessing SFRs via a 16-bit address (MEM or [Rw]) is no problem since they are easily distinguished by that address. The short addressing modes (**REG** or **BITOFF**), however, implicitly use the fixed base address of the normal SFR range, and the addressing capability with 8 bits is totally occupied by this range.

Thus, a method is implemented to allow the short address access (**REG** or **BITOFF**) also for the new ESFR range. Instead of a windowing option, where either one or the other of the SFR ranges would be available, this method allows both ranges to be accessible at the same time.

For this purpose, an **Extend Register EXTR** (EXTPR, EXTSR) instruction is implemented. This instruction is required before an access to a register in the ESFR range is made with a **short addressing mode** (see also Chapter 1, Instruction Set). The tools will provide options to insert this instruction automatically depending on the addressing mode used. The following examples show accesses to the normal and the extended SFR ranges:

Example 1:

Direct MEM access to an ESFR: No EXTR instruction required

MOV	R0, #const16	; GPRs are directly accessible in both ranges
MOV	ODP2, R0	; mem, reg addressing mode for the ESFR ODP2

Example 2:

Direct REG access to an ESFR: EXTR instruction required

EXTR	#4	; Extend Register for the following four instructions			
MOV	ODP2, #data16	; reg, #data16 addressing mode			
BFLDL	DP6, #mask, #data8	; bitoff addressing mode			
BSET	DP1H.7	; bitaddr (= bitoff+bitnr) addressing mode			
MOV	; mem, reg addressing mode (XP0IC via mem, R1 via reg)				
		; GPRs are always accessible in both ranges			
		; ==> EXTR scope not required for this instruction			

Example 3:

Access to both SFR spaces: No EXTR instruction required

MOV	S0TBUF, SSCRB	; reg, mem: S0TBUF via reg, SSCRB via mem
MOV	SSCTB, SORBUF	; mem, reg: SSCTB via mem, S0RBUF via reg

In order to optimize accesses to the ESFR space, the distribution of the special function registers between the two SFR ranges was chosen such that the ESFR space holds registers which are rarely used during normal program execution. These registers are mainly only written to during the initialization of the peripherals, and are in most cases accessed via direct MEM addressing. However, except for the direction control registers of PORT0 and PORT1, only registers new in the C167 are moved to the extended SFR space. This is done to provide compatibility with existing designs.

With one new module, however, a retranslation or even rewriting of pieces of code is necessary. The CAPCOM2 Unit is on one hand new in the C167, on the other hand it is somehow an 'old' peripheral, since it is equal to the CAPCOM1 Unit known from the ST10x166. Due to the amount of registers required for this unit, it is not possible to place all registers into the normal SFR space in order to use code written for the CAPCOM1 Unit to be used for the CAPCOM2 Unit without any changes (except for address modifications). To minimize the modification effort, mostly used CAPCOM2 registers, such as the capture/compare or the mode control registers, are located in the normal SFR space, and rarely used registers are placed into the ESFR space.

Figure 4. Standard and Extended SFR Spaces

SGS-THOMSON

Figure 4 shows an overview of both, the normal SFR space and the ESFR space. One can see, that the two spaces are very similar. The General Purpose Register area in the upper portion of the normal SFR space is also reflected in the ESFR range. Thus, the GPRs are also available within an EXTR instruction sequence. Note that the GPR area in both SFR spaces (the upper 16 word locations) must not be accessed via a 16-bit address. Except for the PORT0 and PORT1 direction control registers, the address range occupied by the CPU registers (FE00 - FE1E, and FF00 - FF1E) are reserved in the ESFR space.

Tables 2.4-1 and 2.4-2 at the end of the Manual list all the Special Function Registers in the C167.

Note: With respect to some Special Function Registers, this is an incompatibility with the ST10x166 !

2.5 Internal Address Space

In the C167, the entire address range 00F000h through 00FFFFh in segment 0 is mapped to internal addresses, that means, no external addresses will be generated within this range. The right hand side of Figure 5 illustrates the different portions of this area. Although the address space F200h through F5FFh is currently not used in the C167, it is reserved for future expansion, and should not be used in an application. An access to this area will result in a dummy access, and no external addresses will be generated. The data of a write access will be lost, and a read returns no valid data.

As already described in Chapter 2.1, the lower 32 KByte of either segment 0 or 1 (depending on ROM mapping) will also be mapped to internal addresses **if the ROM is enabled**. The left hand side of Figure 5 shows the internal address spaces within segment 0.

Note: This is an incompatibility with the ST10x166 !

Figure 5. Internal Address Space (Segment 0)

3. BUS CONTROL UNIT

3.1 Extended Address Space

The C167 provides the full addressing capability of the ST10 family. The total address space is extended to the maximum range of 16 MByte. This requires 24-bit addressing, address lines A23..A0. The lower 16 bits of the address are provided via Port 0 (in multiplexed bus mode) or via Port 1 (in non-multiplexed bus mode). The upper 8 bits of the address are optionally provided via Port 4, which in the C167 is extended to 8 bits (see Chapter 11).

The C167 has the **capability** of addressing up to 16 MByte, however, there are several options for the user to configure the part for the number of physical external address lines actually required in the system. First, one can switch between segmented or non-segmented mode. In the non-segmented mode, the total address range is 64 KByte, segment 0. Second, in the segmented mode, the user can specify the number of segment address lines required in the system. Either 0, 2, 4, or all 8 segment address lines can be configured. By this, the user can select the external address space **addressable through physical external address lines** to be either 64 KByte, 256 KByte, 1 MByte, or the full 16 MByte range. And third, up to five chip select signals can be generated automatically to select several, different address ranges. For example, the segment address lines may be limited to four lines, giving direct addressing capability of up to 1 MByte, but the chip select signals can be used to enable several blocks (or memory devices) of 1 MByte, giving a total address range of, for instance, 5 MByte. Figure 6 shows such a configuration example.

Figure 6. Address Range Configuration Example

The total address space is divided into code segments and data pages. Each code segment has an address range of 64 KByte, thus there exist 256 code segments. The currently active code segment is specified by the Code Segment Pointer, CSP, which is modified only through any JMPS (Jump Segment) or CALLS (Call Segment) instruction. The CSP is also extended to 8 bits, which represent address bits A23..A16.

SGS-THOMSON MIGROELECTRONICS

32/180

Since each data page has an address range of 16 KByte, there exist 1024 data pages. To select the data pages, four Data Page Pointers, DPP0 through DPP3, are available, giving access to four data pages at one time. The data page pointers are selected through the two most significant bits of any 16-bit data address. Each of the four data page pointers in the C167 is extended to 10 bits, which represent address bits A23..A14. See also Chapter 1 for a scheme to bypass the segments and pages. For more information on the data page pointers please refer to the ST10 User Manual.

3.2 System and Bus Configuration Control

In the ST10x166, the SYSCON register is used to control the overall system configuration and the external bus. In addition, the BUSCON1 register and the associated ADDRSEL1 register allow the user to partition the address space for external devices with different bus access parameters such as bus width, wait states, etc. Now in the C167, five bus configuration registers, BUSCON0 through BUSCON4, and four address range select registers, ADDRSEL1 through ADDRSEL4, are implemented, offering the option to have at least five address ranges with different bus parameters, adapted to the needs of the memories or peripherals located to these address ranges.

The SYSCON register known from the ST10x166 is separated into two registers in the C167: Into one new BUSCON0 register, which is used for programming the bus related parameters as with the other BUSCON registers, and into one SYSCON register, which holds the bits to program the overall configuration of the system. With this separation, it is now possible, for instance, to have the ALE lengthening feature directly after reset, and to have a clear and transparent way of programming the ROM mapping, bus enable, etc. In the following sections, the new registers are described.

Note: This is an incompatibility with the ST10x166!

3.2.1 SYSCON Register

The new SYSCON register is dedicated to global system functions, and is primarily only written once during the initialization routine. The entire SYSCON register is locked out from being written after the first occurrence of the EINIT instruction. This improves system security such that if software were to unintentionally execute a write access to this SFR, after the execution of the EINIT instruction, that it would be ignored.

C167 FAMILY PRELIMINARY USER MANUAL

The new SYSCON register hereafter will occupy the bit addressable address 0FF12h. In the following, some important controls of the SYSCON register are described.

SYSCON (FF12h/89h) System Configuration Register Reset Value: xxxxh

15	14	13	12	11	10	9	8
	STKSZ		ROMS1	SGTDIS	ROMEN	BYTDIS	CLKEN
7	6	5	4	3	2	1	0
WRCFG	R	R	R	R	R	R	R

b15, b14, b13 = **STKSZ:** System Stack Size Selection.

b12 = **ROMS1:** ROM Segment Mapping control bit.

ROMS1 = 0: internal ROM mapped to segment 0.

ROMS1 = 1: internal ROM mapped to segment 1.

b11 = SGTIS: Segmentation Disable bit.

SGTDIS = 0: Segmentation enabled.

SGTDIS = 1: Segmentation disabled.

This bit does not control the number of Part 4 pins used.

b10 = **ROMEN:** ROM Enable bit.

ROMEN = 0: Internal ROM disabled, all instruction and data accesses to the ROM space will be accessed externally.

ROMEN = 1: Internal ROM enabled, all instruction and data accesses to the ROM space will access the ROM/FLASH.

- b9 = **BYTDIS:** Byte High Enable (BHE#) pin control bit.
 - BYTDIS = 0: BHE# enabled.

BYTDIS = 1: BHE# disabled ; pin can be used for normal I/O.

b8 = CLKEN: System Clock Output (CLKOUT) Enable bit.

CLKEN = 0: CLKOUT disabled ; pin can be used for normal I/O.

CLKEN = 1: CLKOUT enabled ; pin used for system clock output.

b7 = WRCFG: Write Configuration Control Bit.

WRCFG = 0: Normal configuration of WR# and BHE#.

WRCFG = 1: WR# pin acts as WRL#, BHE# pin acts as WRH#.

b6 to $b0 = \mathbf{R}$: Reserved.

Stack Size Parameters

The stack size selection is extended in the new SYSCON register from two to three bits, due to the extended RAM space. The following table shows the possible options for the stack:

SGS-THOMSON MIGROELEGTRONICS

SYSCON[1513] STKSZ	Maximum System Stack Size	Address Range
0 0 0	256 Words	FA00h - FBFFh
001	128 Words	FB00h - FBFFh
010	64 Words	FB80h - FBFFh
011	32 Words	FBC0h - FBFFh
100	512 Words	F800h - FBFFh
101	reserved	reserved
110	reserved	reserved
111	No Wrapping F600h - FDFFh	
		Entire internal RAM (see Note)

As one can see from this table, the internal system stack may be mapped to the single port RAM area. Stack size options 0..4 mean that the stack will always reside in the specified address range, there is a wrap-around mechanism implemented for the stack (although the contents of the stack pointer itself will not perform this wrapping; see ST10 User Manual). When the No Wrapping option is selected, the stack may occupy the entire internal RAM space, from 00F600h to 00FDFFh. In this case, the Stack Underflow and Overflow SFRs should be used to ensure that unintentional accesses do not occur. In all cases, the internal system stack can never be mapped to external memory.

Note: Special care must be taken when the no wrapping option is selected. In this case, the Stack Pointer, SP, can be loaded with any word address between F000h and FFFEh. No hardware protection exists against address values which are occupied by either the reserved address space, or the standard or extended SFR ranges, thus, the SP **must never** be loaded with addresses in the range F000h through F1FEh (ESFR space), F200h through F5FFh (reserved space), and FE00h through FFFEh (SFR space), otherwise unexpected results will occur!

Segmentation Control

As in the ST10x166, the bit SGTDIS controls whether segmentation is enabled or not. After reset, this bit is '0', thus segmentation is enabled. However, different to the ST10x166, this bit does not automatically configure port P4 to output the segment address lines (this is performed through the system startup configuration, described in section 3.5). The SGTDIS bit in the C167 is only used to enable segment addresses to port P4, and to determine the correct stack operations for traps and interrupts (optionally push/pop the Code Segment Pointer, CSP).

ROM Enabling and Mapping

The ROM Enable bit, ROMEN, determines whether the on-chip ROM is enabled or not. This bit is set automatically during reset according to the state of the External Access input pin, EA#. If this pin is high during reset, ROMEN will be set to '1', and the C167 will start execution out of the internal ROM. A low level at this pin during reset will force the C167 to start execution out of external memory, with external bus parameters determined through the System Startup Configuration Selection (see section 3.5). Bit ROMEN will be cleared in this case.

For the mapping of the internal ROM to either segment 0 or segment 1, other than in the ST10x166, an individual bit, ROMS1, is implemented. The default after reset is ROMS1 = 0, mapping the ROM to segment 0. If the ROM is enabled, one has to take care of that no external addresses will be generated in the lower 32 KByte address space of either segment 0 (ROMS1 = 0) or segment 1 (ROMS1 = 1).

Note that, until the execution of the EINIT instruction, the default values in the SYSCON register can be changed through software. One has to take care, however, that bits ROMEN and ROMS1 should never be changed when executing out of the on-chip ROM, otherwise unexpected results may occur.

Note: The Write Configuration (WRCFG) control is explained in detail in section 3.4.

3.2.2 BUSCON0 Register

As mentioned above, the bus related control bits of the ST10x166 SYSCON register are moved to a new BUSCON0 register in the C167. This register is shown hereafter. This change allows to organize the BUSCON0 register in the same way as any other BUSCON register, giving the same functionality and a consistent way of programming.

BUSCON0 (FF0Ch/86h)

Bus Configuration Register 0 Reset Values: 0000h/ 0600h/ 0640h/ 0680h/ 06C0h

15	14	13	12	11	10	9	8
0	0	R	RDYEN0	R	BUSACT0	ALECTL0	R
7	6	5	4	3	2	1	0
ВТ	BTYP MTTC0 RWDC0 MCTC						

- b15, b14 = **0**.
- b13 = **R**: Reserved.
- b12 = **RDYEN0:** READY# Input Enable control bit.
 - RDYEN0 = 0: READY# function disabled for BUSCON0 accesses.
- RDYEN0 = 1: READY# function enabled for BUSCON0 accesses.
- b11 = **R**: Reserved.
- b10 = **BUSACT0:** Bus Active control bit.
- b9 = **ALECTL0:** ALE Lengthening control bit.
- b8 = **R**: Reserved.
- b6, b7 = **BTYP:** External Bus Configuration Control.
- b5 = **MTTC0:** Memory Tri-state Time Control.
- b4 = **RWDC0:** Read/Write Delay Control.
- b3 to b0 = **MCTC:** Memory CYcle Time Control.

If during reset, the EA# pin is at a high level, the BUSCON0 register is cleared to '0000', and execution begins out of the on-chip ROM. An external bus can then be selected via programming the BUSCON0, BUSCON1..4, and ADDRSEL1..4 registers appropriately.

If the EA# pin is low, forcing execution to start with external memory, register BUSCON0 is set according to the selected bus type, with default values for the bus parameters:

MCTC	= 0000	15 Memory Cycle Time Waitstates
RWDC0	= 0	Read/Write Delay Enabled
MTTC0	= 0	One Memory Tri-State Waitstate
BTYP	= XX	set according to the level at pins P0xx and P0xx during reset
ALECTL0 = 1	ALE Leng	thening Enabled
BUSACT0	= 1	External Bus Enabled
RDYEN0 = 0	READY#	Input Disabled

The coding of the BTYP bits in the BUSCON0 (and also in registers BUSCON1..4) is changed compared to the ST10x166. The new BTYP coding is shown in the following:

ВТҮР	Selected Bus Operation
00	8-Bit Non-Multiplexed Bus
01	8-Bit Multiplexed Bus
10	16-Bit Non-Multiplexed Bus
11	16-Bit Multiplexed Bus

With this coding, a clear reference of a BTYP bit to the selected operation is given. BTYP.1 controls the width of the bus (8-bit or 16-bit), while BTYP.0 controls whether the bus is multiplexed or non-multiplexed. In addition, this coding directly reflects the default bus configuration selection during reset at the P0 pins (see System Startup Configuration).

One can see that, other than in the ST10x166, external execution will start with the ALE lengthening enabled, offering the slowest possible bus. The user can reprogram the bus parameters during the initialization (or during normal run time) to values required by the external hardware.

Other than for the bus configuration registers BUSCON1..4, the BUSCON0 register has no associated address select register ADDRSEL. Instead, the BUSCON0 register controls the bus for any external accesses to addresses which are not covered by one of the address select register, i.e. it fills the gaps between these address ranges.

To indicate an external access controlled through the BUSCON0 register, and to allow a simple selection of the memory or peripheral, an individual chip select line, CS0#, is assigned to the BUSCON0 register. If CS0# is enabled (through System Startup Configuration, see section 3.5), it goes to a low level for each external access controlled through BUSCON0, i.e. for each external access outside the range of the ADDRSEL registers. It will go to a high level for each other access. See section 3.3 for details on the chip select lines.

3.2.3 BUSCON1..4 and ADDRSEL1..4 Registers

Hereafter is shown the configuration of a BUSCON1..4 register. Although these registers look similar to the BUSCON0 register, some differences exist. Each of the BUSCON1..4 registers has an associated ADDRSEL1..4 register, which specifies the active address range for this BUSCON register. That means, for an **external** access to an address range specified through an ADDRSELx register, the parameters of the bus are controlled by the respective BUSCONx register.

The second difference is the initialization after reset. The BUSCON1..4 registers are always initialized to all '0000', while the BUSCON0 register is loaded according to the selected startup configuration during reset.

A further difference between the BUSCON1..4 and the BUSCON0 registers is in the options for the chip selects, detailled in Chapter 3.3.

Note: Special care must be taken when programming the BUSCON registers. An external bus will be enabled as long as at least in one of the BUSCON register the BUSACTx bit is set. Port 1 will be used for address output if at least through one of the BUSCON registers a non-multiplexed bus is selected. Port 1 will also continue to output the addresses for an access via a multiplexed bus, controlled through another BUSCON register.

BUSCON1 (FF14h/8Ah)

Bus Configuration Register 1 Reset Value: 0000h

15	14	13	12	11	10	9	8
CSWEN1	CSREN1	R	RDYEN1	R	BUSACT1	ALECTL1	R
7	6	5	4	3	2	1	0
ВТ	YP	MTTC1	RWDC1		МС	тс	

b15 = **CSWEN1:** Write Chip Select Enable control bit.

b14 = **CSREN1:** Read Chip Select Enable control bit.

B13 = R: Reserved.

b12 = **RDYEN1:** READY# Input Enable control bit.

RDYEN1 = 0: READY# function disabled for BUSCON1 accesses.

RDYEN1 = 1: READY# function enabled for BUSCON1 accesses.

b11 = **R**: Reserved.

b10 = **BUSACT1:** Bus Active control bit.

b9 = **ALECTL1:** ALE Lengthening control bit.

b8 = **R**: Reserved.

b7, b6 = **BTYP:** External Bus Configuration Control.

b5 = **MTTC1:** Memory Tri-state Time Control.

b4 = **RWDC1:** Read/Write Delay Control.

b3 to b0 = **MCTC**: Memory Cycle Time Control.

For each BUSCON1..4 register, an individual chip select line CS1#..CS4# is associated to save external glue logic for chip select generation. If a CSx# is enabled (through System Startup Configuration, see section 3.5), the signal will go low for any external access in the range defined through the respective address select register ADDRSELx. It will go to a high level for any internal access or accesses outside the specified address range.

In order to support the extended address range of 16 MByte, the possible address range selections in the Address Select Registers ADDRSEL1..4 are also extended. The Range Size field now allows the selections shown in the following table. This table also shows the reference between the range size and the range start address.

39/180

All sixteen bits of the ADDRSEL registers are now used for the specification of the address range for a BUSCON register. Note that the relevant bits (R) define the associated upper address bits of the selected address range, they are associated with address lines A23..A12. One can see that the upper 8 bits of the ADDRSEL1..4 registers directly relate to the respective code segment (A23..A16). The bits marked with 'x' are don't care bits.

Range Size	Selected Address	Relevant (R) bits of
RGSZ	Kange	Range Start Address RGSAD
0000	4 KByte	RRRRRRRRRRR
0001	8 KByte	RRRRRRRRRR x
0010	16 KByte	RRRRRRRRR xx
0011	32 KByte	RRRRRRRR xxx
0100	64 KByte	RRRRRRR xxxx
0101	128 KByte	RRRRRR xxxxx
0110	256 KByte	RRRRR xxxxxx
0111	512 KByte	RRRRR xxxxxxx
1000	1 MByte	RRRR xxxxxxxx
1001	2 MByte	RRRxxxxxxxx
1010	4 MByte	RR xxxxxxxxx
1011	8 MByte	R xxxxxxxxxx
1 1 x x	reserved	

Note: In order to allow sections of 4 and 8 KByte, and to implement a more general scheme, the ADDRSEL register organization has been rearranged, compared to the ST10x166. The smallest section will be 4 KByte (instead of 2 KByte in the ST10x166), the Range Size field is now 4 bits, and the Start Address field is now 12 bits. Although this leads to incompatibility with existing programs, the advantages justify this change.

Note: This is an incompatibility with the ST10x166 !

Hereabove is the bus configuration register BUSCON1, while the associated address range select register ADDRSEL1 is shown herafter:

ADDRSEI Address S Reset Val	_1 (FE18h, Select Regi ue: 0000h	/0Ch) ster 1						
15	14	13	12	11	10	9	8	
	RGSAD [114]							
7	6	5	4	3	2	1	0	
RGSAD					R	GSZ		

b15 to b4 = **RGSAD:** BUSCON1 Address Range Start Address Selection. b3 to b0 = **RGSZ:** BUSCON1 Address Range Selection.

Registers BUSCON2..4 and ADDRSEL2..4 are organized in the same manner. For more details on the BUSCON and ADDRSEL registers please refer to the ST10 User Manual. The address locations of these registers in the SFR space are as follows:

Register	Physical Address	8-Bit Address	Note
BUSCON0	0FF0Ch	86h	bitaddressable
BUSCON1	0FF14h	8Ah	bitaddressable
BUSCON2	0FF16h	8Bh	bitaddressable
BUSCON3	0FF18h	8Ch	bitaddressable
BUSCON4	0FF1Ah	8Dh	bitaddressable
ADDRSEL1	0FE18h	0Ch	not bitaddressable
ADDRSEL2	0FE1Ah	0Dh	not bitaddressable
ADDRSEL3	0FE1Ch	0Eh	not bitaddressable
ADDRSEL4	0FE1Eh	0Fh	not bitaddressable

Note that, due to the fact that the bus parameter bits are more often affected by software than the other system control bits, the BUSCON0 register in the C167 is placed on the same SFR address as the SYSCON register in the ST10x166. This requires the least amount of changes in existing software when transferred to the C167. The new SYSCON register in the C167 is located to a new SFR address, FF12h / 89h.

Note: One must never program two or more ADDRSEL registers such, that the selected address ranges overlap either entirely or partially, otherwise unexpected results may occur. An exception to this restriction, of course, is the address range for the BUSCON0 register. This register controls the bus for any accesses outside the ranges defined through the ADDRSEL register. If no other BUSCONx register selects a bus in a specific address range, the external bus in the entire address range of up

to 16 MByte is controlled by the BUSCON0 register. Thus, programming another BUSCON to a certain address range **always** overlaps the BUSCON0 address range, however, this is an intended, implemented operation, and no problems will occur in this case. It can be regarded in this way, that the BUSCON1..4 and ADDRSEL1..4 registers have the same level of priority among them (thus it is not possible to determine the preference in an address overlap case), while BUSCON0 has a lower priority. It is possible, however, to overlap an ADDRSEL address range with an internal (ROM, RAM, SFR, ESFR, etc.) address range. In this case, accesses to addresses in the overlapping regions are always made to the **internal** space.

Figure 7. BUSCON Configuration Examples

3.3 Chip Selects

In order to save external glue logic mostly required for the generation of separate chip select signals for external devices such as memories or peripherals, on-chip automatic chip select signal generation is implemented in the C167. For this purpose, each BUSCON register (also the new BUSCON0 register) is designated a port line (see Chapter 11), which provides a chip select signal as an alternate function. When a chip select output is enabled for a BUSCONx register (see Chapter 3.5 for enabling/disabling chip selects), the associated output pin will go to a low level each time an external access to an address in the specified range for this BUSCONx register is performed. The pin returns to a high level for any access outside of the specified range and for internal accesses.

Each BUSCONx register is assigned a chip select line CSx#. Chip selects CS1#..CS4# will go active (if enabled) when an external access **within** the address range specified through the associated ADDRSELx register is performed. Chip select line CS0#, which is associated to the BUSCON0 register, will go active (if enabled) for any external access **outside** the ranges specified through registers ADDRSEL1..4.

For chip selects CS1#..CS4#, two different options exist, selectable through bits 15, CSWENx, and 14, CSRENx, of the respective BUSCON1..4 registers. This is illustrated in the following table (see also Figures 8 and 9). These options are described in detail in the next sections. Note that for the BUSCON0 chip select line CS0#, these options are not available. The reason is that if CS0# is enabled during reset (see Chapter 3.5), it must go active directly after reset to enable fetching of the first instructions. There is no way to additionally select whether CS0# should operate as address or read/write chip select directly after reset. Furthermore, since BUSCON0 and CS0# are nearly in all cases used to access code memory, such a chip select option is not useful.

CSWENx	CSRENx	Chip Select Operation (Chip Selects CS1#CS4#)
0	0	Address Chip Select
0	1	Read Chip Select
1	0	Write Chip Select
1	1	Read/Write Chip Select

Note that the chip selects, whether Address or Read/Write Chip Selects, will not be generated for internal accesses, even if the access is to an address within the range specified through an ADDRSEL register.

In order to avoid undefined levels of pins used as chip select lines, internal pullup devices of about 50 KOhm are implemented at these pins. This pullups are switched on during reset (either hardware, software, or watchdog timer reset), such that these lines are held at a high level. After the reset sequence has been finished, the pullup devices are switched off. The lines selected for chip select operation are then be automatically switched to the output mode and drive the appropriate level. The pins not configured for chip select operation will return to the high-impedance state.

When an HOLD# is requested by an external device, then besides switching the address and data bus to the high impedance mode, the C167 also turns the chip select signals off when generating the acknowledge signal HLDA#. This enables the external master to not only control the address and data bus, but to also use the same chip select lines to access the individual external devices connected to the bus. The chip selects can be turned off in such a case in two ways, controlled through the respective Open Drain Control register (see section 11.6) for the port: If the respective control bit ODPx.y is '0', the chip select line will be held high through switching on the internal pullup device at this pin. If ODPx.y = 1, this pullup device will not be activated, the pin will float to the high-impedance state. Either an external pullup device has to be connected in this case or the external master is capable of pulling the lines to an appropriate level.

3.3.1 Address Chip Selects

A chip select, which is generated by decoding the address lines, and which is activated for the whole duration of an external bus cycle, is named an Address Chip Select in the context of this paper. This is done to distinguish it from the Read/Write Chip Selects described in the next section.

The activation of an Address Chip Select is selected with CSWENx = CSRENx = 0 (default after reset) in the BUSCON registers (Note that for CS0#, this is the only option; the respective bits in BUSCON0 are reserved). When an access within the address range specified by the associated ADDRSEL register is performed, the respective chip select line CSx# (x= 0..4) will go to a low level with the falling edge of ALE, and remain at this level until an access outside of this range is made. It will then be deactivated again with the falling edge of ALE of the bus cycle accessing the new range. No spurious spikes will be generated on the chip select lines. Figure 8 shows the timing of the address chip select signals.

Figure 8. Address Chip Select Operation (MUX-Bus Example)

3.3.2 Read/Write Chip Selects

For accessing external devices such as latches or direction drivers, which often only have one enable input, another chip select option is implemented. This option allows to internally gate the chip select signal derived from the addresses with the read or write signal. This means, for example, that a write chip select signal will only be generated when writing to a specific address range, not for a read access to this range, and that it has the same timing characteristics as the write signal. Figure 9 shows the timing for these read/write chip select signals. There are three selectable options. The chip select can be generated either only for read accesses (CSRENx = 1, Read Chip Select), or only for write accesses (CSWENx = 1, Write Chip Select), or for both, read and write accesses (CSRENx & CSWENx = 1, Read/Write Chip Select). This feature saves external glue logic when accessing devices with only one enable input. Figure 10 shows two examples for this.

Figure 9. Read / Write Chip Select Operation (MUX-Bus Example)

Figure 10. Read / Write Chip Select Examples

Note: When the WRH#/WRL# option (see next chapter) is selected, the Write or Read/Write Chip Select will go active if any of the WRH# or WRL# signals goes active. There will be no distinction between writing to the low byte, to the high byte, or to both. The read/write chip selects will also be affected by the read/write delay control RWDCx of a BUSCONx register.

SCS-THOMSON MICROELECTRONICS

3.4 Byte High Enable or Write High , Write Low Operation

When writing bytes to external word-wide memories or peripherals (regardless whether they are true word-wide devices or two 8-bit devices in parallel), a distinction has to be made between writing to the low or to the high byte, or to both. For this purpose, the address line A0 and the Byte High Enable signal BHE# are used to properly select either half or both halfs of the device. Figure 11 shows an example for this connection, where the chip select signal is gated with A0 and BHE# (see also the ST10 User Manual).

Figure 11. Connection Possibilities of an External Read / Write Device

Besides devices with two chip select inputs, which can be connected via the method described above, there exist a number of external 16-bit devices which have only one chip select input, but two separate write inputs: a Write Low Byte (WRL#) and a Write High Byte (WRH#) input. Connecting these devices can be done as illustrated in Figure 11b.

As it can be seen, both methods require external glue logic, and it is very desirable to save these gates and have integrated solutions instead. To integrate separate chip selects for low or high byte instead of BHE# and A0 (Figure 11a) would require double the number of chip selects and pins, which are not available in the C167.

Integrating the second method, however, does not require additional pins, since the write signals run parallel to all read/write devices. Thus, this method was chosen for implementation. The C167 will incorporate an option to automatically generate a WRL# and WRH# signal instead of WR# and BHE#. This option can be selected via the control bit WRCFG, Write Configuration (SYSCON.7). When this bit is set, the WR# pin will be configured as a Write Low Byte (WRL#) strobe, and the BHE# pin as a Write High Byte (WRH#) strobe. The following table shows the resulting relationship:

WR#/ WRL#	BHE#/ WRH#	Operation
0	0	Write to a word (Low and High byte)
0	1	Write to the low byte
1	0	Write to the high byte
1	1	No write access (either read or no access)

Figure 12 shows the timing of these signals compared to the default mode (WR# and BHE#). Note that after reset, the default mode is the WR#/BHE# operation. If the BYTDIS bit (BHE# Pin Disable bit, SYSCON.9) is set, also the WRH# operation, if selected, is disabled. The pin can then be used for general purpose I/O.

Figure 12. BHE#/A0 versus WRH#/WRL# Operation (DEMUX-Bus Example)

If the WRH#/WRL# option is selected, and an access via an 8-bit data bus is performed, the WRL# signal is activated for every write access, while the WRH# signal is activated only for high byte accesses (A0 = 1).

Note: When the WRH#/WRL# option is selected, the two signals are also affected by the read/write delay control RWDCx in a BUSCONx register.

Note: This distinction between the low byte or high byte is only necessary for **write** accesses to external memory or peripherals. For read accessses, always the entire word can be read; the C167 itself determines whether to read the lower or upper byte from the 16-bit data bus. There might be rare cases, however, where the reading of a byte might affect status information in a peripheral (for example, reading an interrupt pending register clears the request flags automatically). In this case it might be necessary to use A0 and BHE# also for read accesses, such that only the addressed byte is read. The WRH#/WRL# option cannot be used then.

SGS-THOMSON MICROELECTRONICS

50/180

3.5 System Startup Configuration

In the ST10x166, three dedicated pins, EBC0, EBC1, and BUSACT#, are used during reset to configure the bus operation of the chip. The further configuration, such as segmentation, is done such that a default configuration is automatically assumed. For example, the default configuration is segmentation enabled, causing the two pins of Port 4 to output address bits A16 and A17, which are at '0' after reset. Users not requiring segmentation have to take care of this effect when using Port 4 for general purpose I/O. This is a minor disadvantage for these users.

In the C167, when keeping with this scheme, all 8 pins of Port 4 will output '0s', the full address of segment 0, directly after reset. The problem for users requiring no segmentation would increase. In addition, in the C167, some more startup initializations, such as chip selects enabled/disabled, have to be performed. These considerations resulted to the following new scheme for setting up the system configuration during/after reset:

Instead of three pins, only one dedicated pin, EA# (External Access), will be used to determine whether the chip will start with internal ROM or external memory. The lines of PORT0 are then used during reset to configure the system, such that the state of the PORT0 pins read during reset determines the system startup configuration.

The pins of PORT0 (i.e. POL and POH) contain weak pullup devices (ca. > 100 KOhm) which are switched on during the entire time that a reset sequence is active (this is true for any hardware, software, or watchdog timer reset), and pull the pins to a high level. The state of these pins are read during reset. If all pins are read as '1', a default configuration is selected. If a different configuration is required, this can be selected by pulling individual PORT0 lines low during reset with external pulldown devices of ca. 15 KOhm. After the reset sequence has terminated, the internal pullup devices at PORT0 are switched off. If external pulldown devices are connected to individual PORT0 pins, they can be left connected also after reset if no corruption of the function of the PORT0 pins can occur. Special care should be taken with respect to output load and voltage levels when using values of less than 15 KOhm.

Note: The current DC specification for the output voltages VOH in the Data Sheet specify an output voltage of VOHmin of 0.9 VCC at an output current IOH of -100 uA. Using an external pulldown device of 15 KOhm would violate this specification, since the current drawn through this pulldown is much higher. However, characterizations have shown that the output drivers are strong enough to hold the specified output voltage also at higher currents. To avoid a violation of Data Sheet parameters, it is planned to increase the specification of IOH in the Data Sheet to an appropriate value.

The following Table 3.5 illustrates the relationship between a PORT0 pin and the associated system configuration:

Pin	Selection for	Sampled with
P0L.0	Emulation Mode	Hardware Reset
P0L.1	Adapt-Mode	Hardware Reset
P0L.2 P0L.3	reserved	
P0L.4	Bootstrap Loader Mode	Hardware Reset
P0L.5	reserved	
P0L.6	Bus Mode	Hardware, Software, and Watchdog Timer Reset
P0L.7	Bus Data Width	Hardware, Software, and Watchdog Timer Reset
P0H.0	reserved	
P0H.1 P0H.2	Number of Chip Selects	Hardware, Software, and Watchdog Timer Reset
P0H.3 P0H.4	Number of Segment Address Lines	Hardware, Software, and Watchdog Timer Reset
P0H.5 P0H.6 P0H.7	reserved	

 Table 3.5: PORT0 Pin Assignment for System Startup Configuration

The default configuration for the bus operation is as follows:

- Multiplexed Bus
- 16-Bit Data Bus
- 2-Bit Segment Address at Port 4 (18-Bit total Address)
- Five Chip Select Outputs (CS0#, CS1#, CS2#, CS3#, CS4#)

One can see that the configuration selection is chosen such, that in most cases a minimum number of external pulldown devices is required. For example, only one pulldown resistor is required to select either a non-multiplexed 16-bit bus, or a multiplexed 8-bit bus. The maximum number of pulldowns would be required for the very unlikely case of an initial 8-bit non-multiplexed bus with three chip select lines and a 4-bit segment address.

The startup configuration is continuously sampled during reset, however, the last value sampled before the reset sequence is terminated is taken as valid. This configuration is then latched internally, in different ways and at different locations. The state of the PORT0 lines P0H[0..7] is latched into a special register, RP0H (ESFR space, address 0F108h/84h).

RP0H (F108h/84h)

System Startup Configuration Register (Read-Only) Reset Value: xxxxh

7	6	5	4	3	2	1	0
R	R	R	SAL	SEL	CS	SEL	R

b7 to b5 = R: Reserved.

b4, b3 = **SALSEL:** Number of Segment Address Lines configured during reset (read-only).

b2, b1 = **CSSEL**: Number of Chip Select Lines configured during reset (read-only). b0 = R: Reserved.

Bus Mode and Data Width Selection

If external start of execution is selected (EA# = 0), PORT0 lines P0L[6..7] are used to define the initial bus mode of the C167. The state of these two pins sampled at the end of the reset sequence is copied into the bus type field of the BUSCON0 register. P0L.7 determines the data width of the bus, while P0L.6 controls whether a multiplexed bus or a non-multiplexed bus is used. These values can be changed after reset at any time via a write instruction to BUSCON0.

P0L.7	P0L.6	Selected Bus Type
1	1	Multiplexed 16-Bit Bus (Default)
1	0	Non-Multiplexed 16-Bit Bus
0	1	Multiplexed 8-Bit Bus
0	0	Non-Multiplexed 8-Bit Bus

Depending on the selected initial bus mode, PORT0 and PORT1 will be automatically switched into the appropriate mode directly after reset.

Note: If an initial 8-bit non-multiplexed bus mode is selected, the pins of P0L will operate as the 8-bit data bus, while P0H will be switched to the high-impedance input mode, and can be used as general purpose I/O, provided none of the other bus modes will be activated through programming of the BUSCON registers during the initialization or later.

Note: If an initial multiplexed bus is selected, the pins of PORT1 will remain in the high-impedance mode after reset until either a non-multiplexed bus is selected through programming of the BUSCON registers during the initialization or later, or the pins are programmed for general purpose I/O. As soon as in a system once a non-multiplexed bus is enabled through one or more of the BUSCON register, PORT1 will from now on always output the address, regardless whether the access is via a non-multiplexed or a multiplexed bus. It will only stop the output of the address if in none of the BUSCON registers a non-multiplexed bus is selected. This behaviour must be specially regarded when using the address output of PORT1 to generate user defined chip select signals in a system where, besides other modes, a non-multiplexed bus mode is used. When the initial bus mode is a multiplexed bus, PORT1 will be in the high-impedance mode until a non-multiplexed bus is selected. Thus, a chip select logic connected to PORT1 might not work correctly in such a case until the appropriate initialization has taken place.

If internal start of execution is selected (EA# = 1), the state of pins POL[6..7] is not relevant. The BTYP bits in register BUSCON0 are in any case set to '00'.

Chip Select Selection

PORTO lines P0H[1..2] are used to select the number of chip select lines on port P6. Either all five, three, two, or no chip select line can be configured. The state of pins P0H[1..2] sampled at the end of a reset sequence is latched into bits RP0H[1..2]. The number of chip select lines can not be changed once the reset sequence has been finished. Software can only read the bits RP0H[1..2] to check the configuration. Only during a reset (hardware, software, or watchdog timer reset), the configuration can be changed.

SCS-THOMSON MICROELECTRONICS The default configuration, when the state of these pins sampled at the end of reset is '11', all five chip selects, CS0#..CS4#, are selected.

P0H.2	P0H.1	Number of Chip Selects
1	1	Five Chip Select Signals: CS0#CS4# (Default)
1	0	No Chip Select Signals
0	1	Two Chip Select Signals: CS0# and CS1#
0	0	Three Chip Select Signals: CS0#, CS1#, and CS2#

During reset, the port P6 lines with an alternate chip select function are pulled high through an internal pullup device. If external access is selected (EA# = 0), and at least two chip selects are configured, the signal CS0# will immediately go to a low level when the reset sequence has been finished, while all other lines configured for chip select operation will drive a high level. If Internal access is selected (EA# = 1), signal CS0# and all other lines configured for chip select operation will drive a high level. The port P6 lines which are not selected for chip select operation can be used for general purpose I/O.

Segment Address Lines Selection

PORT0 lines P0H[3..4] are used to select the number of segment address lines on port P4. Either all eight, four, two, or no segment address lines can be selected. The state of pins P0H[3..4] sampled at the end of a reset sequence is latched into bits RP0H[3..4]. The number of segment address lines can not be changed once the reset sequence has been finished. Software can only read the bits RP0H[3..4] to check the configuration. Only during a reset (hardware, software, or watchdog timer reset), the configuration can be changed.

The default configuration, when the state of these pins sampled at the end of reset is '11', a 2-bit segment address is selected, giving an address range (addressable through physical address lines) of 256 KByte (as in the ST10x166).

P0H.4	P0H.3	Number of Segment Address Lines			
1	1	2-Bit Segment Address: A17A16 (Default)			
1	0	8-Bit Segment Address: A23A16			
0	1	No Segment Address			
0	0	4-Bit Segment Address: A19A16			

When the reset sequence has been finished, the port P4 lines selected for segment address output will automatically be switched to the segment address output operation. The remaining pins of port P4 can be used for general purpose I/O.

Note: As mentioned before, the selection for the segment address lines only determines the number of external physical address lines used in a system. Internally, however, all 24 bits of addressing capability is used (if segmentation is enabled). This is true also for the generation of the chip select signals according to the address ranges defined through the ADDRSEL registers. Thus, the chip select lines can be used to address up to five blocks of, for example, 256 KByte, with 18 physical address lines for the offset address within such a block.

Adapt-Mode

If at the end of a reset sequence the state of pin P0L.1 is sampled as '0', the C167 will go into a special Adapt-mode, regardless of the state of the other PORT0 pins. The part will remain in this mode even after the reset sequence has been terminated. This mode is similar to the reset mode, with the exception of RSTOUT# and XTAL1/XTAL2.

This mode can be used, for example, to clip-on to a soldered C167 with the emulator pod. The bondout chip in the emulator pod will not react on the state of pin P0L.1, it will come up in normal mode after reset. In this way, it is possible to perform testing with the emulator although a C167 is soldered in the board.

The C167 will remain in this mode until a hardware reset is performed with pin P0L.1 sampled at a high level at the end of the reset sequence.

Port or Pin	During Reset	Adapt Mode	
PORT0	Internal Pullup	Internal Pullup	
PORT1	High-Impedance	High-Impedance	
Ports P2, P3, P4, P7, P8	High-Impedance	High-Impedance	
Port P6.40 Port P6.75	Internal Pullup High-Impedance	Internal Pullup High-Impedance	
ALE	Internal Pulldown	Internal Pulldown	
RD#, WR#/WRL#	Internal Pullup	Internal Pullup	
RSTOUT#	Low	High-Impedance	

Special care has to be taken regarding the oscillator pins XTAL1 and XTAL2. In the Adapt-Mode, the oscillator is switched off. When an external oscillator circuit driving XTAL1 is used (while XTAL2 is left unconnected), this signal can also be used to drive another device, such as the bondout chip, clipped-on to the C167 device. If a crystal oscillator circuit is used, however, it is not possible to use this circuit for clocking other devices. At least XTAL2 must not have a connection with the clipped-on component.

Emulation Mode

PORT0 pin P0L.0 is used to enter a special mode provided for emulation purposes of (customer) specific derivatives of the C167. This mode has no relevance for the standard C167, and is not described here. One should take care that pin P0L.0 is always at a high level during and at the end of a reset (see Note).

Bootstrap Loader Mode

PORT0 pin P0L.4 is used to enter the on-chip bootstrap loader. If at the end of the reset sequence, a low level is sampled at this pin, the internal bootstrap loader is invoked, regardless of the state of the other PORT0 pins specified for system startup configuration. The operation of the bootstrap loader is detailled in the next chapter.

Note that the bootstrap loader mode must be terminated with a software reset instruction (this does not check line P0L.4), or through a hardware reset provided pin P0L.4 is now at a high level!

Note: Special care has to be taken that only the specified system startup configurations are selected. If one or more of the PORT0 pins marked as reserved in Table 3.5 are sampled at a low level at the end of a reset, unexpected results and 'hang-up' situations may occur. If the design is critical such that the specified high level can not be guaranteed through the internal pullup device (for example, if an external device connected to a PORT0 pin sinks a too high current), an additional external pullup device should be connected in such a case.

3.6 On-Chip Bootstrap Loader

In the C167, an on-chip bootstrap loader (BTL) is implemented. Via this BTL it is possible to load a program into the internal RAM (or external memory) of the C167 via the serial port even if there is no internal or external program memory available. The BTL is activated if at the end of a hardware reset pin P0L.4 is sampled at a low level. This mode is entered regardless of the state of the EA# pin, and of the bus type, chip select, and segment address configuration pins. In this bootstrap loading mode, the C167 now expects the reception of a zero byte ('00h', one start bit, 8 data bits, one stop bit) from a host at pin RxD0 (P3.11), from which it calculates the necessary factor for the serial port baudrate generator, taking into account the operating frequency of the CPU.

According to the calculated baudrate, the serial port ASC0 is initialized (one start bit, 8 data bits, one stop bit, no parity), and an acknowledge byte, 0A5h, is send back to the host. After this, the BTL goes into a receive loop, expecting to receive 32 bytes from a host. These bytes are stored sequentially into the internal RAM, beginning at address 0FA40h. After the reception of the 32 bytes, the BTL automatically performs a jump to location 0FA40h, and the loaded program is executed.

Normally for a program, more than 32 bytes are required. Thus, to load larger routines, the 32-byte program loaded via the BTL will in most cases be another receive loop, now with user-defined start and end addresses. Since the serial port ASC0 is already initialized to the correct mode and baudrate, no special actions are necessary. If the loop is designed to store the received data into external memory, however, first the external bus must be enabled and programmed to the appropriate bus parameters.

During these operations, the C167 is still in the bootstrap loading mode. In this mode, the address range from 00000h through 007FFFh is reserved for internal accesses. In order to access external memory in this range, first bit ROMS1 in register SYSCON must be set. With this, the 32 KByte address range reserved for internal accesses is mapped to the lower 32 KByte in segment 1, and external memory can now be accessed in the address range 000000h through 007FFFh. It is not possible in the BTL mode to disable the reservation of the 32 KByte for internal accesses. In order to return to normal operation, a software reset (SRST instruction) must be executed to terminate the BTL mode. Since the activation of the BTL is only performed with an external hardware reset (RSTIN#), the software reset ignores pin P0L.4. Care must be taken, however, that the configurations for the bus type, chip selects, and segment addresses are set appropriately, and that a further hardware reset would again activate the BTL if pin P0L.4 is sampled at a low level.

SGS-THOMSON MICROELECTRONICS

58/180

Note: When the bootstrap loader is invoked, the following system configuration is automatically programmed:

Watchdog Timer:	
SYSCON Register:	
Context Pointer, CP:	
Stack Pointer, SP:	
STKUN Register:	
STKOV Register:	

Disabled 00E00h 0FA00h 0FA40h 0FA40h 0FA0Ch S0CON Register: 08011h P3.10/TxD, DP3.10:1

BUSCON0: according to selected system startup configuration

4. PWM MODULE

In the C167, a 4-channel Pulse Width Modulation (PWM) Module is implemented. The PWM module allows the user to generate PWM signals with a frequency range of up to 78 KHz at 8-bit resolution down to 4.8 Hz with 16-bit resolution (see Table 4.1.2). In the following, the functions and operation of one PWM channel is explained, the description refers for the other channels, too, if not noted otherwise.

4.1 PWM-Channel

The Pulse Width Modulation Module consists of a block of 4 independant channels. Each channel has a 16-bit up/down counter PTx, a 16-bit period register PPx, a 16-bit pulse width register PWx with a shadow latch, two comparators, and the necessary control logic. The operation of all four channels is controlled by two common control registers, PWMCON0 and PWMCON1, and the interrupt control and status is handled by one interrupt control register PWMIC, which is also common for all channels.

Figure 13. PWM Channel Block Diagram

Note: For the following descriptions it is important to notice that the comparison of the timer contents and the PWM value is performed through a 'greater than or equal to' comparison:

PWM Output Signal = [PTx] >= [PWx]

62/180

4.1.1 Operating Modes

Four different operating modes are available, described in the following sections.

Note: In these sections, the description and the associated figures state that the respective PWM output pins POUTx are set on a match and reset on timer overflow, etc. This is the default operation after reset. However, since the PWM output signals are EXORed with the outputs of the respective port output latches, it is possible to invert the PWM output signals by writing a '1' to the associated port output latch. Please refer also to Chapter 11.7, Port 7.

Mode 0: Standard PWM Generation (Edge Aligned PWM)

In this mode, the PWM timer PTx is always counting up until the value in the period register is reached. With the next count pulse, the timer is reset to 0000h, and starts counting up again with the next count pulses. The PWM output signal is switched to a high level when a match between the timer contents and the contents of the shadow register is detected. The signal is switched back to a low level with the same signal that clears the timer to 0000h. The period of the resulting PWM signal is the value of the PPx register plus 1, counted in units of the timer resolution.

The duty cycle of the PWM output signal is controlled by the value in the pulse width register PWx, respectively the value in the shadow register. This is true also for duty cycles of 0% and 100%. For a PWM value of 0000h, the output will remain at a high level, representing a duty cycle of 100%. For a PWM value higher than the value in the period register, the output will remain at a low level, which corresponds to a duty cycle of 0%.

Note that in this mode, the PWM value only affects the positive edge of the output signal. The negative edge is always fixed and related to the clearing of the timer. Therefore this mode is often referred to as Edge Aligned PWM.

Figure 14 illustrates the operation of a PWM channel in this mode, and shows examples for different possible output waveforms. The period of the resulting PWM signal is:

$$PWM_{Period Mode 0} = [PPx] + 1$$

Note that in this mode, the distance from one negative signal edge to the next is always equal to the period of the signal, also with changing duty cycles. The distance of the center points of the high pulses, however, changes with changing duty cycles.

Figure 14. PWM Mode 0 Operation and Output Waveforms (Examples)

Mode 1: Symmetrical PWM Generation (Center Aligned PWM)

This mode is mainly intended to be used in electrical motor control applications. The main characteristic of this mode is that when the PWM value is changed, both edges of the output signal will be affected. This is achieved by the following operation:

The PWM timer is counting up from 0000h, until the value in the period register is reached. With the next count pulse, the count direction is switched to count down, the timer contents, however, will not be changed until the next count pulse, which decrements the timer. The timer continues counting down until it reaches 0000h again. The next count pulse will change the count direction again to count up, but will not change the timer contents. With the following count pulse, the timer will increment to 0001h, and the procedure described continues.

The PWM value, stored in the shadow register, is constantly compared to the timer contents. When a match is found while the timer is counting up, the output signal is switched to a high level. It remains on this high level, until the timer decrements again to a value lower than that of the shadow register. In this way, both edges, the positive and the negative edge of the signal, are controlled by the PWM value.

Figure 15 illustrates the operation of a PWM channel in this mode, and shows examples for different possible output waveforms.

Note that in this mode, the period of the PWM signal is twice the period of the timer:

$$PWM_{Period Mode 1} = 2 * ([PPx] + 1)$$

Note also that in this mode, the distance from the center point of a high pulse to the center point of the next high pulse is always equal to the period of the signal, also with changing duty cycles. Thus, this mode is often referred to as Center Aligned PWM.

Figure 15. PWM Mode 1 Operation and Output Waveforms (Examples)

Burst Mode

This mode allows the combination of two PWM signals onto one output pin. This mode is only possible for channels 0 and 1. When Burst Mode is selected through bit PB01 in register PWMCON1, then the output signals of channel 0 and 1 are ANDed together onto the pin associated with channel 0. The output of channel 1 can still be used at its associated output pin (if the output is enabled). Figure 16 illustrates this mode. Note that each of the two channels can either operate in mode 0 or 1, it is recommended, however, to have both channels operating in the same mode when using the burst mode.

Note that it is guaranteed by design, that no spurious spikes will occur at the output pin of channel 0 in this mode. Instead, the signal will be transferred to the output pin synchronously to internal clocks **after** the logical ANDing of channel 0 and channel 1.

Note that the EXORing of the alternate output function and the port output latch value is done after the ANDing of channel 0 and 1.

Figure 16. PWM Pulse Burst Mode Operation (Example)

Single Shot Operation

This mode is available only for channels 2 and 3 of the PWM module. In this mode, after the timer is started, the PWM channel will produce one single pulse (provided the PWM value is between 0000h and the period value), and then the timer is stopped by hardware, e.g. the run bit PTRx is reset to '0'. In order to generate a further pulse, the timer has to be started again through software by setting bit PTRx. Figure 17 shows the single shot operation of one PWM channel.

Note that a retriggering of the output pulse is possible by software. When the pulse has started (i.e. the output pin is set), then a write of the pulse width value into timer PTx causes the output pulse to be extended by the specified pulse width. This retriggering, also multiple retriggering, is always possible after the pulse has started and before the timer has expired.

Figure 17. PWM Single Shot Mode Operation & Output Waveforms (Examples)

If a write of the pulse width value to the timer PTx occurs before the pulse has started, the pulse will be started at that time point since the PTx and PWx contents match.

By setting the period (PPx), the timer start value (PTx), and the pulse width value (PWx) appropriately, the user has a wide variety of options to set the pulse width (tw) and an optional pulse delay (td). Figure 17 illustrates some of these options.

Note: It is recommended to use the Single Shot Mode only together with Mode 0 (standard PWM generation).

4.1.2 PWM Module Registers

Figure 18 gives an overview of all Special Function Registers (SFRs) of the PWM Module, while the following table lists their associated address. Note that some of these registers, which are mostly only used once during the initialization, are moved to the new extended SFR space, ESFR. When accessing these registers with 'REG' or 'BITADDR' addressing modes, an Extend Register (EXTR, EXTPR, EXTSR) instruction is required.

Normal SFR Space				Extended ESFR Space			
bitaddressable		non-bitaddressable		bitaddressable		non-bitaddressable	
PWMCON0	FF30h/98h	PW0	FE30h/18h	PWMIC	F17Eh/BFh	PT0	F030h/18h
PWMCON1	FF32h/99h	PW1	FE32h/19h			PT1	F032h/19h
		PW2	FE34h/1Ah			PT2	F034h/1Ah
		PW3	FE36h/1Bh			PT3	F036h/1Bh
						PP0	F038h/1Ch
						PP1	F03Ah/1Dh
						PP2	F03Ch/1Eh
						PP3	F03Eh/1Fh

Figure 18. SFRs and Port Pins Associated with the PWM Unit

Up/Down Counter PTx

The counter PTx of a PWM channel is clocked by either the CPU clock or the CPU clock divided by 64, selected through a respective control bit PTIx in the control register PWMCON0. Thus, with a maximum CPU clock of 20 MHz, the resolutions and frequencies listed in Table 4.1.2 can be achieved. The counter can be started or stopped through the respective run control bit PTRx. In the Single Shot Mode, the counter run bit PTRx of channels 2 and 3 is cleared by hardware when the timers reach the value in the respective period register PPx. The counter can count up or down, however, the count direction is controlled by hardware depending on the selected operating mode; it can not be altered by software.

SGS-THOMSON

. MICROELECTRONICS

Resolution>	8 Bit	10 Bit	12 Bit	14 Bit	16 Bit
Input Clock (@ 20 MHz)					
CPU Clock (50 ns Resolution)	78.13	19.53	4.88 KHz	1.22 KHz	305 Hz
	KHz	KHz			
CPU Clock / 64 (3.2 usec Resolution)	1.22 KHz	305 Hz	76.3 Hz	19.1 Hz	4.77 Hz

Table 4.1.2a:	PWM Unit Frequencies and Resolution in Mode 0 Operation
---------------	---

Table 4.1.2b:	PWM Unit Frequencies and Resolution in Mode 1 Operation
---------------	---

Resolution> Input Clock (@ 20 MHz)	8 Bit	10 Bit	12 Bit	14 Bit	16 Bit
CPU Clock (50 ns Resolution)	39.1 KHz	9.77 KHz	2.44 KHz	610 Hz	152.6 Hz
CPU Clock / 64 (3.2 usec Resolution)	610 Hz	152.6 Hz	38.15 Hz	9.54 Hz	2.4 Hz

Note: The timer run bit PTRx only enables or disables the input clock to the timer, it has no direct effect on the generation of the PWM signal. The timer is started through setting bit PTRx, and it will continue counting until bit PTRx is reset. If bit PTRx is cleared by software, the timer will stop when the instruction writes to the control register PWMCON0, and the timer contents will remain at the last value. The PWM output signal will then also remain at the level which was active at the time the timer was stopped. If one wants to stop the generation of a PWM signal, there are several different options. Since the PWM output signal is generated through a 'greater than or equal to' comparison between the timer contents and the contents of the PWx register, respectively the shadow register (PWM Output Signal = $PTx \ge PWx$), one can force the output signal to a certain level through writing appropriate values either to the PWx register or to the timer PTx itself. For example, writing the same or a higher value (=< PPx) as contained in the shadow latch into the timer before the PWM pulse has started results to an immediate setting of the PWM signal. Setting the timer to a value lower than the one in the shadow latch will set the output to low. To disable further PWM pulses, one can first stop the timer by clearing the run bit PTRx. To abort a pulse in the single shot mode, one can set the timer to the same value as in PPx. With the next clock pulse, the timer will be reset to 0, and stopped through clearing bit PTRx by hardware. It is also important to note in this context, that a write to PWx will immediately be copied into the shadow latch if bit PTRx is '0'.

Note that is also possible to affect the PWM output signal through enabling/disabling the output with the control bits PENx, or through changing the respective port latch value.

Period Register PPx

The 16-bit period register PPx of a PWM channel is used to determine the period, and thus the frequency, of the PWM signal. For this purpose, the contents of the associated counter PTx is constantly compared to the contents of the period register PPx. When a match is found between the two values, the counter is either reset to 0000h, or the count direction is switched from counting up to counting down, depending on the selected operating mode of that PWM channel.

Pulse Width Register PWx

This 16-bit register holds the actual PWM value, which corresponds to the duty cycle of the PWM signal. This register is connected to a 16-bit shadow register. The operation of these two registers is as follows.

The contents of the shadow register are constantly compared to the contents of the associated counter PTx. When the comparison shows that the timer contents are greater than or equal to the contents of the shadow register, the PWM signal is set, otherwise it is reset. This type of comparison allows a flexible control of the PWM signal (see also the section on PTx).

The shadow register is loaded with the contents of the pulse width register PWx depending on the following conditions:

- a) When the counter PTx is not running (PTRx = 0), a write to register PWx writes to both the pulse width register PWx and the shadow register of that channel. This is used to initially load both registers.
- b) When the counter is running, then in mode 0, the shadow register is loaded from register PWx with the same signal that clears the counter PTx to 0000h (marked with 'LSR' in Figure 14). In mode 1, the shadow register is loaded when the count direction of the counter is switched from down to up (marked with 'LSR' in Figure 15).

PWM Control Register PWMCON0

This 16-bit control register controls the function of the timers of the four PWM channels, and it holds the individual interrupt enable and request flags. The bits and functions of this control register are shown hereafter. In order to modify the operation of several channels with one instruction (e.g. bitfield instruction), the control bits are organized into functional, not channel respective groups. This allows, for example, to start or stop all 4 timers simultaneously with one bitfield instruction.

SGS-THOMSON MICROELECTRONICS

PWMCON0 (FF30h/98h) PWM Module Control Register 0 Reset Value: 0000h

15	14	13	12	11	10	9	8
PIR3	PIR2	PIR1	PIR0	PIE3	PIE2	PIE1	PIE0
7	6	5	4	3	2	1	0
PTI3	PTI2	PTI1	PTI0	PTR3	PTR2	PTR1	PTR0

b15 = PIR3: PWM Channel 3 Individual Interrupt Request bit.

b14 = **PIR2:** PWM Channel 2 Individual Interrupt Request bit.

b13 = **PIR1:** PWM Channel 1 Individual Interrupt Request bit.

b12 = PIR0: PWM Channel 0 Individual Interrupt Request bit.

PIR0 = 0: No interrupt request

PIR0 = 1: Interrupt pending

- b11 = **PIE3:** PWM Channel 3 Individual Interrupt Enable bit.
- b10 = **PIE2:** PWM Channel 2 Individual Interrupt Enable bit.
- b9 = **PIE1:** PWM Channel 1 Individual Interrupt Enable bit.
- b8 = **PIE0:** PWM Channel 0 Individual Interrupt Enable bit. PIE0 = 0: Individual Interrupt disabled
 - PIE0 = 1: Individual Interrupt enabled
- b7 = **PTI3:** PWM Timer PT3 Input Clock Control bit.
- b6 = **PTI2:** PWM Timer PT2 Input Clock Control bit.
- b5 = **PTI1:** PWM Timer PT1 Input Clock Control bit.
- b4 = **PTI0:** PWM Timer PT0 Input Clock Control bit.
 - PTI0 = 0: PT0 Input clock is CPU clock.
 - PTI0 = 1: PT0 input clock is CPU clock/256.
- b3 = **PTR3:** PWM Timer PT3 Run Control bit.
- b2 = **PTR2:** PWM Timer PT2 Run Control bit.
- b1 = **PTR1:** PWM Timer PT1 Run Control bit.
- b0 = **PTR0:** PWM Timer PT0 Run Control bit.
 - PTR0 = 0: PT0 stops.

PTR0 = 1: PT0 is running.

PWM Control Register PWMCON1

This register controls the modes of operation and the outputs of the PWM channels. The mode of a channel, whether it operates in standard or symmetrical PWM mode (edge or center aligned mode), is controlled by a mode bit, PMx. For channels 0 and 1, burst mode can be enabled/disabled by the control bit PB01. The single shot mode of channels 2 and 3 is selected through bits PS2 and PS3, respectively. For each PWM channel, one bit, PENx, controls whether the associated output pin is enabled or not. If the output is not enabled, the respective pin can be used for general

75/180

purpose I/O, and the PWM signal can only be used to generate an interrupt request. The register PWMCON1 is shown hereafter :

PWMCON1 (FF32h/99h) PWM Module Control Register 1 Reset Value: 0000h

15	14	13	12	11	10	9	8
PIS3	PIS2	R	PB01	R	R	R	R
7	6	5	4	3	2	1	0
PM3	PM2	PM1	PM0	PEN3	PEN2	PEN1	PEN0

b15 = **PS3:** PWM Channel 3 Single shot Mode control bit.

b14 = **PS2:** PWM Channel 2 Single shot Mode control bit.

- PS2 = 0: Normal operation.
- PS2 = 1: Single shot operation.
- b13 = R: Reserved.
- b12 = PB01: PWM Channel 0 and 1 Burst Mode Control bit.

PB01 = 0: Normal operation of channels 0 an 1.

PB01 = 1: Outputs of channels 0 and 1 are ANDed onto POUT0.

- b11 to b8 = R: Reserved.
- b7 = **PM3:** PWM Channel 3 Mode Control bit.
- b6 = **PM2:** PWM Channel 2 Mode Control bit.
- b5 = **PM1:** PWM Channel 1 Mode Control bit.
- b4 = **PM0:** PWM Channel 0 Mode Control bit.
 - PM0 = 0: Mode 0 operation.

PM0 = 1: Mode 1 operation.

- b3 = **PEN3:** PWM Channel 3 Output Enable control bit.
- b2 = **PEN2:** PWM Channel 2 Output Enable control bit.
- b1 = **PEN1:** PWM Channel 1 Output Enable control bit.
- b0 = **PEN0:** PWM Channel 0 Output Enable control bit.
 - PEN0 = 0: Output POUT0 disabled.

PEN0 = 1: Output POUT0 enabled.

4.1.3 Interrupt Request Generation

Each of the four channels of the PWM Module can generate an interrupt request (furthermore referred to as 'channel interrupt'), however, only one interrupt vector is assigned to all four channels (furthermore referred to as 'module interrupt'). To distinguish between the channel interrupts, register PWMCON0 has individual interrupt enable and interrupt request flags for each channel. When the individual enable flag PIEx of a channel is set, then the interrupt request flag PIRx of that

SCS-THOMSON MICROELECTRONICS

channel is set with the same signal that loads the shadow register with the value from register PWx (see signal 'LSR' in Figures 4.1-2 and 4.1-3). This indicates that the newest PWM value was transferred to the shadow latch for being compared to the timer contents, and that register PWx is now 'empty' to receive the next value.

The module interrupt for all four channels is controlled by the PWM Module Interrupt Control register PWMIC. This register is organized like any other standard interrupt control register, shown hereafter. If the module interrupt enable bit PWMIE is set, then the interrupt request flag PWMIR is set if any of the channel interrupt request flags PIRx is set (provided this interrupt is enabled through the respective PIEx bit). Software is used to then poll the channel interrupt request flags to determine which channel(s) caused the interrupt.

PWMIC (F17Eh/BFh)

PWM Module Interrupt Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
PWMIR	PWMIE		ILVL				VL
	1	1		1	1		

- b7 = **PWMIR:** PWM Module Interrupt Request Flag.
 - PWMIR = 0: No interrupt request.

PWMIR = 1: Interrupt request.

- b6 = **PWMIE:** PWM Module Interrupt Enable control bit.
 - PWMIE = 0: Interrupt disabled.
 - PWMIE = 1: Interrupt enabled.
- b5 to b2 = **ILVL:** PWM Module Interrupt Priority Level.
 - ILVL = Fh: Highest priority level.

ILVL = 0: Lowest priority level.

- b1, b0 = **GLVL:** PWM Module Interrupt Group Priority.
 - GLVL = 3: Highest group priority.
 - GLVL = 0: Lowest group priority.

Note that the channel interrupt request flags (in register PWMCON0) will not be automatically cleared by hardware when the interrupt service routine is vectored to; they must be cleared by software. The module interrupt request flag PWMIR is cleared by hardware when the service routine is vectored to, regardless whether the interrupt was caused by one or several channels. However, it will be set again if during execution of the service routine a new channel interrupt request is generated.

4.1.4 PWM Output Signals

In the C167, the output signals of the four PWM channels are connected as alternate output functions to four pins of Port 7. For each of the four channels, an individual output enable control bit PENx is available in control register PWMCON1. The following table shows the reference between the PWM output signals and the associated port pins:

Port Pin	PWM Alternate Function
P7.0	POUT0PWM Channel 0 Output
P7.1	POUT1PWM Channel 1 Output
P7.2	POUT2PWM Channel 2 Output
P7.3	POUT3PWM Channel 3 Output

Different to other alternate output functions, the PWM signals are EXORed with the respective port latch outputs (see Chapter 11.7). In this way, it is possible to select whether the PWM signal is inverted at the output or not. If the port latch is '0' (default after reset), the associated PWM signal is not inverted, the output signal is as shown in Figures 14 to 17. If the port latch is '1', the PWM signal is inverted.

It is interesting to note that in the C167, Port 7 has additional open drain control. This feature can be used to combine two or more PWM outputs through a Wired-AND configuration, using an external pullup device. In this way, it is possible, for example, to have any channels to operate in a burst mode, besides the implemented burst mode for channels 0 and 1.

SGS-THOMSON

5. SECOND CAPTURE/COMPARE UNIT, CAPCOM2

In the C167, the entire CAPCOM Unit known from the ST10x166 will be implemented twice. In the following, the two units will be referred to as CAPCOM1 (the unit known from the ST10x166) and CAPCOM2. The CAPCOM2 unit gives the user two extra timers, and 16 extra capture/compare registers. The new CAPCOM2 Unit is shown in Figure 19.

Figure 19. CAPCOM2 Unit Block Diagram

The two new timers will be named T7 and T8, and the associated reload registers are T7REL and T8REL, respectively. The control register for these timers is T78CON. The sixteen additional compare registers will be CC16 through CC31. Four additional registers CCM4 through CCM7 control the operating modes of registers CC16 through CC31. The CAPCOM2 unit will use the pins of Port 8, four pins of Port 1, and four pins of Port 7 for the alternate capture input/compare output functions (see also Chapter 11).

Figure 20 gives an overview on all the Special Function Registers (SFRs) related to the CAPCOM2 Unit, while the following table lists their associated address. Note that some of these registers, which are mostly only used once during the initialization, are moved to the new extended SFR space, ESFR. When accessing these registers with 'REG' or 'BITADDR' addressing modes, an Extend Register (EXTR, EXTPR, EXTSR) instruction is required.

Normal SFR Space			Extended ESFR Space					
bitaddr	essable	non-bita	ddressable	bitaddı	ressable	non-bitac	non-bitaddressable	
bitaddr CCM4 CCM5 CCM6 CCM7 T78CON	essable FF22h/91h FF26h/93h FF26h/93h FF28h/94h FF20h/90h	non-bita CC16 CC17 CC18 CC19 CC20 CC21 CC22 CC23 CC24 CC25 CC26 CC26 CC27 CC28 CC29 CC30	ddressable FE60h/30h FE62h/31h FE64h/32h FE66h/33h FE68h/34h FE6Ah/35h FE6Ch/36h FE6Ch/36h FE70h/38h FE72h/39h FE74h/3Ah FE76h/3Bh FE78h/3Ch FE7Ah/3Dh FE7Ch/3Eh	bitaddi CC16IC CC17IC CC18IC CC19IC CC20IC CC21IC CC22IC CC22IC CC23IC CC24IC CC25IC CC26IC CC26IC CC27IC CC28IC CC29IC CC20IC	ressable F160h/B0h F162h/B1h F164h/B2h F166h/B3h F168h/B4h F16Ah/B5h F16Ch/B6h F16Eh/B7h F170h/B8h F172h/B9h F176h/BBh F178h/BCh F184h/C2h F18Ch/C6h	non-bitad T7 T8 T7REL T8REL	Horessable F050h/28h F052h/29h F054h/2Ah F056h/2Bh	
		CC31	FE7Eh/3Fh		F194h/CAh			
				T8IC	F17Ch/BEh			

Figure 20. SFRs and Port Pins Associated with the CAPCOM2 Unit

In the C167, when using the CAPCOM2 unit, some differences compared to the known CAPCOM1 unit have to be taken into account, described in the following section. Besides these exceptions, all the functions and operation of the CAPCOM1 Unit described in the ST10 User Manual also refer to the CAPCOM2 Unit, in a respective manner.

a) Timer T7 has no separate count input (comparable to T0IN for timer T0). Instead, when selected for counter operation, T7 will use the pin P2.15/CC15IO as a count input. P2.15 can either be used as general purpose I/O pin, or for capture input, or for compare output. With this, the user has several options: Counter T7 can either be clocked by software toggling or by compare output signals of pin P2.15; an external clock pulse for T7 can be used to trigger an interrupt request (CC15INT), and additionally a capture of either T0 or T1 contents can be performed. It is also possible to provide the same external count events for both CAPCOM units by externally connecting the signal to both inputs, TOIN and CC15IO. In this way, TO and T7 count synchronously the same external event, with an optional capture and interrupt request for this count event. Figure 21 shows both CAPCOM units, and a configuration example for synchronous operation. Since in this example T0 and T7 are clocked by the same event, the two timers can be regarded as one timer, having access to all 32 capture/compare registers. In a similar manner, T1 and T8 can be clocked with the same internal clock (or GPT2 timer T6 clock), and they can be regarded in this case as one timer, having also access to all 32 registers. However, since it is not possible to start both timers with one instruction, a slight time delay may be possible.

Figure 21. CAPCOM1/CAPCOM2 Configuration Example

b) CAPCOM2 registers CC24 through CC27 only have external input pins, as an alternate function at Port P1H. This means, that only external capture inputs can be used, it is not possible to use these pins for compare output. However, these registers can still be used in the 'interrupt only' compare modes, to generate interrupt requests at predefined events.

6. ASYNCHRONOUS/SYNCHRONOUS SERIAL INTERFACE

6.1 Even / Odd Parity Selection

The serial interface ASC0 of the C167 will have one enhancement compared to the respective interfaces in the ST10x166. For the parity, now a selection for even or odd parity generation/check will be available.

When an asynchronous mode with parity is enabled, a new control bit, S0ODD (S0CON.12), selects between even and odd parity generation/check. The default after reset, S0ODD = 0, selects even parity (as in the ST10x166). Hereafter is the ASC0 control register S0CON.

S0ODD = 0: Even parity:

If the data contains an **even** number of '1s', then the parity bit = **0** If the data contains an **odd** number of '1s', then the parity bit = **1**

S0ODD = 1: Odd parity:

If the data contains an **even** number of '1s', then the parity bit = 1If the data contains an **odd** number of '1s', then the parity bit = 0

SOCON (FFB0h/D8h) Serial Channel Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
SOR	SOLB	S0BRS	SOODD	R	SOOE	SOFE	SOPE
7	6	5	4	3	2	1	0
SOOEN	SOFEN	SOPEN	SOREN	SOSTP		S0M	1

b15 = **SOR:** Baud Rate Generator Run bit.

SOR = 0: Baud rate generator disabled.

SOR = 1: Baud rate generator enabled.

- b14 = **S0LB:** Loop Back Mode Enable bit.
 - S0LB = 0: Loop back mode disabled. S0LB = 1: Loop back mode enabled.
- b13 = **S0BRS:** Baud Rate Selection bit.
 - S0BRS = 0: Baud rate factor is 1.

SOBRS = 1: Baud rate factor is 2/3.

b12 = **S0ODD:** Even / Odd Parity Selection.


```
SOODD = 0: Even parity.
  If the data contains an even number of "1" then parity bit = 0
  SOODD = 1: Odd parity.
  If the data contains an even number of "1" then parity bit = 1
b11 = \mathbf{R}: Reserved.
b10 = S00E: Overrun Error Flag.
  Set by hardware when an overrun error occurs and SOOEN = 1.
  Must be reset by software.
b9 = SOFE: Framing Error Flag.
  Set by hardware when a framing error occurs and SOFEN = 1.
  Must be reset by software.
b8 = S0PE: Parity Error Flag.
  Set by hardware when a parity error occurs and SOPEN = 1.
  Must be reset by software.
b7 = SOOEN: Overrun Check Enable bit.
  S00EN = 0: Overrun check disabled.
  S00EN = 1: Overrun check enabled.
b6 = SOFEN: Framing Check Enable bit.
  S0FEN = 0: Framing check disabled.
  SOFEN = 1: Framing check enabled.
b5 = SOPEN: Parity Check Enable bit.
  SOPEN = 0: Parity check disabled.
  SOPEN = 1: Parity check enabled.
b4 = SOREN: Receiver Enable bit.
  Used to initiate reception.
  Reset by hardware after a byte in synchronous mode has been received.
  SOREN = 0: Receiver disabled.
  SOREN = 1: Receiver enabled.
b3 = S0STP: Number of Stop Bits Selection.
  S0STP = 0: One stop bit.
  SOSTP = 1: Two stop bits.
b2 to b0 = S0M: ASC0 Mode Control.
```

6.2 Double Buffered Transmit

An additional buffer register is implemented for the transmit buffer S0TBUF in the asynchronous/synchronous serial interface ASC0. This allows a double buffered transmission, that is, while a transmission is in progress, the next data to be transmitted can already be loaded into the transmit buffer S0TBUF. In this way, it is possible to perform continuous transmissions without any gaps other than the programmed number of stop bits between two consecutive transmissions.

An additional interrupt source and vector will be implemented in order to flag the condition that the transmit buffer is empty and ready to be loaded with the next data.

MIGROELECTRONICS

The Transmit Buffer Empty interrupt is controlled through register S0TBIC (see Chapter 10).

The operation of the buffered transmission is as follows : the data to be transferred is written into the transmit buffer S0TBUF. If the transmit shift register is empty, i.e. no transmission is currently in progress, the contents of the S0TBUF will be copied into the transmit shift register, and the transmission will be started. At the same time, the transmit buffer empty interrupt request flag S0TBIR will be set. Now the text data to be transmitted can be loaded into S0TBUF. An internal flag is used to indicate that the transmit buffer is full, i.e. has been written to. Directly, before the last stop bit of the current transmission is sent out, the transmit complete interrupt request flag S0TIR will be set to indicate that a data frame has been sent out. When the transmit buffer S0TBUF is full, its data is transferred into the transmit shift register, and the transmit buffer empty interrupt request S0TBIR is set.

In this way, there are two informations flagged to the user through two different interrupt requests : the transmit buffer empty interrupt SOTBINT indicates that the transmit buffer SOTBUF is ready to be loaded with the next data to be transmitted, while the transmit complete interrupt SOTINT indicates that a transmission of a data frame has been finished.

The great advantage of this double buffering transmit is that for continuous transmissions, the time frame available for loading the next data into the transmit buffer is the time required for the transmission of one complete data frame. Without this feature, the next data frame must be loaded within the time required to sent out the last stop bit of the previous data frame.

7. SYNCHRONOUS SERIAL CHANNEL, SSC

In addition to the asynchronous/synchronous serial interface ASC0, the C167 has a dedicated high-speed Synchronous Serial Channel, the SSC. This interface provides the same synchronous mode as the ASC0, and is also compatible to the popular SPI interface. It can be used for simple I/O expansion via shift registers, for connection of a variety of peripheral components, such as A/D converters, EEPROMs, etc., or for allowing several microcontrollers to be interconnected in a master/slave or multimaster configuration. It supports full-duplex or half-duplex operation, and can run in a master or a slave mode.

7.1 SSC Block Diagram

Figure 22 shows a rough block diagram of the SSC. The central element of the SSC is a shift register, which is configurable in length from 2 to 16 bits. The input and the output of this shift register are each connected via a control logic to a pin, P3.9/MTSR (Master Transmit/Slave Receive) and P3.8/MRST (Master Receive/Slave Transmit). This shift register can be written to through a Transmit Buffer Register SSCTB, and can be read through a Receive Buffer Register SSCRB.

Figure 22. Synchronous Serial Channel SSC Block Diagram

As the SSC is a synchronous serial interface, for each transfer a separate clock signal must be provided. The SSC has implemented a full featured clock control circuit, which can generate the clock via a 16-bit baud rate generator in the master mode, or receive the transfer clock in the slave mode. The clock signal is fully programmable for clock polarity and phase. The pin used for the clock signal is P3.13/SCLK.

The SSC control block is responsible for controlling the different modes and operation of the SSC, checking the status, and generating the respective interrupt signals, one for transmit, one for receive, and one for possible error conditions.

7.2 General Operation of the SSC

After initialisation of the SSC, the data to be transmitted is written into the transmit buffer register SSCTB. If no transfer is currently in progress, the contents of SSCTB is immediately copied into the shift register. In master mode, this will initiate the transfer, in slave mode the transfer is started through an external clock signal. When the transfer is started, the busy flag, SSCBSY, is set, and the transmit interrupt request flag SSCTIR will be generated. This indicates that the transmit buffer now is empty, and the next transmit data can already be written into register SSCTB. While the transmit data in the shift register is shifted out bit per bit, the incoming receive data are shifted in, synchronized with the clock signal at pin SCLK. When the preprogrammed number of bits are shifted out (the same number is shifted in), the contents of the shift register is transferred to the receive buffer register SSCRB, and the receive interrupt request flag SSCRIR is generated. If no further transfer is to take place, the busy flag SSCBSY will be reset by hardware at the same time.

7.3 SSC Control, Status and Data Registers

Figure 23 gives an overview of the SFRs and port pins associated with the SSC.

7.3.1 SSC Control Register SSCCON

Hereafter are shown the bits and functions of the SSC Control Register SSCCON. From a programming point of view, SSCCON is partly divided into two registers, located to the same physical address. The upper two bits, SSCEN and SSCMS, are always available. An access to bits 13.0 addresses two different registers, depending on the state of the SSC enable bit, SSCEN. When the SSC is disabled with SSCEN = 0, the bits which control the basic operation of the SSC are available for initialisation. After enabling the SSC with setting SSCEN to '1', an access to SSCCON[13..0] returns status information, such as the busy and the error flags, which are necessary during the operation of the SSC. The partitioning of register SSCCON is illustrated by showing the register twice. The first register represents the function and symbols of the bits with SSCEN = 0, while the second register represents the function and symbols with SSCEN = 1.

SGS-THOMSON MICROELECTRONICS

94/180

Care should be taken when accessing the SSCCON register, and the partitioning of this register should always be kept in mind. When SSCEN = 0, bits 7, 12 and 13 of register SSCCON are not defined and should be set to '0'. With SSCEN = 1, bits 4 through 7, and bit 13 of SSCCON are reserved and should be set to '0'. This has to be taken into account when accessing register SSCCON via Read-Modify-Write instructions, such as BSET, BCLR, AND/OR/XOR, BFLDL/H, etc. In the following, the individual bits and bit fields of the SSCCON are discussed.

SSCCON (FFB2/D9)

Synchronous Serial Channel Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
SSCEN	SSCMS	R	SSCBSY	SSCBEN SSCBE	SSCPEN SSCPE	SSCREN SSCRE	SSCTEN SSCTE
7	6	5	4	3	2	1	0
R	SSCPO	SSCPH	SSCHB	SSCBM SSCBC			

b15 = **SSCEN:** Synchronous Serial Channel Enable control bit.

b14 = **SSCMS:** SSC Master Select bit.

b13 = R: Reserved.

b12 = SSCBSY: SSC Busy Flag.

If SSCEN = 1.

- b11 = **SSCBEN**, if SSCEN = 0: SSC Baudrate Error Enable control bit. **SSCBE**, if SSCEN = 1: SSC Baudrate Error Indication Flag.
- b10 = **SSCPEN**, if SSCEN = 0: SSC Phase Error Enable control bit.
 - **SSCPE**, if SSCEN = 1: SSC Phase Error Indication Flag.
- b9 = **SSCREN**, if SSCEN = 0: SSC Receive Error Enable control bit. **SSCRE**, if SSCEN = 1: SSC Receive Error Indication Flag.
- b8 = **SSCTEN**, if SSCEN = 0: SSC Transmit Error Enable control bit. **SSCTE**, if SSCEN = 1: SSC Receive Error Indication Flag.

b7 = **R**: Reserved.

- b6 = **SSCPO**, if SSCEN = 0: SSC Clock Parity control bit.
- b5 = **SSCPH**, if SSCEN = 0: SSC Clock Phase control bit.
- b4 = **SSCHB**, if SSCEN = 0: SSC Heading control bit.
- b3 to b0 = **SSCBM**, if SSCEN = 0: SSC Data Width Selection bit field. **SSCBC**, if SSCEN = 1: SSC bit Count Field.

Enable/Disable Control

Bit SSCEN globally enables or disables the synchronous serial interface. Setting SSCEN to '0' stops the baud rate generator and all internal activities of the SSC. Current transfers are aborted. The alternate output functions at pins P3.8/MRST, P3.9/MTSR, and P3.13/SCLK return to their disable state, which is a logic high. These pins can now be used for general purpose I/O. Special care should be taken with pin P3.13/SCLK when operating with a clock polarity SSCPO = 0 (detailled in Chapter 7.4.1).

When SSCEN = 0 (default after reset), register SSCCON provides the bits used to control the operation of the SSC. When SSCEN = 1, any access to register SSCCON returns the status flags. The selection, which part of the SSCCON register is accessed, is done according to the state of SSCEN valid before the current access. That means, when SSCEN = 0, register SSCCON can be written to with **one instruction** initializing the control bits **and** setting bit SSCEN to '1', for example, MOV SSCCON,#0C057h. The new state of SSCEN becomes valid after this instruction. The same operation is true when SSCEN is '1': An instruction which resets SSCEN to '0' would write bits 0..13 into the flag portion of register SSCCON, since the previous state of SSCEN was '1'. Since the flags are modified by hardware, it is strongly recommended to avoid Read-Modify-Write instructions on register SSCCON while SSCEN = 1. To disable the SSC, for example to select a different data width, use a MOV SSCCON,#0 instruction to clear the SSCEN bit.

Master or Slave Operation

Other than the synchronous mode of the ASC0, which can only operate as a master interface, the SSC can operate either in master or in slave mode. This operation is selected through the Master Select Bit, SSCMS. In the master mode, SSCMS = 1, the SSC of the C167 generates and outputs the clock at pin P3.13/SCLK, and initiates data transfers. All other devices connected to the serial bus must be in slave mode, receiving the shift clock, and only responding to transfers.

In the slave mode, SSCMS = 0 (default after reset), the shift clock is received through pin P3.13/SCLK. The SSC can only respond to transfers initiated by another master connected to the serial bus, it is not possible in this mode to initiate a data transfer. The master/slave modes are discussed in more detail in Chapter 7.4.

Selecting Transfer Data Width and Shift Direction

The SSC in the C167 is not dedicated to a certain data width, for instance only a byte or a word transfer. Instead, the data width can be programmed to be any number between two and sixteen bits. The 4-bit field SSCBM determines the transfer data width, according to the following table:

SSCBM	Transfer Data Width	SSCBM	Transfer Data Width
0000	reserved	1000	9 Bit
0001	2 Bit	1001	10 Bit
0010	3 Bit	1010	11 Bit
0011	4 Bit	1011	12 Bit
0100	5 Bit	1100	13 Bit
0101	6 Bit	1101	14 Bit
0110	7 Bit	1110	15 Bit
0111	8 Bit	1111	16 Bit

Bit 4, SSCHB (Heading Bit Control), of register SSCCON determines whether the LSB (least significant bit) or the MSB (most significant bit) of the data is the first transmitted bit. With SSCHB = 0, the LSB will be shifted first. This mode is required by the synchronous mode of the ASC0 in the C167 (and also the synchronous modes of ASC0/ASC1 of the ST10x166 family, and the serial ports of the 8051 family). Serial interfaces operating compatible to the SPI mode, however, require the MSB to be the first transmitted bit. In this case, SSCHB must be set to '1'.

Regardless which data width is selected, and whether the MSB or the LSB is transmitted first, the transfer data is always right aligned in registers SSCTB and SSCRB, with the LSB of the transfer data at the LSB position of these registers, i.e. bit 0. The internal logic at the shift register totally takes care of correctly performing the selected operation. Examples for this feature are shown in Figure 24.

Figure 24. LSB First / MSB First Operation Examples

Clock Control

Two bits in register SSCCON are provided to control the polarity and the phase of the serial clock SCLK. Bit SSCPO allows to select the idle level of the clock. With SSCPO = 0, the clock line is at a low level between transfers, and with SSCPO = 1, the clock idle state is a high level. Bit SSCPH determines the operation to be performed at a certain clock edge. For transmission, one edge of the clock signal is always used for shifting, while the other edge is used for latching the data. Figure 25 shows the possible combinations for the clock and illustrates the shifting and latching edges with respect to the data. With SSCPH = 1, the first edge of the clock is used for latching the data and with the second edge, a shift by one bit is performed. With SSCPH = 0, the selection is performed vice versa.

With this flexible control, an adaption to a variety of different operating modes of other synchronous serial interfaces is possible.

Figure 25. Serial Clock Phase and Polarity Options

Error Detection

Four different types of error conditions can be detected by the SSC. If an error occurs, an error interrupt request can be generated in order to allow appropriate reactions in such a case. For each of these types of error, a separate error detection enable bit and error indication flag is provided in register SSCCON. A detailled discussion of the types of error detection can be found in Chapter 7.5.

SGS-THOMSON MIGROELECTRONICS

Busy Flag

The busy flag, SSCBSY, accessible only when the SSC is enabled (SSCEN = 1), indicates whether a transfer is currently in progress or not. The busy flag is set and reset by hardware, and software should only read this bit to check the status of the SSC. SSCBSY is set in master mode when the contents of SSCTB is copied to the shift register, and transmission begins. It remains set until the last transfer has been finished. That means, as long as the transmit buffer SSCTB is not empty, transfers are continued, and SSCBSY remains set.

In the slave mode, SSCBSY is set as soon as the value in the transmit buffer is copied into the shift register, and remains set until the last bit of the last data is received. That means, the busy flag is not reset between continuous transfers (see Chapter 7.4.4 for details on continuous transfers).

SSC Bit Count Field

When the SSC is disabled, the lower four bits, SSCBM, of register SSCCON are used to initialize the data width of the transfer data. When the SSC is enabled, these four bits represent the shift counter, SSCBC, and are updated with each shift. Software should never modify this bit field if the SSC is enabled, and should only read SSCBC if certain analysis routines are necessary after the occurence of an error.

7.3.2 Buffer Registers SSCTB and SSCRB

Register SSCTB holds the data to be transmitted, while SSCRB contains the data which was received during the last transfer. Both registers are 16-bit registers, however, only the number of least significant bits defined through the data transfer width in SSCBM are relevant. This means, for example, when the data transfer width is set to 10 bits, bits 0 through 9 hold the data to be transmitted or received, while bits 10 through 15 are unused. As mentioned above, the data in these registers is always right aligned, that means, bit 0 of these registers always holds the LSB of the data. A further discussion of the operation of these registers can be found in Chapters 7.4.

7.3.3 Baud Rate Register SSCBR

This 16-bit register is used to program the serial transfer baud rate. When the SSC is disabled, register SSCBR can be loaded with the baud rate value. Reading this register returns either '0000' (default after reset) or the programmed baud rate value. The baud rate generator is a down counter, and uses the value in SSCBR as a reload value. The baud rate generator is started when the SSC is enabled through setting bit SSCEN. When SSCEN is '1', SSCBR should never be written to. Reading SSCBR while the SSC is enabled returns the current count of the baud rate generator. It is recommended, however, to only access register SSCBR when the

SGS-THOMSON MIGROELECTRONICS

100/180

SSC is disabled. The baud rate generator is clocked with CPU Clock /2, such that a maximum baud rate of up to 5 MBaud is available. The formula for calculating the baudrate is

SSC Baud Rate = CPU Clock / (2 * (SSCBR + 1)), with SSCBR > 0

or, for a desired baud rate the calculation of the reload value SSCBR is

SSCBR = (CPU Clock / (2 * Baud Rate)) - 1,SSCBR must be > 0

It must be noted that, although the clock is only generated in the master mode operation, if one wants to use the baud rate error detection capability, the baud rate must also be correctly programmed to the serial system baud rate in the slave mode.

The following table gives an overview of some possible baud rates at a CPU Clock of 20 MHz, together with the resulting bit times:

SSCBR	Baud Rate	Bit Time
0000h	reserved	
0001h	5 MBaud	200 ns
0002h	3.3 MBaud	300 ns
0003h	2.5 MBaud	400 ns
0004h	2.0 MBaud	500 ns
0009h	1.0 MBaud	1 us
0063h	100 KBaud	10 us
03E7h	10 KBaud	100 us
270Fh	1.0 KBaud	1 ms
FFFFh	152.6 Baud	6.6 ms

7.3.4 Interrupt Control Registers

Three interrupt control registers are associated with the SSC, one for a transmit interrupt (SSCTIC), one for a receive interrupt (SSCRIC), and one for an error interrupt (SSCEIC). These registers and their functions, shown hereafter, are identical to all other interrupt control registers in the C167 (and in the entire ST10x166 family), and are not explained here (please refer to the ST10 User Manual for details). The conditions for generating the individual interrupt requests are explained in Chapters 7.4 and 7.5.

SSCTIC (FF72h/B9h)

Synchronous Serial Channel Transmission Interrupt Control Reset Value: 0000h

7	6	5	4	3	2	1	0
SSCTIR	SSCTIE		I	ILVL	1	GL	I .VL

b7 = SSCTIR: SSC Transmission Interrupt Request.
b6 = SSCTIE: SSC Transmission Interrupt Enable.
b5 to b2 = ILVL: Interrupt Priority Level.
b1, b0 = GLVL: Group Priority.

SSCRIC (FF74h/BAh)

Synchronous Serial Channel Reception Interrupt Control Reset Value: 0000h

7	6	5	4	3	2	1	0
SSCRIR	SSCRIE		, IL	.VL		Gi	LVL

b7 = **SSCRIR**: SSC Reception Interrupt Request. b6 = **SSCRIE**: SSC Reception Interrupt Enable. b5 to b2 = **ILVL**: Interrupt Priority Level. b1, b0 = **GLVL**: Group Priority.

SSCEIC (FF76h/BBh)

Synchronous Serial Channel Error Interrupt Control Reset Value: 0000h

7	6	5	4	3	2	1	0
SSCEIR	SSCEIE		IL	VL		GL	VL

b7 = **SSCEIR:** SSC Error Interrupt Request. b6 = **SSCEIE:** SSC Error Interrupt Enable. b5 to b2 = **ILVL:** Interrupt Priority Level. b1, b0 = **GLVL:** Group Priority.

7.3.5 Port Control Registers

The SSC uses three pins of port P3 to operate with the external world. Pin P3.13/SCLK serves as the clock line, while pins P3.8/MRST (Master Receive/Slave Transmit) and P3.9/MTSR (Master Transmit/Slave Receive) serve as the serial data input/output lines. Figure 26 shows the configuration of the port structure for these pins.

The operation of these pins depend on the selected master or slave mode (see tables). In order to enable the alternate output functions of these pins instead of the general purpose I/O operation, the respective port latches have to be set to '1', since the port latch outputs and the alternate output function lines are ANDed. When the alternate data output line is not used, it is held at a high level, allowing I/O operations via the port latch. The direction of the port lines is depending on the master or slave operation. The SSC will automatically use the correct alternate input or output line of the ports when switching the modes, however, the direction of the pins must be programmed by the user, as shown in the tables.

	Mas	ter Mode			
Pin	Operation		rt Latch	Direction Bit	
P3.13/SCLK	Serial Clock O	utput P3	3.13 = 1	DP3.13 = 1	
P3.9/MTSR	Serial Data Ou	itput P	3.9 = 1	DP3.9 = 1	
P3.8/MRST	Serial Data In	put P	3.8 = x	DP3.8 = 0	

	Slave Mod	le		
Pin	Operation	Port Latch	Direction Bit	
P3.13/SCLK	Serial Clock Input	P3.13 = x	DP3.13 = 0	
P3.9/MTSR	Serial Data Input	P3.9 = x	DP3.9 = 0	
P3.8/MRST	Serial Data Output	P3.8 = 1	DP3.8 = 1	

In the tables above, an 'x' means the actual value is irrelevant, however, it is recommended to set these bits to '1', such that they are already in the correct state when switching between master/slave mode.

The tables above show the programming of the direction of the pins when using normal push/pull operation. In the C167, however, port P3 has the feature of being switched to an open drain output mode (see Chapter 11). This is controlled by the respective Open Drain Control Register ODP3, and can individually be selected for each line of port P3. For the SSC, the control bits ODP3.13, ODP3.9, and ODP3.8 are relevant. This feature can perfectly be used in a serial communication system with the SSC. It helps to avoid bus contention problems and reduces the need for hardwired hand-shaking or slave select lines. When using the open drain feature, it is not always necessary to switch the direction of the port pin. The application of the open drain feature is explained in detail in Chapter 7.4.

SGS-THOMSON MICROELECTRONICS

104/180

7.4 Detailled Operation of the SSC

Figure 27 shows a block diagram of a typical serial configuration with the SSC. Three wires are connected between the different devices: a clock line, a transmit line, and a receive line. The clock line is connected parallel to all devices, while the connection of the data line(s) depends on full- or half-duplex operation. This configuration can be used for single- or multi-master operation.

Figure 27. Basic Serial Configuration with the SSC

7.4.1 Single Master, Full-Duplex Operation

Such a configuration is illustrated in Figure 28. The master device can either be a C167, or a member of the ST10 or 8051 families (LSB first operation only), or other master mode capable devices compatible to the SSC. As slave devices, C167 components, or again devices compatible to the SSC and capable of slave mode operation, can be used. Due to being only capable to operate in the master mode, the ST10x166 or members of the 8051 family cannot be used as slave devices. To simplify the further description, it is assumed that only C167 components are used for both, master and slave devices, if not stated otherwise.

Figure 28. Full-Duplex, Single Master Configuration Example

As mentioned before, the different devices are connected through three lines. The definition of these lines is always determined by the master: The line connected to the master's data output pin MTSR is the transmit line, the receive line is connected to it's data input line MRST, and the clock line is the line connected to pin SCLK. Only the device selected for master operation can generate and output the serial clock at pin SCLK. All slaves must receive this clock, pin SCLK is an input. In the block diagram, only the actual shift register of a device's synchronous serial interface is represented, with an indication of the shift direction (this is regardless whether the MSB or LSB is shifted first). The external transmit line is connected to the input of a

SGS-THOMSON MICROELECTROMICS

106/180

slave's shift register. The output of the slave's shift register is connected to the external receive line in order to enable the master to receive the data shifted out of the slave. Since the external lines are hard-wired, also the pins connected to these lines are fixed. Therefore it is obvious, that the function and direction of these pins is determined by the master or slave operation of the individual device. That is the reason, why the pins MTSR and MRST have to reverse their meaning and direction on a slave device.

To operate with this configuration, first all devices must be initialized according to the desired operation. One of the devices must be selected for master operation (SSCMS = 1), all others must be programmed to slave operation (SSCMS = 0).

Besides the modes of operation of the device's SSC, the respective port lines have to be initialized according to the table shown for master and slave mode (clock line exceptions see note below). However, when studying the block diagram, one can see, that the slave's data output pins MRST are connected together onto on line. Without provisions, this would result in a short circuit when the slaves try to drive different logic levels onto this line. Of course, only one slave is allowed to output it's transmit data onto this line, however, the other slaves would drive their idle state onto this line. There are two ways to avoid this collision: One is that all, or all except one, of the slaves program there MRST pins to input. That means, that no or only one slave can put it's data onto the master's receive line. Only receiving of data from the master is possible. The master has to select the slave device from which it expects data either by separate select lines, or by sending a special command to the slave. The selected slave then would program it's MRST line for output, until it gets a deselection signal or command. The other way is by using the open drain output feature. For this, an external pullup device is connected to the serial receive line, and all slaves program their MRST line to open drain output. This forms a Wired-AND connection. To avoid the corruption of the data on the receive line if two or more slaves try to place different logic levels onto this line, all slaves which are not selected for transmission to the master just have to transmit the value 'FFFh' (depending on selected data width). Since in this case the high level is not actively driven onto the line, but only held through the pullup device, the selected slave can pull this line actively to a low level without the danger of a short circuit.

After performing all necessary initializations of the SSC, the serial interfaces can be enabled. For a master device, the alternate clock line will now go to its programmed polarity. The alternate data line will go to either '0' or '1', until the first transfer will start (for further transfers, the alternate data line will always remain at the logic level of the last transmitted data bit).

Note: The state of the internal alternate output lines is a '1' as long as the SSC is disabled. If the SCLK pin of the master is already completely initialized at the time the SSC is enabled, an unwanted clock edge could be produced when the SSC is enabled in the case a clock polarity of '0' is selected. Due to the ANDing of the port latch value and the alternate data output, the pin will switch from a '1' to a '0'. To avoid this, first the SSC of the master should be enabled, then the port latch should be programmed to a '1'. In the case of a clock polarity of '1', the port latch should be first programmed to '1'.

When the serial interfaces are enabled, the master device can initiate the first data transfer. This is performed by writing the transmit data into register SSCTB. This value is copied into the shift register (which is assumed to be empty at this time), and with the next signal of the baud rate generator, the busy flag and the transmit interrupt request flag will be set. The selected first bit of the transmit data will be placed onto the MTSR line. Depending on the selected clock phase, also a clock pulse will be generated on the SCLK line (see Figure 25). The master then continues to shift out the contents of it's shift register with each clock pulse, while at the same time latching and shifting in the data detected at it's input line MRST. Since the clock line is connected in parallel to all slaves, their shift registers will be shifted synchronously with the master's shift register, shifting out the data contained in the registers, and shifting in the data detected at the input line. After the preprogrammed number of clock pulses (via the data width selection) have been generated, the data transmitted by the master is contained in all slave's shift registers, while the data of the selected slave can be found in the master's shift register. In the master and all slaves, the contents of the shift register is copied into the receive buffer SSCRB, and the receive interrupt flag SSCRIR is set.

Note: The mechanism to start a transmission by writing into the transmit buffer register SSCTB is only active when the SSC is enabled (SSCEN = 1). If register SSCTB is written to prior to the enabling of the SSC, no transmission will start.

Other than for a master device, in a slave device the selected first bit (MSB or LSB of the transfer data) will immediately be put out at pin MRST when the contents of the transmit buffer is copied into the slave's shift register. In a master device, this will occur with the next signal from the baud rate generator. The reason for this is that, depending on the selected clock phase, the first clock edge generated by the master may be already used to clock in the first data bit. Thus, the slave's first data bit must already be valid at this time. This behaviour can also be seen in Figure 25.

One can see that, other than for the asynchronous serial interface ASC0, always a transmission **and** reception takes place, regardless whether valid data has been transmitted or received.

SGS-THOMSON MICROELECTRONICS

108/180
7.4.2 Multi-Master, Full-Duplex Operation

Figure 29 basically shows the same configuration as Figure 28, however, now the role of the master has been passed to the next device, either through a type of token passing scheme, or through special hand-shaking lines. The previous master is now switched to the slave mode by setting bit SSCMS to '0', and the previous slave is now the master (SSCMS = 1). Since the external connections can not be changed, one can see that the new master and the previous master both have switched their connection of the shift register input and output to the respective port lines. This switch is automatically performed when switching from master to slave mode and vice versa. The port direction control, however, must be changed by the user, as already explained above.

The basic operation now is the same as described for a single master system (also in a multi-master system, at one time, only one single master can exist).

Figure 29. Full-Duplex, Multi-Master Configuration Example

7.4.3 Half-Duplex Operation

It is also possible, to use only one data line for receive **and** transmit between the devices. Figure 30 shows such a configuration. As for the full-duplex mode, the clock line is again connected in parallel to all devices. The data input and output pins, however, are all connected together onto one line.

Other than for the full-duplex configuration, where a transmission from a slave to a slave is not possible, transmissions/receptions between any stations can be performed with the half-duplex configuration. Depending on the output driver mode of the port pins, different methods can be used to avoid conflicts on the serial data line.

When using push/pull output drivers, only the transmitting device may enable its data output pin, as shown in Figure 31. All other devices must disable their output drivers through switching the port line to input. The clock signal for the transfer is provided by the master device. All devices, even the transmitting device, can receive the data.

SGS-THOMSON MICROELECTROMICS

Figure 31. Example: Half-Duplex Config., Slave Transmit, Push/pull Outputs

With the open drain output configuration, shown in Figure 32, no enabling or disabling of the port lines is necessary for the half-duplex mode. Instead, a line conflict is avoided through setting the data in the non-transmitting devices' shift registers to all ones.

Since the data inputs and outputs are connected together, a transmitting device will clock in it's own data at the input pin (MRST for a master device, MTSR for a slave). In this way, it is possible to detect any corruptions on the common data line, if the received data is not equal to the transmitted data.

Figure 32. Example: Half-Duplex Config., Slave Transmit, Open Drain Outputs

7.4.4 Continuous Transfers

When the transmit interrupt request flag is set, it indicates that the transmit buffer SSCTB is empty and ready to be written to with the next transmit data. If, by the time a previous transmission is finished, register SSCTB is full, it is immediately transferred into the shift register and the next transmission will start without any extra delay. From an external point of view, a transmission of two data frames in this case would look like a transmission of one data frame of double the data length. Two byte transfers, for example, would produce the same characteristics as one word transfer. This feature can be used to interface with devices which can operate with or require more than 16 data bits per transfer. It is just a matter of software, how long a total data frame length can be. Of course, this can only happen in multiples of the selected basic data width, since it would require disabling/enabling of the SSC to reprogram the basic data width on-the-fly. This option can also be used to, for example, interface to byte- and word-wide slaves at the same serial bus.

SGS-THOMSON MICROELECTRONICS

112/180

7.5 Error Detection

Four different types of error conditions can be automatically detected by the SSC. Two of these can be detected in master mode, while in slave mode all four can be detected. An error indication flag SSCxE will be set if the error condition occurs, and an error interrupt request can optionally be generated.

Error Type	Defined for	Enable Bit	Indication Flag
Transmit Error	Slave Mode	SSCTEN	SSCTE
Receive Error	Master and Slave Mode	SSCREN	SSCRE
Phase Error	Master and Slave Mode	SSCPEN	SSCPE
Baudrate Error	Slave Mode	SSCBEN	SSCBE

The error detection enable bits SSCxEN are only accessible for initialization when the SSC is disabled (SSCEN = 0), while the respective error indication flags are accessible only when the SSC is enabled (SSCEN = 1). When an error occurs, in any case the respective error indication flag SSCxE will be set. All four error types can be programmed to generate the same error interrupt SSCEINT, controlled through register SSCEIC. This interrupt request, however, will only be generated when an error condition occurs and the respective error enable bit was set during the initialization of the SSC. Figure 33 shows a functional diagram of the error interrupt generation. In the error interrupt service routine, the error indication flags in register SSCCON can be polled to determine which type of error had occurred. While the general error interrupt request flag SSCEIR is automatically cleared by hardware when the interrupt is serviced, the error indication flags SSCXE must be cleared by software, otherwise further interrupt requests may be generated after the return from the service routine.

In this way, it is possible to program one or more error conditions to generate an error interrupt, while checking the remaining error conditions through software polling techniques.

Note that, if enabled through the respective enable bit SSCxEN, the setting of an error indication flag SSCxE by software will also cause the error interrupt request flag SSCEIR to be set. This can be used for testing the respective error service routine without having to specifically produce the error condition.

Figure 33. SSC Error Interrupt Control

7.5.1 Receive Error (Master and Slave Mode)

A receive error will be generated when a new data frame is completely received, but the previous data was not read out of the receive buffer register SSCRB. This condition sets the indication flag SSCRE and the error interrupt request flag SSCEIR. The old data in the receive buffer SSCRB will be overwritten with the new value and is unretrievably lost.

7.5.2 Phase Error (Master and Slave Mode)

The incoming data at pin MRST is sampled with the same frequency as the CPU Clock. If the data changes between one sample before and one sample after the latching edge of the clock signal (see Figure 25), the phase error indication flag SSCPE and the error interrupt request flag SSCEIR is set.

7.5.3 Baud Rate Error (Slave Mode)

Using this error detection capability requires that the slave's baud rate generator is programmed to the same baud rate as the master device. The baud rate error indication flag will then be set if the incoming clock signal deviates from the programmed baud rate such, that it either is more than double or less than half the expected baud rate. This feature allows to detect false additional, or missing pulses on the clock line (within a certain frame). The indication flag SSCBE and the error interrupt request flag SSCEIR will be set on such a condition.

If this error condition is enabled to generate an interrupt request through setting bit SSCBEN during the initialization of the SSC, an automatic reset of the SSC will occur in the case of this error. This is done to reinitialize the SSC, if too less or too many clock pulses have been detected.

7.5.4 Transmit Error (Slave Mode)

This error indicates that a transfer was initiated by the master, but the transmit buffer SSCTB of the slave was not updated, i.e. not written to with a new value. If a transfer starts while the transmit buffer is not updated, the slave will shift out the 'old' contents of the shift register, which normally is the data received during the last transmission.

In the half-duplex, open drain serial configuration, such an operation will lead to a corruption of the data on the transmit/receive line, if this slave is not selected for transmission. This mode requires that slaves not selected for transmission shift out all ones, thus, their transmit buffers must be loaded with the value 'FFFFh' (depending on selected transfer data width) prior to any transfer.

When using push/pull output drivers, the value shifted out of the shift register of a slave not selected for transmission will normally present no problem, since the output is switched off in this case. However, in order to avoid possible conflicts or misinterpretations, it is recommended to always load the slave's transmit buffer prior to any transfer.

8. A/D CONVERTER (ADC)

The ADC-Module is based on the module implemented in the ST10x166, enhanced by additional analog input channels, two new operating modes, a second result register, ADDAT2, and a programmablity for the sample and conversion times. In the following, the new additional functions and features are described.

8.1 Additional A/D Input Channels

The C167 has 16 analog input channels to the on-chip A/D Converter. For this purpose, the input-only Port 5 is extended to 16 bits. The channel selection field ADCH in the A/D Converter Control register ADCON now allows the specification of all sixteen channels. The following table lists all Port 5 pins and their alternate functions together with the selection via ADCH:

Pin	Alter	nate Function	Channel
			Selection ADCH
P5.0	AN0	Analog Input 0	0000
P5.1	AN1	Analog Input 1	0001
P5.2	AN2	Analog Input 2	0010
P5.3	AN3	Analog Input 3	0011
P5.4	AN4	Analog Input 4	0100
P5.5	AN5	Analog Input 5	0101
P5.6	AN6	Analog Input 6	0110
P5.7	AN7	Analog Input 7	0111
P5.8	AN8	Analog Input 8	1000
P5.9	AN9	Analog Input 9	1001
P5.10	AN10	Analog Input 10	1010
P5.11	AN11	Analog Input 11	1011
P5.12	AN12	Analog Input 12	1100
P5.13	AN13	Analog Input 13	1101
P5.14	AN14	Analog Input 14	1110
P5.15	AN15	Analog Input 15	1111

The lines of Port 5 can also be used as digital inputs. No special distinction has to be made between Port 5 lines being used as analog inputs and Port 5 lines being used as digital inputs. For more information on Port 5 please refer to the ST10 User Manual.

Note that in the C167, the upper six lines of Port 5 have a second alternate function for the GPT1 and GPT2 timer inputs.

Figure 34. SFRs and Port Pins Associated with the A/D Converter

8.2 Wait for ADDAT Read Mode

In the default mode of the ADC, an overrun error interrupt request will be generated if a new conversion result is written into the result register ADDAT before the last result stored in this register was read by the CPU (or PEC). In this case, the old result will be overwritten and is unretrievably lost. Note that in the continuous and auto scan modes, the ADC immediately starts a new conversion when the current conversion is completed.

In order to avoid the overrun error, a relatively high interrupt priority level must be assigned to the conversion complete interrupt, and short interrupt response times must be guaranteed due to the fast conversion time of the ADC. In many applications, especially when operating with external program memory requiring a number of wait states, it may be hard to fulfill this requirement.

In the C167, a new operational mode is implemented which helps to overcome such problems. In this mode, selected by bit ADWR (Wait for Read Control Bit, ADCON.9, see hereafter), a double-buffering of the ADDAT result register is performed. At the completion of a conversion the ADC writes the result into register ADDAT, and starts the next conversion. When this conversion is complete, the ADC checks whether the previous result was read out of register ADDAT. If this is true, the new result is written to ADDAT, and the next conversion is started. However, if the previous result was not read in the meantime, the ADC stores the new result in a temporary latch and waits in an idle loop. It will not start the next conversion. When finally register

SGS-THOMSON

118/180

ADDAT is read either by the CPU or the PEC, the new result is transferred from the temporary latch to ADDAT, an interrupt request is generated, and the converter starts the next conversion. This procedure is also true if the previous conversion was a single channel conversion or the last conversion of a series of conversions (e.g. continuous or auto scan), and the converter is started again by software. No overrun error interrupt request will be generated in this mode, since this condition is not possible.

ADCON (FFA0h/D0h) A/D Converter Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
R	R	R	R	ADCRQ	ADCIN	ADWR	ADBSY
7	6	5	4	3	2	1	0
ADST	R	ADM			AD	СН	

b15 to b12 = \mathbf{R} : Reserved.

b11 = **ADCRQ:** ADC Channel Injection Request Flag.

Can be set by software or by a capture / compare event of register CC31 to trigger a channel injection. This bit has only an effect if ADCIN = 1.

ADCRQ = 0: No channel injection request.

ADCRQ = 1: Channel injection request enabled.

- b10 = **ADCIN:** ADC Channel Injection Enable control bit.
 - ADCIN = 0: Channel injection disabled.
 - ADCIN = 1: Channel injection enabled.
- b9 = **ADWR:** ADC Wait for Read control bit.

ADWR = 0: New conversion is immediately started in autoscan or continuous modes ; overrun error enabled.

ADWR = 1: New conversion in autoscan or continuous modes is not started if ADDAT / ADDAT2 is full and new conversion results is ready ; overrun error is disabled.

b8 = **ADBSY:** ADC Busy Flag.

ADBSY = 0: No conversions in progress.

- ADBSY = 1: Conversion in progress.
- b7 = **ADST:** ADC Start bit.
- b6 = **R**: Reserved.
- b5, b4 = **ADM:** ADC Mode Selection.
- b3 to b0 = **ADCH:** ADC Analog Input Channel Selection.

An internal flag, ADDAT Full (the same used for flagging an overrun error), is used to indicate a write of a conversion result to register ADDAT. As long as this flag is set in the Wait for Read mode **and** a new conversion result is present (in the temporary latch), the start of new conversions is disabled. When register ADDAT is read by the CPU or a PEC transfer, the internal flag is reset and the next conversion will start.

The ADC Busy Flag, ADBSY, and the Start Flag, ADST, remain set while the converter is waiting for a read of ADDAT.

In the default operating mode with overrun error generation, continuous or auto scan conversions are started in a fixed timeframe (the specified conversion time). In the wait for read mode, the time required for several conversions is dependent on the response time of the routine reading the result register ADDAT. Thus, the time for several conversions in the new mode can not under all circumstances be predetermined. However, as long as software is able to keep track with the A/D converter, there are no delays, and the ADC runs with the fastest possible speed.

Figure 35 illustrates the differences between the default mode and the new Wait for Read mode of the ADC.

Figure 35. A/D Converter Wait for Read Mode Example

8.3 Channel Injection Mode

In many applications, it is necessary to convert a specific analog channel in response to a time event or another signal, while the ADC is running in a continuous or auto scan mode. After the conversion of this specific channel, the original operating mode of the ADC should continue.

For this purpose, a Channel Injection mode is implemented in the ADC module. This mode allows to interrupt the current conversion mode, to inject the conversion of a specific channel, and to then continue the interrupted operating mode where it was left off.

The Channel Injection mode is selected with bit ADCIN (Channel Injection Enable bit, ADCON.10) and with bit ADWR = 1 (Wait for Read mode). The channel to be converted in this mode is specified through the upper 4 bits of a second result register, ADDAT2. The event to trigger the channel injection can either be a compare or a capture event of the Capture/Compare register CC31 of the CAPCOM2 Unit, or a setting of bit ADCRQ by software. When such an event occurs, the Channel Injection Request bit ADCRQ (ADCON.11) is set. The converter will complete the current conversion (if any is in progress), and will then inject the conversion of the specified channel. When the conversion of this channel is complete, the result will be placed into the new result register, ADDAT2, and a Channel Injection Complete Interrupt request will be generated. For this interrupt request, the ADC Overrun Error interrupt node is used (which in the Wait for Read mode, as described above, is not used). The new result register, ADDAT2, is organized as register ADDAT. However, the difference is that with register ADDAT, the number of the channel just converted is written to the upper 4 bits, while with ADDAT2, the upper 4 bits are written to by software to specify the number of the channel to be converted by the Channel Injection. These 4 bits in ADDAT2 are not modified by the A/D converter.

Note: Since there is no buffering of the channel number for an injected conversion, the upper four bits of ADDAT2 must never be modified during the sample phase of an injected conversion, otherwise the input multiplexer will switch to the new channel. It is recommended to only change the channel number after an injected conversion was performed and before a new one is requested.

SGS-THOMSON MICROELECTRONICS As mentioned above, the channel injection can be initiated by different events. One is a setting of bit ADCRQ by software. The second is a compare event of capture/compare channel CC31. This method allows to trigger a channel injection at a specific time or on the occurrence of a predefined count value of the CAPCOM timers. The third option is a capture event of register CC31. This can be either the positive, negative, or both the positive and the negative edge of an external signal. In addition, this option allows to record the time of occurrence of this signal. Optionally, the capture or compare event can generate an interrupt request (see also Chapter 5, CAPCOM2 Unit).

Note: The channel injection request bit ADCRQ will be set through any interrupt request of CAPCOM2 channel CC31, regardless whether the channel injection mode is enabled or not. It is recommended to always clear bit ADCRQ before enabling the channel injection mode.

Figure 36. A/D Converter Channel Injection Example

Figure 37. A/D Converter Channel Injection Wait for Read Examples

SGS-THOMSON MICROELECTHONICS Figure 36 shows the operation of the channel injection mode. In Figure 37, some special conditions are illustrated which have to be regarded when using the Channel Injection mode. These items are described in the following:

ADDAT	ADDAT2	TEMP_LATCH	Converter Operation
Empty	Empty	Empty	Channel Injection was started while converter was idle; ==> start conversion of injected channel
Full	Empty	Empty	Previous conversion result was written to ADDAT; ==> start conversion of injected channel
Full	Empty	Full	ADDAT Wait for Read conflict; ==> wait until ADDAT read
Full	Full	Empty	Previous conversion result was written to ADDAT; Last Channel Injection result not read; ==> start conversion of injected channel
Empty	Full	Empty	Channel Injection was started while converter was idle; Last Channel Injection result not read; ==> start conversion of injected channel
Full	Full	Full	ADDAT Wait for Read conflict; previous injection result not read; ==> wait until ADDAT read
Empty	Full	Full	ADDAT2 Wait for Read conflict; ==> wait until ADDAT2 read

a) When starting a channel injection, the following conditions can occur:

b) At the end of an injected conversion, the following conditions can occur:

ADDAT	ADDAT2	TEMP_LATCH	Converter Operation
Empty	Full	Empty	Injected conversion result was written to ADDAT2; ==> start next conversion (if necessary, see Note)
Empty	Full	Full	ADDAT2 Wait for Read conflict; previous injection result not read; ==> wait until ADDAT2 read
Full	Full	Empty	Injected conversion result was written to ADDAT2; ==> start next conversion (if necessary, see Note)
Full	Full	Full	ADDAT2 Wait for Read conflict; previous injection result not read; ==> wait until ADDAT2 read

Note: The continuation of conversions is necessary in any case, if the channel injection had interrupted either a continuous or an autoscan continuous conversion. If an auto scan conversion was interrupted, a continuation will only be performed if the last conversion before the channel injection was not the conversion of channel 0.

- c) While an injected conversion is in progress, no further channel injection request can be triggered. The Channel Injection Request flag ADCRQ remains set until the the result of the injected conversion is written to the ADDAT2 register.
- d) If the converter was idle before the channel injection, and during the injected conversion the converter is started by software for normal conversions, the channel injection is aborted, and the converter starts in the selected mode. It is recommended therefore, to always check the busy bit ADBSY before starting a new operation.

9. GPT1 AND GPT2 ENHANCEMENTS

To improve the flexibility and programmability of the general purpose timers, a number of additional input lines and control bits are provided in the C167. With this enhancement, **all** of the five timers in the GPT1 and GPT2 blocks can run either in timer and counter mode, and have the option to be controlled for up/down counting through an external signal.

For the GPT1 timers, two additional input lines now allow the two auxiliary timers T2 and T4 to be also externally controlled for up or down counting, as it was already implemented for the core timer T3.

For the two timers, T5 and T6, in the GPT2 block, also the option to externally control them for up or down counting is provided through two additional input lines. For counting external events, two more inputs have been added, thus that both, T5 and T6, can now be used as counters.

In total, six additional input signals are implemented:

Input	Function
	GPT1 Timer 2 External LIp/Down Control Input
	CPT1 Timer 2 External Up/Down Control Input
	GPT1 Timer 4 External Op/Down Control Input
15IN	GP12 Timer 5 External Count Input
T6IN	GPT2 Timer 6 External Count Input
T5EUD	GPT2 Timer 5 External Up/Down Control Input
T6EUD	GPT2 Timer 6 External Up/Down Control Input

To control these new functions, the following additional control bits are implemented in the respective timer control registers:

Symbol	Position	Function
T2UDE	T2CON.8	Timer 2 External Up/Down Control Enable Bit
T4UDE	T4CON.8	Timer 4 External Up/Down Control Enable Bit
T5M.1	T5CON.4	Timer 5 Mode Control Bit 1
T6M.1	T6CON.4	Timer 6 Mode Control Bit 1
T6M.0	T6CON.3	Timer 6 Mode Control Bit 0
T5UDE	T5CON.8	Timer 5 External Up/Down Control Enable Bit
T6UDE	T6CON.8	Timer 6 External Up/Down Control Enable Bit

Since a software up/down control bit, TxUD, is already implemented for all timers T2 through T6, with the additional input lines a number of options now is available for the up/down control of the general purpose timers (x = 2..6):

Input TxEUD	Bit TxUDE	Bit Bit TxUDE TxUD	
х	0	0	Up
X	0	1	Down
0	1	0	Up
1	1	0	Down
0	1	1	Down
1	1	1	Up

With the new mode control bits for T5 and T6, now all the options for timer, counter, and gated timer modes are available. The following table shows these options:

Т5М Т6М	Function
0 0	Timer 5/6 Timer Mode
01	Timer 5/6 Counter Mode
10	Timer 5/6 Gated Timer Mode (gate is active low)
11	Timer 5/6 Gated Timer Mode (gate is active high)

The bits and functions of the control registers TxCON of timers T2, T4, T5, and T6 are shown hereafter :

T2CON (FF40h/A0h)

Auxiliary Timer T2 Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	T2UDE
7	6	5	4	3	2	1	0
T2UD	T2R		T2M	1		T2I	1

SGS-THOMSON

b15 to b9 = \mathbf{R} : Reserved.

b8 = **T2UDE:** Timer 2 External Up / Down Control Enable bit.

b7 = **T2UD:** Timer 2Up / Down Control bit.

b6 = T2R: Timer 2 Run bit.

128/180

 $\begin{array}{l} T2R = 0: \mbox{ Timer / Counter 2 stops.} \\ T2R = 1: \mbox{ Timer / Counter 2 runs.} \\ \mbox{b5 to } \mbox{b3 =$ **T2M:** $Timer 2 Mode Control.} \\ \mbox{b2 to } \mbox{b0 =$ **T2I:** $Timer 2 Input Selection.} \end{array}$

T4CON (FF44h/A2h) Auxiliary Timer T4 Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	T4UDE
7	6	5	4	3	2	1	0
T4UD	T4R		T4M	1		T4I	

b15 to b9 = R: Reserved.

b8 = **T4UDE:** Timer 4 External Up / Down Control Enable bit.

b7 = **T4UD:** Timer 4 Up / Down Control bit.

b6 = **T4R:** Timer 4 Run bit.

T4R = 0: Timer / Counter 4 stops.

T4R = 1: Timer / Counter 4 runs.

b5 to b3 = T4M: Timer 4 Mode Control.

b2 to b0 = **T4I:** Timer 4 Input Selection.

T5CON (FF46h/A3h) Auxiliary Timer T5 Control Register

Reset Value: 0000h

15	14	13	12	11	10	9	8
T5SC	T5CLR	C		R	R	R	T5UDE
7	6	5	4	3	2	1	0
T5UD	T5R	R	Tt	5M		T5I	1

b15 = **T5SC:** Timer 5 Capture Mode Enable bit.

T5SC = 0: Capture into register CAPREL disabled.

T5SC = 1: Capture into register CAPREL enabled.

b14 = **T5CLR:** Timer 5 Clear bit.

T5CLR = 0: Timer 5 is not cleared on a capture.

T5CLR = 1: Timer 5 is cleared on a capture.

b13, b12 = CI: Register CAPREL Input Selection.

b11 to b9 = \mathbf{R} : Reserved.

b8 = **T5UDE:** Timer 5 External Up / Down Control Enable bit.

- b7 = **T5UD:** Timer 5 Up / Down Control bit.
- b6 = **T5R:** Timer 5 Run bit.
 - T5R = 0: Timer / Counter 5 stops.
 - T5R = 1: Timer / Counter 5 runs.
- b5 = **R**: Reserved.
- b4, b3 = **T5M:** Timer 5 Mode Control.

b2 to b0 = **T5I**: Timer 5 Input Selection.

T6CON (FF48h/A4h)

Auxiliary Timer T6 Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
T6SR	R	R	R	R	T6OTL	T6OE	T6UDE
7	6	5	4	3	2	1	0
T6UD	T6R	R	те	6M		T6I	

b15 = **T6SR:** Timer 6 Reload Mode Enable bit.

- T6SR = 0: Reload from register CAPREL disabled.
- T6SR = 1: Reload from register CAPREL enabled.
- b14 to b11 = \mathbf{R} : Reserved.
- b10 = **T60TL:** Timer 6 Output Toggle Latch. Toggles on each overflow / underflow of T6. Can be set or reset by software.
- b9 = **T60E**: Timer 6 Alternate Output Function Enable.
 - T60E = 0: Alternate output function disabled.
 - T60E = 1: Alternate output function enabled.
- b8 = T6UDE: Timer 6 External Up / Down Control Enable bit.
- b7 = **T6UD:** Timer 6 Up / Down Control bit.
- b6 = T6R: Timer 6 Run bit.
 - T6R = 0: Timer / Counter 6 stops.
 - T6R = 1: Timer / Counter 6 runs.
- b5 = **R**: Reserved.
- b4, b3 = **T6M:** Timer 6 Mode Control.
- b2 to b0 = **T6I:** Timer 6 Input Selection.

External Connection of Alternate Inputs

The additional external input lines, described above, are connected to the upper six pins of Port 5 in the C167. Since P5 is an input only port, no special programming is necessary in order to select the alternate timer inputs. Note that Port 5 is also used for the analog input signals for the A/D Converter. The following table shows the reference between the upper six Port 5 pins and their alternate functions:

Pin	Alternate Function I	Alternate Function II
P5.15	AN15	T2EUD
P5.14	AN14	T4EUD
P5.13	AN13	T5IN
P5.12	AN12	T6IN
P5.11	AN11	T5EUD
P5.10	AN10	T6EUD

10. INTERRUPT SYSTEM

In the C167, a total of 56 interrupt sources and vectors is implemented. This is 24 interrupts more than in the ST10x166.

10.1 External Interrupts

As in the ST10x166, the C167 will have no dedicated external interrupt inputs. Instead, each peripheral's external input, which can generate an interrupt request (such as the capture inputs of the CAPCOM units), can be used as an external interrupt input. The sample time of the external input, however, is always tied to the cycle time of the associated peripheral device. That means, for instance, that the capture inputs of the CAPCOM units are sampled every 400 ns (@ 20 MHz CPU clock), thus, external interrupt signals can only be detected in that time frame.

In order to provide faster interrupt detection, the C167 will provide the option to use 8 pins of Port 2 for fast external interrupts. If this feature is enabled, the pins P2.8 through P2.15 function as external interrupt inputs with a sample rate of 50 ns (@ 20 MHz CPU clock). This option is selected via register EXICON, External Interrupt Control register, shown hereafter. For each interrupt input, two control bits are used to enable the interrupt input and to select whether an interrupt is requested on the positive, the negative, or both the positive and the negative edge of the external signal. These interrupts use the interrupt nodes from the capture/compare registers CC8 through CC15 of the CAPCOM1 unit, and are controlled by registers CC8IC through CC15IC. Note that the capture and compare functions of the eight Port 2 pins can not be used when the fast external interrupts are selected (EXIxES <> '00'), however, the pin can be used for general purpose I/O in any case. The following table shows the possible options for the external interrupt inputs (x = 0..7, y = x + 8):

EXIxES	Selected Function
0 0	Fast Ext. Interrupt disabled; Pin can be used for capture/compare functions
0 1	Interrupt on positive edge at pin P2.y
10	Interrupt on negative edge at pin P2.y
11	Interrupt on positive and negative edge at pin P2.y

Note that the sampling of the external fast interrupt inputs is done every 50 ns (@ 20 MHz CPU Clock), the interrupt request arbitration and processing, however, is done in steps of 200 ns.

EXICON (F1C0h/E0h) External Interrupt Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
EXI	7ES	EX	I6ES	EXI	5ES	EXI	4ES
7	6	5	4	3	2	1	0
EXI	3ES	EX	I2ES	EXI	1ES	EXI	DES

b15, b14 = **EXI7ES:** External Interrupt 7 Edge Selection bit field.

b13, b12 = **EXI6ES:** External Interrupt 6 Edge Selection bit field.

b11, b10 = **EXI5ES:** External Interrupt 5 Edge Selection bit field.

b9, b8 = **EXI4ES**: External Interrupt 4 Edge Selection bit field.

b7, b6 = **EXI3ES:** External Interrupt 3 Edge Selection bit field

b5, b4 = **EXI2ES:** External Interrupt 2 Edge Selection bit field.

b3, b2 = **EXI1ES:** External Interrupt 1 Edge Selection bit field.

b1, b0 = **EXI0ES**: External Interrupt 0 Edge Selection bit field.

EXI0ES = (0,0): Fast interrupt disabled.

EXI0ES = (0,1): Interrupt on the positive edge.

EXI0ES = (1,0): Interrupt on the negative edge.

EXI0ES = (1,1): Interrupt on the positive and the negative edge.

10.2 Additional Peripheral Interrupts

In the following, the additional peripheral interrupt sources of the C167 compared to the ST10x166 are listed. Four interrupt nodes will be implemented which have no associated peripheral source. These interrupts can be activated through software by setting the respective interrupt request flag XPxIR in register XPxIC. This can be used to have software traps with programmable priority levels.

Note that the SCC interrupts will use interrupt vector locations B4h, B8h and BCh. In the ST10x166, these interrupt vectors were used by the serial interface ASC1 interrupts (S1TINT, S1RINT, S1EINT).

Note also, that due to the replacement of the three ST10x166 ASC1 interrupts the following table shows 27 interrupt sources. Nevertheless, the C167 has 24 interrupt sources more than the ST10x166.

SGS-THOMSON MICROELECTRONICS

134/180

Interrupt Source	Control Register	Interrupt Vector	Vector Location	Trap Number
SCC Transmit	SSCTIC	SCTINT	B4h	2Dh
SCC Receive	SSCRIC	SCRINT	B8h	2Eh
SCC Error	SSCEIC	SCEINT	BCh	2Fh
CAPCOM2 Register 16	CC16IC	CC16INT	C0h	30h
CAPCOM2 Register 17	CC17IC	CC17INT	C4h	31h
CAPCOM2 Register 18	CC18IC	CC18INT	C8h	32h
CAPCOM2 Register 19	CC19IC	CC19INT	CCh	33h
CAPCOM2 Register 20	CC20IC	CC20INT	D0h	34h
CAPCOM2 Register 21	CC21IC	CC21INT	D4h	35h
CAPCOM2 Register 22	CC22IC	CC22NT	D8h	36h
CAPCOM2 Register 23	CC23IC	CC23INT	DCh	37h
CAPCOM2 Register 24	CC24IC	CC24INT	E0h	38h
CAPCOM2 Register 25	CC25IC	CC25INT	E4h	39h
CAPCOM2 Register 26	CC26IC	CC26INT	E8h	3Ah
CAPCOM2 Register 27	CC27IC	CC27INT	ECh	3Bh
CAPCOM2 Register 28	CC28IC	CC28INT	F0h	3Ch
CAPCOM2 Register 29	CC29IC	CC29INT	110h	44h
CAPCOM2 Register 30	CC30IC	CC30INT	114h	45h
CAPCOM2 Register 31	CC31IC	CC31INT	118h	46h
CAPCOM2 Timer T7	T7IC	T7INT	F4h	3Dh
CAPCOM2 Timer T8	T8IC	T8INT	F8h	3Eh
PWM Channels 03	PWMIC	PWMINT	FCh	3Fh
Software Bit Set	XP0IC	XP0INT	100h	40h
Software Bit Set	XP1IC	XP1INT	104h	41h
Software Bit Set	XP2IC	XP2INT	108h	42h
Software Bit Set	XP3IC	XP3INT	10Ch	43h
reserved	tbd	tbd	11Ch	47h

The operation and functions of these interrupts are the same as for all other standard interrupts. See the ST10 User Manual, Chapter 7, for more details.

SGS-THOMSON MICROELECTRONICS

11. PORTS

In the C167, nine ports, Port 0 through Port 8, are implemented, with a total of 111 port lines. The ports are either organized as 8-bit or 16-bit, with Port 3, however, providing only 15 pins. Figure 38 gives an overview on all Special Function Registers (SFRs) and pins associated with the ports.

Figure 38. SFRs and Port Pins Associated with the I/O Ports

In the C167, a new feature is implemented in certain ports. The Open Drain Control allows to switch the output driver of a port pin from a push/pull configuration to an open drain configuration. In the push/pull configuration, shown on the left in Figure 39, a port output driver has an upper and lower transistor, thus it can actively drive the line either to a low or a high level. In the open drain mode, illustrated on the right in Figure 39, the upper transistor is always switched off, and the output driver can only actively drive the line to a low level. When writing a '1' to the port latch, the lower transistor is switched off and the output goes to a high-impedance state. The high level must then be performed through an external, user-defined pullup device. With this feature, it is possible to connect several port pins together through a Wired-AND configuration, saving external glue logic and/or additional software overhead for enabling/disabling output signals.

This new feature is implemented for ports P2, P3, P6, P7, and P8 (see respective sections), and is controlled through respective Open Drain Control Registers ODPx. These registers allow the individual bit-wise selection of the open drain outputs for each port line. If the respective control bits ODPx.y is '0' (default after reset), the output driver is in the push/pull mode. If ODPx.y is '1', the open drain configuration is selected. Note that all ODPx registers are located in the ESFR space.

Besides being used as general purpose I/O ports, each port line has one or more associated alternate function, which serves as an input or output for the bus controller and/or the on-chip peripheral components. These alternate functions are also described in the following sections.

To ease the description of a port pin's configuration in an application, new symbols have been introduced in this Preliminary User Manual. These symbols are shown in Figure 39. Instead of showing only the pin symbol when illustrating an alternate input or output function, an extra block is added to indicate that the entire port structure, with port latch, direction control, and optional open drain control, has to be considered when initializing and programming the port line. In this extra block, besides the pin name, the appropriate configuration of the port line is shown through arrows. The arrows indicate the direction of the port line, with an output double arrow symbolizing a push/pull output, and an output single arrow symbolizing an open drain output, and a single input arrow representing an input.

C167 FAMILY PRELIMINARY USER MANUAL

Sometimes it is necessary in an application, to switch an output off to the highimpedance mode, in order to avoid external collisions and short circuits. This switch is performed by setting the direction to input, however, to distinguish it from **using** the line as an **input**, an 'X' symbol is used in this case. This 'X' does not indicate a special mode of the pin, instead, it indicates the idea behind this operation.

Figure 39. Push/Pull and Open Drain Output Drivers / Port Pin Symbols

11.0 PORT0: Ports P0L and P0H

In the C167, the 16-bit Port 0 known from the ST10x166 will be split into two 8-bit ports, named POL (lower half of former PO), and POH (upper half). The corresponding direction registers are then DPOL and DPOH, respectively. These registers and the associated addresses are shown hereafter. In the description and Figures, however, the symbol PORT0 is used to refer to both parts, POL and POH.

P0L (FF00h/80h) PORT 0 Low Byte Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P0L7	P0L6	P0L5	P0L4	P0L3	P0L2	P0L1	P0L0

b7 to b0 = POL.y: Port Data Register y = 0 to 7.

P0H (FF02h/81h) PORT 0 High Byte Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0

b7 to b0 = POH.y: Port Data Register y = 0 to 7.

DP0L (F100h/80h) PORT 0 Low Byte Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP0L7	DP0L6	DP0L5	DP0L4	DP0L3	DP0L2	DP0L1	DP0L0

b7 to b0 = DP0L.y: Direction Control y = 0 to 7. DP0L.y = 0: Port line P0Ly is input (high impedance).

DP0L.y = 1: Port line P0Ly is output.

DP0H (F102h/81h) PORT 0 High Byte Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP0H7	DP0H6	DP0H5	DP0H4	DP0H3	DP0H2	DP0H1	DP0H0

b7 to b0 =**DP0H.y:** Direction Control y = 0 to 7.

DP0H.y = 0: Port line P0Hy is input (high impedance). DP0H.y = 1: Port line P0Hy is output.

This splitting of Port 0 has two advantages for the user. First, when using an 8-bit demultiplexed bus, only POL is used for the data bus, and POH can now be used for general purpose I/O. This gives the user an extra 8 I/O lines, which are not available in the ST10x166. Of course, this option is only possible when using the 8-bit demultiplexed bus exclusively.

The second advantage is with byte writes to a port. Byte moves to an SFR (and a port is an SFR) cause the not-addressed byte to be cleared. Thus, problems occur when using the PEC to write a byte to a port (normal instructions could use AND/OR or bitfield instructions to get around this problem). Now, with Port 0 split into two bytes, byte write problems are solved.

Although this change is an incompatibility with the ST10x166, minor difficulties are expected since Port 0 in most cases is currently used as external data bus.

Note that when using an external 16-bit data bus, the two halfs of PORT0 are treated as one word-wide bus.

The lines of PORT0 are used by the External Bus Controller depending on the selected bus mode. Figure 40 shows the configuration and alternate functions of PORT0 in the different modes. It must be noted that the general purpose I/O function can only be used for pins POL.0 through POL.7 if **no external bus**, and for pins POH.0 through POH.7 if **only the 8-bit non-multiplexed bus** is used in an application. While Figure 40 shows four single alternate function configurations of PORT0, it must be taken into account that in an application mostly several external bus modes are used.

SGS-THOMSON MIGROELECTRONICS

142/180

Figure 40. PORT0 I/O Alternate Functions

PORT0 is also used to select the system startup configuration. During reset, PORT0 is configured to input, and each line is held high through an internal pullup device. Each line can now be individually pulled to a low level (see DC-level specifications in the respective Data Sheets) through an external pulldown device. A default configuration is selected when the respective PORT0 lines are at a high level. Through pulling individual lines to a low level, this default can be changed according to the needs of the applications.

The internal pullup devices are designed such that an external pulldown resistors of about 15 to 20 KOhm (see Data Sheet specification) can be used to apply a correct low level. These external pulldown resistors can remain connected to the PORT0 pins also during normal operation, however, care has to be taken such that they do not disturb the normal function of PORT0 (this might be the case, for example, if the external resistor is too strong).

C167 FAMILY PRELIMINARY USER MANUAL

With the end of the reset, the selected bus configuration will be written to the BUSCON0 register. The configuration of the high byte of PORT0, will be copied into the special register RP0H, shown in Chapter 3.5. This register is read-only, and holds the selection for the number of chip selects and segment addresses. Software can read this register in order to react according to the selected configuration, if required.

When the reset is terminated, the internal pullup devices are switched off, and PORT0 will be switched to the appropriate operating mode.

11.1 PORT1: Ports P1L and P1H

As with PORT0 described above, also PORT1 known from the ST10x166 is split into two byte-wide ports in the C167. The registers are P1L, P1H, DP1L, and DP1H (analogous to the PORT0 registers), shown hereafter.

P1L (FF04h/82h) PORT 1 Low Byte Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P1L7	P1L6	P1L5	P1L4	P1L3	P1L2	P1L1	P1L0

b7 to b0 = P1L.y: Port Data Register y = 0 to 7.

P1H (FF06h/83h) PORT 1 High Byte Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0

b7 to b0 = P1H.y: Port Data Register y = 0 to 7.
DP1L (F104h/82h) PORT 1 Low Byte Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP1L7	DP1L6	DP1L5	DP1L4	DP1L3	DP1L2	DP1L1	DP1L0

b7 to b0 = DP1L.y: Direction Control y = 0 to 7. DP1L.y = 0: Port line P1Ly is input (high impedance). DP1L.y = 1: Port line P1Ly is output.

DP1H (F106h/83h) PORT 1 High Byte Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP1H7	DP1H6	DP1H5	DP1H4	DP1H3	DP1H2	DP1H1	DP1H0

b7 to b0 = DP1H.y: Direction Control y = 0 to 7. DP1H.y = 0: Port line P1Hy is input (high impedance).

DP1H.y = 1: Port line P1Hy is output.

The symbol PORT1 is used to refer to both parts of this port. The upper four pins of P1H will have additional alternate functions besides the address output in the nonmultiplexed bus modes. These alternate functions are capture inputs of the CAPCOM2 Unit (see Chapter 5). The relation between the P1H pins and the alternate functions is as follows:

Pin	Alternate Function
P1H.4	CC24IO CC24 Capture Input
P1H.5	CC25IO CC25 Capture Input
P1H.6	CC26IO CC26 Capture Input
P1H.7	CC27IO CC27 Capture Input

As all other capture inputs, the capture input function of pins P1H.4 through P1H.7 can also be used as external interrupt inputs (400 ns sample rate @ 20 MHz CPU clock).

Note that when used as the address bus in the non-multiplexed bus mode, P1L and P1H are treated as one word-wide port. Either all 16 lines are used for the address bus, or can be used for general purpose I/O, depending on the bus mode.

As a side effect, the capture input capability of lines P1H.4..7 can also be used in the address bus mode. With this, one could detect changes of the upper address lines, and trigger an interrupt request in order to perform some special service routines. Figure 41 illustrates the I/O and alternate functions of PORT1.

Figure 41. PORT1 I/O and Alternate Functions

11.2 PORT2

As mentioned in the introduction to the port description, in the C167 Port 2 has an open drain output feature. The respective control register ODP2 is shown below:

ODP2 (F1C2h/E1h) Port 2 Open Drain Control Register Reset Value: 0000h

> SGS-THOMSON MICROELECTRONICS

146/180

15	14	13	12	11	10	9	8
ODP2.15	ODP2.14	ODP2.13	ODP2.12	ODP2.11	ODP2.10	ODP2.9	ODP2.8
7	6	5	4	3	2	1	0
ODP2.7	ODP2.6	ODP2.5	ODP2.4	ODP2.3	ODP2.2	ODP2.1	ODP2.0

b15 to b0 = ODP2.y: Port 2 Open Drain Control bit y = 0 to 15.

ODP2.y = 0: Port 2.y output driver in push / pull mode.

ODP2.y = 1: Port 2.y output driver in open drain mode.

As described in Chapter 10, eight pins of Port 2, pins P2.8 through P2.15, will have additional alternate functions for the fast external interrupt inputs, while P2.15 also serves as count input T7IN for timer T7. The following table shows the relationship between the Port 2 pins and their alternate functions a), b), and c):

Port 2	Alternate	Alterna	te Function b)	Altern	nate Function c)
Pin	Function a)				
P2.0	CC0IO				
P2.1	CC1IO				
P2.2	CC2IO				
P2.3	CC3IO				
P2.4	CC4IO				
P2.5	CC5IO				
P2.6	CC6IO				
P2.7	CC710				
P2.8	CC8IO	EX0IN	Fast External Interrupt 0 Input		
P2.9	CC9IO	EX1IN	Fast External Interrupt 1 Input		
P2.10	CC10IO	EX2IN	Fast External Interrupt 2 Input		
P2.11	CC11IO	EX3IN	Fast External Interrupt 3 Input		
P2.12	CC12IO	EX4IN	Fast External Interrupt 4 Input		
P2.13	CC13IO	EX5IN	Fast External Interrupt 5 Input		
P2.14	CC14IO	EX6IN	Fast External Interrupt 6 Input		
P2.15	CC15IO	EX7IN	Fast External Interrupt 7 Input	T7IN	Timer T7 External Count Input

Figure 42 illustrates the I/O and alternate functions of Port 2.

Note that the second alternate functions of Port 2 pins P2.13 through P2.15 in the ST10x166, the bus arbitration signals HOLD#, HLDA#, and BREQ#, are now in the C167 alternate functions of the Port 6 pins P6.5 through P6.7.

Figure 42. PORT2 I/O and Alternate Functions

11.3 PORT3

In the C167, the two alternate functions, WR# and READY#, of pins P3.13 and P3.14 in the ST10x166, are performed through dedicated pins. Due to pin limitations in the target MQFP-144 package, P3.14 will not be connected to a pin. P3.13 received a new alternate function, which is the clock input/output line SCLK of the Synchronous Serial Channel, SSC. Pins P3.8 and P3.9, which served for the second synchronous/asynchronous serial interface ASC1 in the ST10x166, now have the alternate data in/data out functions of the SSC. The following table shows Port 3 and the available pins for I/O or alternate functions:

SGS-THOMSON

148/180

Port 3	Pin		Alternate Function
D2 0			Timer 0 Count Input
F3.0	yes		
P3.1	yes	16001	Limer 6 Toggle Output
P3.2	yes	CAPIN	GPT2 Capture Input
P3.3	yes	T3OUT	Timer 3 Toggle Output
P3.4	yes	T3EUD	Timer 3 External Up/Down Input
P3.5	yes	T4IN	Timer 4 Count Input
P3.6	yes	T3IN	Timer 3 Count Input
P3.7	yes	T2IN	Timer 2 Count Input
P3.8	yes	MTSR	SSC Master Transmit/Slave Receive
P3.9	yes	MRST	SSC Master Receive/Slave Transmit
P3.10	yes	TxD0	ASC0 Transmit Data Output
P3.11	yes	RxD0	ASC0 Receive Data Input
P3.12	yes	BHE#/WRH#	Byte High Enable/Write High Output
P3.13	yes	SCLK	SSC Shift Clock Input/Output
P3.14	no		No Pin assigned in the C167
P3.15	yes	CLKOUT	System Clock Output

With the exception of pins P3.15, P3.14, and P3.12, each line of Port 3 has an open drain output option. The respective control register ODP3 hereafter. The I/O and alternate functions of Port 3 are illustrated in Figure 43. The port structures of pins P3.8/MRST, P3.9/MTSR, and P3.13/SCLK are the same as for P3.11/RxD0 (Alternate Input and Alternate Output Function, see Figure 26).

Figure 43. PORT3 and Alternate Functions

ODP3 (F1C6h/E3h) Port 3 Open Drain Control Register Reset Value: 0000h

15	14	13	12	11	10	9	8
R	R	ODP3.13	R	ODP3.11	ODP3.10	ODP3.9	ODP3.8
7	6	5	4	3	2	1	0
ODP3.7	ODP3.6	ODP3.5	ODP3.4	ODP3.3	ODP3.2	ODP3.1	ODP3.0

SGS-THOMSON MIGROELEGTHONIGS

b15, b14 = **R:** Reserved.

b12 = R: Reserved.

b13, b11 to b0 = ODP3.y: Port 3 Open Drain Control bit y = 0 to 11, 13. ODP3.y = 0: Port 3.y output driver in push / pull mode.

ODP3.y = 1: Port 3.y output driver in open drain mode.

11.4 PORT4

As already mentioned above, Port 4 in the C167 is extended to 8 bits. Registers P4 and DP4 are shown hereafter:

P4 (FFC8h/E4h) Port 4 Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0

b7 to b0 = P4.y: Port 4 Data Register y = 0 to 7.

DP4 (FFCAh/E5h) Port 4 Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP4.7	DP4.6	DP4.5	DP4.4	DP4.3	DP4.2	DP4.1	DP4.0

b7 to b0 = DP4.y: Port P4 Direction Control y = 0 to 7. DP4.y = 0: Port line P4.y is input (high impedance). DP4.y = 1: Port line P4.y is output.

The pins of Port 4 can either be used as general purpose I/O pins, or they can serve for the segment addresses A23..A16. The following table lists the Port 4 pins and their alternate functions:

Port 4	Altern	Alternate Function				
P4.0	A16	Segment Address Line 16				
P4.1	A17	Segment Address Line 17				
P4.2	A18	Segment Address Line 18				
P4.3	A19	Segment Address Line 19				
P4.4	A20	Segment Address Line 20				
P4.5	A21	Segment Address Line 21				
P4.6	A22	Segment Address Line 22				
P4.7	A23	Segment Address Line 23				

SCS-THOMSON -

The selection between the general purpose I/O function or alternate segment address function is done during reset (see Chapter 3.5). The selection can be done in steps of zero (no segment address), two (A17..A16), four (A19..A16), or all eight port lines (A23..A16). As an example, when selecting 4 segment address lines, Port 4 pins P4.0 through P4.3 will be used for the segment address, and lines P4.4 through P4.7 can be used for general purpose I/O. The table below illustrates these options:

Port 4	Selected Number of Segment Address Lines									
	0	2	4	8						
P4.0	I/O	A16	A16	A16						
P4.1	I/O	A17	A17	A17						
P4.2	I/O	I/O	A18	A18						
P4.3	I/O	I/O	A19	A19						
P4.4	I/O	I/O	I/O	A20						
P4.5	I/O	I/O	I/O	A21						
P4.6	I/O	I/O	I/O	A22						
P4.7	I/O	I/O	I/O	A23						

Figure 44 illustrates the I/0 and alternate functions of Port 4. The shaded bars in the Figure indicate that the alternate function is selected in groups.

The number of segment address lines selected during reset can be read in register RP0H (see Chapter 3.5). Bits 3 and 4 of this register reflect the bit combination which was read during reset at the P0H pins 3 and 4 (see Table 3.5). These bits are read-only, and can be used to check the selected configuration during run-time.

SGS-THOMSON MICROELECTRONICS

152/180

The input/output structure of the new additional Port 4 pins is the same as for pins P4.0 and P4.1, described in the ST10 User Manual, Chapter 10.1.4. The only difference to the ST10x166's Port 4 operation is that the automatic switch of the alternate output function will only be performed for the pins selected for segment address function.

11.5 PORT5

Port 5 will be extended to 16 pins, shown hereafter. The Port 5 lines can either be used as analog input channels for the A/D converter, or as digital input-only lines. The upper six pins of Port 5 have additional alternate input functions for the GPT1 and GPT2 timers. Figure 45 illustrates the input and alternate input functions of Port 5. For more details on the Port 5 pins please refer to the ST10 User Manual, Chapter 10.2.

Figure 45. PORT5 Input and Alternate Functions

P5 (FFA2h/D1h) Port 5 Data Register (Read Only) Reset Value: xxxxh

> SGS-THOMSON MIGROELECTRONICS

C167 FAMILY PRELIMINARY USER MANUAL

15	14	13	12	11	10	9	8
P5.15	P5.14	P5.13	P5.12	P5.11	P5.10	P5.9	P5.8
7	6	5	4	3	2	1	0
P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0

b0 to B15 = P5.y: Port 5 Data Register y = 0 to 15.

11.6 PORT6

Port 6 is an 8-bit bidirectional general purpose I/O port. Each port line is bit addressable, and can individually be programmed for input or output via the direction control register DP6. The open drain output option is available for Port 6. The registers of Port 6 are shown hereafter:

P6 (FFCCh/E6h) Port 6 Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P6.7	P6.6	P6.5	P6.4	P6.3	P6.2	P6.1	P6.0

b7 to b0 = P6.y: Port 6 Data Register y = 0 to 7.

DP6 (FFCEh/E7h) Port 6 Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP6.7	DP6.6	DP6.5	DP6.4	DP6.3	DP6.2	DP6.1	DP6.0

b7 to b0 = DP6.y: Port P6 Direction Control y = 0 to 7. DP6.y = 0: Port line P6.y is input (high impedance). DP6.y = 1: Port line P6.y is output.

ODP6 (F1CEh/E7h) Port 6 Open Drain Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
ODP6.7	ODP6.6	ODP6.5	ODP6.4	ODP6.3	ODP6.2	ODP6.1	ODP6.0

b7 to b0 = ODP6.y: Port P6 Open Drain Control y = 0 to 7. ODP6.y = 0: Port P6.y is output driver in push / pull mode. ODP6.y = 1: Port P6.y is output driver in open drain mode.

All lines of Port 6 can also be used for alternate functions, shown in the following:

Port 6	Alternate F	Iternate Function							
P6.0	CS0#	Chip Select 0 Output (BUSCON0)							
P6.1	CS1#	Chip Select 1 Output (BUSCON1)							
P6.2	CS2#	Chip Select 2 Output (BUSCON2)							
P6.3	CS3#	Chip Select 3 Output (BUSCON3)							
P6.4	CS4#	Chip Select 4 Output (BUSCON4)							
P6.5	HOLD#	External Hold Request Input							
P6.6	HLDA#	Hold Acknowledge Output							
P6.7	BREQ#	Bus Request Output							

The selection between the I/O function and the alternate chip select function is done during reset (see Chapter 3.5). Either zero, two (CS0# and CS1#), three (CS0#, CS1#, and CS2#), or all five chip select outputs can be selected. The remaining pins can be used for general purpose I/O. The table below shows these options:

Port 6	Selected Number of Chip Select Signals									
	0	2	3	5						
P6.0	I/O	CS0#	CS0#	CS0#						
P6.1	I/O	CS1#	CS1#	CS1#						
P6.2	I/O	I/O	CS2#	CS2#						
P6.3	I/O	I/O	I/O	CS3#						
P6.4	I/O	I/O	I/O	CS4#						

The chip select lines of Port 6 additionally have an internal weak pullup device. This device is switched on under the following conditions:

- always during reset
- if the Port 6 line is used as a chip select output, and the C167 is in the Hold mode (invoked through HOLD#), and the respective ODP6.x control bit is '0'.

This feature is implemented in order to have the chip select lines high during reset, in order to avoid multiple chip selection, and to allow another master to access the external memory via the same chip select lines (Wired-AND), while the C167 is in the Hold mode. With ODP6.x = 1 (open drain output selected), the internal pullup device will not be active during the Hold mode; external user-defined pullup devices must be used in this case anyway.

The number of chip select lines selected during reset can be read in register RP0H. Bits 1 and 2 of this register reflect the bit combination which was read during reset at the P0H pins 1 and 2 (see Chapter 3.5 and Table 3.5). These bits are read-only, and can be used to check the selected configuration during run-time.

Figure 46 shows a block diagram of a Port 6 pin used for the chip selects (P6.4..P6.0). Since the chip select signals are required directly after reset, the pins selected during reset for this function are switched automatically to the alternate output function. It has to be taken into account, however, that the open drain output option can only be selected through software earliest during the initialization routine; at least signal CS0# will be in the push/pull output driver mode directly after reset.

SGS-THOMSON MIGROELECTRONICS

Figure 46. Block Diagram of a PORT6 Pin (P6.7, P6.6, P6.4..P6.0)

The bus arbitration signals HOLD#, HLDA#, and BREQ# are selected with bit HLDEN in register PSW. Please refer to the ST10 User Manual for details on these pin functions. Figure 46 also represents the block diagram of the Port 6 pins used for Hold Acknowledge, HLDA#, and Bus Request, BREQ# (P6.7, P6.6). When the bus arbitration signals are enabled via HLDEN, also these pins are switched automatically to the appropriate direction. Figure 48 shows the port structure of the P6.5/HOLD# pin.

Figure 47 illustrates the I/O and alternate functions of Port 6. Again, a shaded bar indicates that these functions can only be selected in groups.

SGS-THOMSON MICROELECTNONICS

Figure 47. PORT6 I/O Alternate Functions

SGS-THOMSON MIGROELECTHONICS

11.7 PORT7

Port 7 is an 8-bit bidirectional general purpose I/O port. Each port line is bitaddressable, and can individually be programmed for input or output via the direction control register DP7. The open drain output option is available for Port 7. Herebelow are shown registers P7, DP7, and ODP7.

P7 (FFD0h/E8h) Port 7 Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P7.7	P7.6	P7.5	P7.4	P7.3	P7.2	P7.1	P7.0

b7 to $b0 = \mathbf{P7.y}$: Port 7 Data Register y = 0 to 7.

DP7 (FFD2h/E9h) Port 7 Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP7.7	DP7.6	DP7.5	DP7.4	DP7.3	DP7.2	DP7.1	DP7.0

b7 to b0 = DP7.y: Port P7 Direction Control y = 0 to 7. DP7.y = 0: Port line P7.y is input (high impedance). DP7.y = 1: Port line P7.y is output.

ODP7 (F1D2h/E9h) Port 7 Open Drain Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
ODP7.7	ODP7.6	ODP7.5	ODP7.4	ODP7.3	ODP7.2	ODP7.1	ODP7.0

b7 to b0 = **ODP7.y:** Port P7 Open Drain Control y = 0 to 7. ODP7.y = 0: Port P7.y is output driver in push / pull mode. ODP7.y = 1: Port P7.y is output driver in open drain mode.

All lines of Port 7 can also be used for alternate functions of the PWM module and the CAPCOM2 Unit, as follows:

Port 7	Alternate F	unction
P7.0	POUT0	PWM Channel 0 Output
P7.1	POUT1	PWM Channel 1 Output
P7.2	POUT2	PWM Channel 2 Output
P7.3	POUT3	PWM Channel 3 Output
P7.4	CC28IO	CC28 Capture Input/Compare Output
P7.5	CC29IO	CC29 Capture Input/Compare Output
P7.6	CC30IO	CC30 Capture Input/Compare Output
P7.7	CC31IO	CC31 Capture Input/Compare Output

The port structure of pins P7.0 through P7.3 is similar to the structure of Port 3 pins with an alternate output function (e.g. T3OUT, T6OUT, etc.), as it is described in the ST10 User Manual, Chapter 10.1.3.2. The exception is, however, that the port output latch value and the alternate data output are not ANDed, but EXORed. This feature allows to invert the alternate output by writing a '1' into the respective output latch. With a '0' in the port latch, the alternate output is not inverted. With this option, however, separate alternate output enable control bits must be provided (i.e. PENx in register PWMCON1). Figure 49 shows a block diagram of a P7 pin (P7.0 through P7.3).

SGS-THOMSON MICROELECTRONICS

Figure 49. Block Diagram of a PORT7 Pin (P7.3..P7.0)

The port structure of pins P7.4 through P7.7 is the same as for the pins of Port 2, and is shown in Figure 50. For a detailled description please refer to Chapter 10.1.2 of the ST10 User Manual.

Figure 50. Block Diagram of a PORT7 Pin (P7.7..P7.4)

SGS-THOMSON MIGROELECTHONICS

11.8 PORT8

Port 8 is an 8-bit bidirectional general purpose I/O port. Each port line is bitaddressable, and can individually be programmed for input or output via the direction control register DP8. The open drain output option is available also for Port 8. Registers P8, DP8, and ODP8 are shown herebellow :

P8 (FFD4h/EAh) Port 8 Data Register Reset Value: 0000h

7	6	5	4	3	2	1	0
P8.7	P8.6	P8.5	P8.4	P8.3	P8.2	P8.1	P8.0

b7 to b0 = P8.y: Port 8 Data Register y = 0 to 7.

DP8 (FFD6h/EBh) Port 8 Direction Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
DP8.7	DP8.6	DP8.5	DP8.4	DP8.3	DP8.2	DP8.1	DP8.0

b7 to b0 = DP8.y: Port P8 Direction Control y = 0 to 7. DP8.y = 0: Port line P8.y is input (high impedance). DP8.y = 1: Port line P8.y is output.

ODP8 (F1D6h/EBh)

Port 8 Open Drain Control Register Reset Value: 0000h

7	6	5	4	3	2	1	0
ODP8.7	ODP8.6	ODP8.5	ODP8.4	ODP8.3	ODP8.2	ODP8.1	ODP8.0

b7 to b0 = ODP7.y: Port P7 Open Drain Control y = 0 to 7. ODP7.y = 0: Port P7.y is output driver in push / pull mode.

ODP7.y = 1: Port P7.y is output driver in open drain mode.

All lines of Port 8 can be used for the alternate compare output/capture input functions of registers CC16 through CC23 of the CAPCOM2 Unit:

Port 8	Alternate Function

P8.0	CC16IO	CC16 Capture Input/Compare Output
P8.1	CC17IO	CC17 Capture Input/Compare Output
P8.2	CC18IO	CC18 Capture Input/Compare Output
P8.3	CC19IO	CC19 Capture Input/Compare Output
P8.4	CC20IO	CC20 Capture Input/Compare Output
P8.5	CC21IO	CC21 Capture Input/Compare Output
P8.6	CC22IO	CC22 Capture Input/Compare Output
P8.7	CC23IO	CC23 Capture Input/Compare Output

The port input/output buffer structure of the pins of Port 8 is the same as for the pins of Port 2. Figure 52 shows a block diagram of a Port 8 pin. For a detailled description please refer to Chapter 10.1.2 of the ST10 User Manual.

Figure 52. Block Diagram of a PORT8 Pin

Figure 53. PORT8 I/O and Alternate Functions

12. DEDICATED PINS

A number of pins of the C167 are dedicated to specific functions. These pins are listed in the following:

Pin	Function
ALE	Address Latch Enable
RD#	External Memory Read Strobe
WR#/WRL#	External Memory Write/Write Low Strobe
READY#	Ready Input
EA#	External Access Enable
NMI#	Non-Maskable Interrupt Input
RSTIN#	Reset Input
RSTOUT#	Reset Output
XTAL1/2	Oscillator Input/Output
VAREF/VAGND	Analog Power Supply
VPP	Reserved
VCC/VSS	Digital Power Supply (20 Pins total)

There is a total of 33 dedicated pins. Figure 54 gives an overview on these pins. Other than in the ST10x166, the WR#/WRL# pin is no more an alternate function, thus, there is no external pullup device necessary in order to apply a high level to this line during the initialization procedure. This is now a push/pull output during normal operation, and is held high through an internal pullup device during reset.

Figure 54. Dedicated Pins and Alternate Functions

13. PINOUT

Symbol	Pin	Input	Function
	Number	(I) Output (O)	
XTAL1	138	I	Input to the oscillator amplifier and input to the external clock
XTAL2	137	0	Output of the oscillator amplifier circuit. To drive the device from an external source, XTAL1 should be driven while XTAL2 is left unconnected. Minimum and maximum high/ low and rise/fall times specified in the AC characteristics must be observed.
RSTIN#	140	I	Reset input with Schmitt-Trigger characteristics. A low level at this pin for a specified duration while the oscillator is running resets the C167. An internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} .
RSTOUT#	141	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing eiter a hardware-, a software- or a watchdog timer reset. RSTOUT# remains low until the EINIT (end of initialization) instruction is executed.
NMI#	142	I	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI# pin must be low in order to force the C167 to go into power down mode. If NMI# is high when PWRDN is executed, the part will continue to run in normal mode.
ALE	98	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
RD#	95	0	External Memory Read Strobe. RD# is activated for every external instruction or data read access.
WR#/ WRL#	96	0	External Memory Write Strobe. This pin has two modes of operation, selected through WRCFG in register SYSCON: In the WR# mode, this pin is activated for every external data write access. In the WRL# mode, this pin is activated for every low byte write access for 16-bit data busses, and for every byte write access for 8-bit busses. In this mode, this pin is used together with pin BHE#/WRH#, which indicates every external high byte write access.
READY#	97	I	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level.
EA#	99		External Access Enable pin. A low level at this pin during and after reset forces the C167 to begin instruction execution out of external memory. A high level forces execution out of the internal ROM. For ROMless versions, this pin must be tied to '0'.

The following table gives a pin description of the ST10167

C167 FAMILY PRELIMINARY USER MANUAL

Symbol	Pin	Input	Function		
	Number	(1)			
		Output			
		(0)			
PORTO:	400 407	I/O	PORT0 consists of the two 8-	pit bidirectional I/O ports P	0L and P0H.
P0L.0 - P0L.7	100 - 107		They are bit-wise programmal	ble for input or output via a	direction bit.
PUH.0 - PUH.7	108,		For a pin conligured as inp	at, the output driver is pt	ut into nign-
	111 - 117		Impedance state.	configuration POPTO co	ruce on the
			address and address/data bu	in the multiplexed bus m	odes and as
			the data bus in the non-multip	exed bus modes	
			Non-Multiplexed Bus Modes:		
			Data Width:	8-Bit	16-Bit
			P0L.0 - P0L.7	D0 - D7	D0 - D7
			P0H.0 - P0H.7	I/O	D8 - D15
			Multiplexed Bus Modes:		
			Data Width:	8-Bit	16-Bit
			P0L.0 - P0L.7	AD0 - AD7 AD0 - AD	7
			P0H.0 - P0H.7	A8 - A15 AD8 - AD	15
PORT1:	440 405	1/0	PORT1 consists of the two 8-	bit bidirectional I/O ports P	1L and P1H.
P1L.0 - P1L.7	118 - 125		They are bit-wise programmal	ble for input or output via a	direction bit.
	128 - 135		For a pin conligured as an ir	put, the output anver is p	ut into nign-
			PORT1 is also used as the	16 bit address bus (Ax)	in the non-
			multiplexed bus modes. In th	s mode, P11 and P1H ar	e treated as
			one word- wide port.		
			Four lines of P1H are also	used for alternate func	tions of the
			CAPCOM2 Unit:		
		1	P1H.7 CC27IO CAPC	OM2 Reg. CC27 Capture I	nput
			P1H.7 CC26IO CAPC	OM2 Reg. CC26 Capture I	nput
			P1H.7 CC25IO CAPC	OM2 Reg. CC25 Capture I	nput
			P1H.7 CC24IO CAPC	OM2 Reg. CC24 Capture I	nput
P2.0 - P2.15	47 - 54	I/O	Port 2 is a 16-bit bidirectional	O port. It is bit-wise progra	ammable for
	57 - 64		input or output via a direction	in bit, and the output driv	vers can be
			switched into push/pull or ope	n drain operation. For a pi	n configured
			The pipe of Port 2 are also u	at into high impedance stat	e. functions for
			the CAPCOM Units and for fa	st external interrunt inputs:	
			P2.0 CC0IO CAPC	OM Register CC0 Cap. In/	Comp. Out
		I/O			
			P2.7 CC7IO CAPC	OM Register CC7 Cap. In/0	Comp. Out
		I/O	P2.8 CC8IO CAPC	OM Register CC8 Cap. In/0	Comp. Out
		I/O	EX0IN Fast E	xternal Interrupt 0 Input	
			P2.15 CC15IO CAPCO	VI Reg. CC15 Cap. In/Com	. Out
				External Interrupt / Input	
				COWE TIME 17 Count Inp	ul

Symbol	Pin	Input	Function		
	Number	(I)			
		Output			
		(0)			
P3.0 - P3.13,	65 - 70,	I/O	Port 3 is a 16-bit bidirectional I/O port. It is bit-wise programmable for		
P3.15	73 - 80,		input or output via a direction bit, and the output drivers can be switched		
	81		into push/pull or open drain operation. For a pin configured as input, the		
			output driver is put into high-impedance state.		
			The pins of Port 3 are also used for various functions as timer inputs and		
			Dulpuis and bus control signals.		
			P3.1 T6OUT GPT2 Timer T6 Toggle Latch Output		
			P3.2 CAPIN GPT2 Parister CAPREL Capture Input		
			P3.3 T3OUT GPT1 Timer T3 Toggle Latch Output		
		Ö	P3.4 T3EUD GPT1 Timer T3 External Up/Down Control Input		
		Ĩ	P3.5 T4IN GPT1 Timer T4 Count/Capture/Reload Input		
		l i	P3.6 T3IN GPT1 Timer T3 Count Input		
		1	P3.7 T2IN GPT1 Timer T2 Count/Capture/Reload Input		
		1	P3.8 MRST SSC Master Receive/Slave Transmit In./Out.		
		I/O	P3.9 MTSR SSC Master Transmit/Slave Receive Out./In.		
		I/O	P3.10 TxD0 ASC0 Data Output/Clock Output (Async./Sync)		
		0	P3.11 RxD0 ASC0 Data Input (Async.)		
		I	Data Input/Output (Sync.)		
		I/O	P3.12 BHE# External Memory High Byte Enable Signal		
		0	WRH# External Memory High Byte Write Strobe		
		0	P3.13 SCLK SSC Master Clock Output/Slave Clock Input		
			P3.15 CLKOUT System Clock Output (= CPU Clock)		
	95 02	1/0	Part 4 is a 9, bit hidiractional I/O part. It is bitwice programmable for		
F4.0 - F4.7	05 - 92	1/0	ipput or output via a direction bit. For a pin configured as input, the		
			output driver is put into high-impedance state		
			In case of an external hus configuration, the lines of Port 4 can be		
			used for output of the segment address lines.		
		0	P4.0 A16 Least Significant Segment Address Line		
			1 4.0 Arto Ecast olgrinicant ocginent Address Eine		
		0	P4.7 A23 Most Significant Segment Address Line		
P5.0 - P5.15	27 - 36	- Ū	Port 5 is a 16-bit input-only port with Schmitt-Trigger characteristics.		
	39 - 44		The pins of Port 5 are also used as the analog inputs to the A/D		
	00 11		converter, and for timer inputs:		
			P5.0 AN0 Analog Input 0		
		I			
			P5.15 AN15 Analog Input 15		
			P5.10 T6EUD GPT2 Timer T6 External Up/Down Control Input		
			P5.11 T5EUD GPT2 Timer T5 External Up/Down Control Input		
			P5.12 T6IN GPT2 Timer T6 Count Input		
			P5.13 I5IN GP12 Timer 15 Count Input		
			P5.14 I4EUD GP11 Imer 14 External Up/Down Control Input		
	37		A/D converter analog reference veltage		
	30		A/D converter analog reference wollage		
	50	1	AVD CONVERTER ANALOG REFERENCE GROUND		

C167 FAMILY PRELIMINARY USER MANUAL

Symbol	Pin Number	Input (I)	Function
		Output (O)	
P6.0 - P6.7	1 - 8	0 0 0 0 0	Port 6 is an 8 bit bidirectional I/O port. It is bit-wise programmable for input or output via a direction bit, and the output drivers can be switched into push/pull or open drain operation. For a pin configured as input, the output driver is put into high-impedance state.The pins of Port 6 are also used for various alternate functons: P6.0CS0#Chip Select 0 OutputP6.4CS4#Chip Select 4 OutputP6.5HOLD#External Master Hold Request InputP6.6HLDA#Hold Acknowledge OutputP6.7BREQ#Bus Request Output
P7.0 - P7.7	19 - 26	I/O O I/O I/O	Port 7 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via a direction bit, and the output drivers can be switched into push/pull or open drain operation. For a pin configured as input, the output driver is put into high-impedance state. The pins of Port 7 are also used for alternate functions of the PWM and the CAPCOM2 Unit: P7.0 POUT0 PWM Channel 0 Output P7.3 POUT3 PWM Channel 3 Output P7.4 CC28IO CAPCOM2 Register CC28 Cap. In/Comp. Out P7.7CC31IO CAPCOM2 Register CC31 Cap. In/Comp. Out
P8.0 - P8.7	9 - 16	1/O 1/O 1/O	Port 8 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via a direction bit, and the output drivers can be switched into push/pull or open drain operation. For a pin configured as input, the output driver is put into high-impedance state. The pins of Port 8 are also used for alternate functions of the CAPCOM2 Unit: P8.0 CC16IO CAPCOM2 Register CC16 Cap. In/Comp. Out P8.7 CC23IO CAPCOM2 Register CC23 Cap. In/Comp. Out
VCC	17, 46, 56, 72, 82, 93, 109, 126, 136, 144		Digital +5 V Power Supply
VSS	18, 45, 55, 71, 83, 94, 110, 127, 139, 143		Digital Ground
I VPP	84		L reserved

SGS-THOMSON MICROELECTRONICS The ST10167 is housed in a 144-pin MQFP (Metric Plastic Quad Flat Pack) package according to the EIAJ standard. The body dimensions are 28 * 28 mm², the pitch is 0.65 mm.

Table 2.4-1: Special Function Registers in Normal SFR Space

Bitaddressable SFRs

Non-Bitaddressable SFRs

FE7E

FE7C

FE7A

FE78

FE76

FE74

FE72

FE70 38

ЗF

3E

3D

3C

3B

ЗA

39

CC31

CC30

CC29

CC28

CC27

CC26

CC25

CC24

FFR15FF7EBFFER14FF7CBEFDR13FF7ABDFCR12FF7ABDFAR10FF7ABDFAR10FF7ABDFAR10FF7ABDFAR10FF7ABDF7R7FF6EB7F6R6FF6AB5F5R5FF6AB2F2R2FF6AB2F1R1FF62B1F2R2FF6AB2F7DEFCFF6AB2F7DEFCFF6AB2F7DAEDCFF6AB2FFDAECDPFF5AA0FFDAEAPF6AFF6AA3FFDAEAPFFF5AA0FFDAEAPFFF5AA3FFDAEAPFFF5AA3FFCAE5DP4FF5AA3FFCAE5DP4FF4AA3FFCAE5DP4FF3AA3FFCAE5DP4FF3AA3FFCAE3DD3FF3AA3FFACA5DFFF3AA3FFACE3DD3FF3AA3FFAAD0A7FF3AA3FFBAD0A7FF3AA3FFBAD0A7FF3AA3FFAAD3G					
FER14FF7CBEFDR13FF7ABDFCR12FF7ABDFAR10FF7ABAF9R9FF7ABAF9R9FF7ABAF7R7FF6EB7F7R7FF6EB7F7R7FF6EB7F7R7FF6EB7F7R7FF6EB3F7R7FF6EB3F7R1R1FF6EF7R1R1FF6EF7R0FF6EB1F7R7FF6EB3F7DE2R2FF6EF7DE3R7FF5EF7DE4P7F7DE5A1F7DE5A1F7DE6P6F7DAE0P7F7DAE3P7F7DAE4P8F7DAE5DP4F7DAE5DP4F7CAE5DP4F7CAE5DP4F7CAE5DP4F7CAE5DP4F7CAE5DP4F7CAE5DP4F7AA2F7CAE5DP4F7AA3F7CAE5F7AD0F7AD7F7AD7F7AD7F7AD7F7AD7F7AD7F7A<		FF	R15	FF7E	BF
FDR13FF7ABDFCR12FF7BBCFBR110FF7BBBFAR100FF7CBBFAR10FF7CBBFBR8FF7CBBFFR8FF7CBBFFR7FF7CBBFFR8FF7CBBFFR7FF7CBBFFR8FF7CBBFFR7FF6CBCFFR7FF6CBCFFR7FF6CBCFFDFFR7FF6CFFDFFFF6CFF6CFFDECFF5CACFFDAEDFF5CACFFDAEDFF5CACFFDAEDFF5CACFFDAEDFF5CACFFCCEGPF6FF5CFFCAESDP4FFCAESDP4FFCAESDP4FFCAESDP4FFCAESDP4FFCAESPF6FFCAESPF6FFCAESPF6FFCAESPF6FF6BBPF6FF6FF4ACFFCAESPF6FF6ESDP4FF6FF4ACFF6SDP4FF6SDP4FF6SPF6FF6DFFF6 <t< td=""><td></td><td>FE</td><td>R14</td><td>FF7C</td><td>BE</td></t<>		FE	R14	FF7C	BE
FCR12FF78BCFBR11FF76BBFAR10FF76BBF9R9FF72B9F8R8FF70B8F7R7FF6EB7F6R6FF60B5F5R5FF64B2F7R1FF68B4F3R3FF66B3F50R5FF64B2F70ER2FF62F70EF7F762F70EF7F762F70EF7F70EF7F70EF7F70EF7F70EF7F70F5AF70F5AF70EF7F70EF7F70EF7F70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8AF70F8F7F74AF74 <td></td> <td>FD</td> <td>R13</td> <td>FF7A</td> <td>BD</td>		FD	R13	FF7A	BD
FBR11FF76BBFAR10FF74BAF9R9FF72B9F8R8FF70B8F7R7FF6EB7F6R6FF6CB6F5R5FF6AB5F4R4FF68B4F3R3FF66B3F2R2FF64B2F10F1R1FF62B1F70E6G0FF62B1F70E7R0FF62B1F70E7CFF66B3FF04E7R0FF56A0FF05E6D7FF66B3FF04E7D7FF56A1FF05E7D76FF52A9FF06E8D74FF52A9FF07E6P6FF4A7FF06E3D74FF4A3FF07E6P6FF4A3FF07E1D7FF4A3FF07E1D7FF4A3FF08D7FF4A3FF4A2FF4A3FF4A3FF4A3FF4D7D7FF4A3FF4D7D7FF4A3FF4D7D7FF4A3FF4D7D7FF4A3FF4D7D7FF4A4FF4D7D7FF4		FC	R12	FF78	BC
FAR10FF74BAF9R9FF72B9F8R8FF70B8F7R7FF60B7F6R6FF60B7F7R3FF60B3F7R3FF60B3F2R2FF60B1F0R0FF60B0F7DEFIFF60B1F7DEFIFF60B1F7DEFIFF60B1F7DEFIFF60B1F7DEFIFF60B1F7DEFIFF60B1F7DE9DP7FF50A8FF0E9DP7FF50A8FF0E9DP7FF50A8FF0E9DP7FF60A8FFCE7DP6FF4A7FFCE7DP6FF4A7FFCE3DP3FF4A3FFCE3DP3FF4A3FF2E1DP2FF4A1FF2E1DP2FF390FF8D6IFF390FF8D7WDTCONFF391FF4D3IFF392FF4D3IFF393FF4D3IFF393FF4D3IFF393FF4D3IFF393FF4<		FB	R11	FF76	BB
F9R9FF72B9F8R8FF70B8F7R7FF6EB7F6R6FF6CB6F5R5FF6AB5F4R4FF68B4F2R2FF64B2F1R1FF62B1F0R0FF62AFFFDEEFJFF64B2FFDAEDJFF64B2FFDAEDJFF64B2FFDAEDJFF64ACFFDAEDJFF64ADFFDAEDJFF64ADFFDAEDJFF64ADFFDAEDJFF64ADFFDAEDJFF64ADFFDAEDJFF64ADFFDAEDDP8FF56ABFFDAEDDP7FF50ABFFCAEDDP4FF64ADFFCAEDDP4FF44ADFFCAEDDP2FF44ADFFCAEDDP2FF44ADFF24DFDP2FF44ADFF36DEJFF3490FF36DBJFF3490FF36DBJFF3490FF34DAJFF2491FF44D2JFF2491FF45D1JFF24		FA	R10	FF74	BA
F8R8FF70B8F7R7FF6EB7F6R6FF6CB6F5R5FF6AB5F4R4FF68B4F3R3FF66B3F2R2FF64B2F0R0FF62B1F0R0FF62A1FDEEFFF64B2FFDAEDFF64B2FFD4EDFF64A2FFD5EEFF64A1FF06B3DP8FF56A8FFD4EAP8FF54A0FFD2E9DP7FF52A9FF04E3DP4FF46A3FFC4E5DP4FF44A2FFC6E3DP3FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FF26DEDEFF44A3FF27DEDEFF44A3FF38DCA0FF389CFF38DADEFF349AFF34D3SOCONFF3493FF34D3SOCONFF3293FFA4D5TFRFF2493FFA4D5TFRFF2493FFA4D5TFRFF2493FFA4D5TFRFF2493 <t< td=""><td></td><td>F9</td><td>R9</td><td>FF72</td><td>B9</td></t<>		F9	R9	FF72	B9
F7R7FF6EB7F6R6FF6AB6F5R5FF6AB5F3R3FF66B3F2R2FF64B2F1R1FF62B1F0R0FF62B1FDEEFFF64B2FFDAEDFF52AFFFDAEDFF64A0FFD4EBDP8FF54A0FFD5EBDP8FF54A0FF04E3P7FF52A9FF05E3DP7FF52A9FF04E4P8FF54A0FF05E5DP4FF44A5FFC4E5DP4FF44A5FFC5E3DP3FF46A3FFC6E3DP3FF44A5FF26E1DP2FF44A5FF26D6P2FF44A1FF26D7P2FF329FF86D8CFF349FF38DCADFF329FF84D4FF349FF34D5FF34FF2493FF34D4FF2441FF34D3FF2493FF34D4FF2493FF34D3FF2493FF34D4FF2493FF34D3FF2493FF34D3FF2493 <t< td=""><td></td><td>F8</td><td>R8</td><td>FF70</td><td>B8</td></t<>		F8	R8	FF70	B8
F6R6FF6CB6F3R5FF6AB5F4R4FF68B4F3R3FF66B3F2R2FF64B2F1R1FF62B1F0R0FF62B1FDCEFFF64B2FFD4EDFF58ACFFD5EEFF56ABFFD6EBDP8FF56ABFFD4E0DP7FF52A9FFD2E9DP7FF52A9FFC6E3DP6FF44A3FFC7E6P6FF44A3FFC8E4P4FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FF26DEP2FF44A3FF26DEDP2FF44A3FF26DEP2FF3490FF86DBDCFF3490FF88DCDCFF3491FF38DCSCCONFF3392FF34D4CFF3493FF44D3SCCONFF3393FF44D3SCCONFF3393FF44D4FF3494FF34FF36D3SCCONFF3393FF44D3FF3494FF34FF44D3		F7	R7	FF6E	B7
F5R5FF6AB5F4R4FF6BB4F3R3FF6BB3F2R2FF64B2F0R0FF62B1F0R0FF62B1FDEEFFF62FF62AFFDEEFFF64B3FFDAEDFF63AFFDAEDFF64AFFD4E0FF64AFF05E8DP8FF56AFF06E8DP7FF52AFF02E9DP7FF52AFF04E3DP6FF44AFF05E8DP4FF44AFF06E3DP3FF44AFF06E3DP3FF44AFF06E3DP3FF44AFF07E1DP2FF44AFF08DFIFF34AFF09DFIFF34AFF84DAIFF349FF84DAIFF349FF84DAIFF349FF34D3SOCONFF339FF34D4IFF249FF34D3IFF249FF34D3IFF249FF34D3IFF249FF34D3IFF249FF34D3IFF249 <td< td=""><td></td><td>F6</td><td>R6</td><td>FF6C</td><td>B6</td></td<>		F6	R6	FF6C	B6
F4R4FF68B4F3R3FF68B3F2R2FF64B2F1R1FF62B1F0R0FF62B1FDEEFJFF62AFFFDCEEJFF62AFFDAEDJFF53ACFFD4EDJFF54ADFFD5EEJFF54ADFFD6EBDP8FF54ADFFD2E9DP7FF52A9FF04E3P7FF50A8FFC5E4P4FF44A5FFC6E3DP4FF44A5FFC6E3DP3FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FFC6E3DP3FF44A3FF27E1DP2FF44A3FF28DFJFF44A3FF26E3DP3FF44A3FF27E1DP2FF44A3FF28DFJFF3390FF88DAJFF3494FF34DAJFF3494FF34DAJFF3493FF44D3JFF3494FF34D3SOCONFF3291FF34D4JFF3493FF44D3JFF3494 </td <td></td> <td>F5</td> <td>R5</td> <td>FF6A</td> <td>B5</td>		F5	R5	FF6A	B5
F3R3FF66B3F2R2FF64B2F1R1FF62B1F0R0FF62B1FFDEEFFF0FF60B0FFDAEDFF56AEFFDAEDFF58ACFFD6EBDP8FF56ABFFD4EAP8FF54AAFFD2E9DP7FF52A9FF04E3DP7FF52A9FF05E6P6FF44A5FFC6E3DP4FF46A3FFC6E3DP3FF44A5FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC2E1DP2FF40A0FF26D6D2FF40A0FF86D6D2FF3390FF88D0A0FF3491FF84D7WDTCONFF3299FFA4D5TFR4A1FF44D5FF3492FFA4D5FF2493FFA4D5FF2495FFA4D5FF2495FFA4D5FF2495FF44D5FF2495FF44D5FF2495FF44D5FF2495FF44D5FF2495FF44D5FF2495FF44D5FF24 <td< td=""><td></td><td>F4</td><td>R4</td><td>FF68</td><td>B4</td></td<>		F4	R4	FF68	B4
F2R2FF64B2F1R1FF62B1F0R0FF62B1FFDEEFIFF60B0FFDCEEIFF60AFFFDAEDIFF52AEFFD4EDIFF53ACFFD6EBDP8FF54ADFFD2E9DP7FF52A9FF02E9DP7FF52A9FF02E9DP7FF52A9FF02E3DP6FF44A5FFC6E3DP4FF44A5FFC6E3DP3FF44A3FFC6E3DP3FF44A3FF04E2P3FF44A3FF24DFDP2FF42A1FF25DFIDP2FF3490FF86DFIFF3490FF88DCIFF3491FF84DAIFF3491FF34D3SOCONFF3392FF84D4IFF3493FF44D5IFF2493FF44D5IFF2493FF44D5IFF2493FF44D5IFF2493FF44D5IFF2493FF44D5IFF2493FF44D5IFF2493FF44D5<		F3	R3	FF66	B3
F1R1FF62B1F0R0FF60B0FFDEEFFF60FF60ADFFDCEEJFF52AEFFDAEDDP8FF56ABFFD4EAP8FF52ADFFD2E9DP7FF52ADFF02E9DP7FF50A8FFC2E7DP6FF42A0FFC4E5DP4FF42A1FFC5E3DP4FF48A4FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC7E1DP2FF44A2FF26D6P2FF44A2FF27D7DP2FF3490FF88D0ADFF3492FF84DAFF3492FF84DAFF3493FF34D3SOCONFF3293FF34D3SOCONFF3293FF34D4ADFF2291FF34D3ADFF2492FFA4D3ADCFF2492FFA4D3ADCFF2492FFA4D3ADCFF2492FFA4D3ADCFF2492FFA4D		F2	R2	FF64	B2
F0R0FF60B0FFDEEFIFF5EAFFFDCEEIFF5CAEFFDAEDDPAFF5AADFFD4EAP8FF54AAFFD2E9DP7FF52A9FFC0E3P7FF50A8FFC2E7DP6FF4CA6FFC3E4P4FF4AA5FFC4E3DP3FF4AA5FFC6E3DP3FF4AA5FFC6E3DP3FF4AA2FFC6E3DP3FF4AA5FFC6E3DP3FF4AA5FFC6E3DP3FF4AA5FFC7E1DP2FF4AA2FFC8DFDFFF4AA5FF84DDIFF3A90FF88DCIFF3A90FF84DAIFF3A90FF84DAIFF3A90FF34D3SOCONFF3493FF34D3IFF3291FFA4D5IFF2291FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA5D1P5FF2492FFA		F1	R1	FF62	B1
FFDEEFIFFDAEDFF5AADFFDAEDFF5AADFFDAEDFF5AADFFDAEAP8FF5AADFFD4EAP8FF5AADFFD2E9DP7FF52A9FFC2E9DP7FF50A8FFC4E3P7FF50A8FFC5E7DP6FF4CA7FFC4E5DP4FF4AA5FFC3E4P4FF4AA3FFC4E2P3FF4AA2FFC6E3DP3FF4AA2FFC6E3DP3FF4AA3FFC6E3DP3FF4AA3FFC6E3DP3FF4AA3FFC7E1DP2FF4AA3FF26D6P2FF4AA3FF86D7P2FF3A90FF88D0A0FF3390FF84DAP5FF3494FF34D3S0CONFF3494FF34D3S0CONFF3293FFA4D5TFRFF3293FFA4D5TFRFF2493FFA4D5TFRFF2493FFA4D3CFF2493FFA4D3CFF2493FFA4D3FF2494FF34D4FF3494 <td></td> <td>F0</td> <td>R0</td> <td>FF60</td> <td>B0</td>		F0	R0	FF60	B0
FFDCEEIFFDAFFDAFFDAEDIFFBAADFFD6EBDP8FF58ACFFD4EAP8FF54AAFFD2E9DP7FF52A9FFC2E9DP7FF50A8FFC2E7DP6FF42A1FFC4E5DP4FF44A5FFC3E4P4FF44A5FFC4E3DP3FF46A3FFC6E3DP3FF44A2FFC6E3DP2FF42A1FFC6E0P2FF40A0FF8DFDF2FF329FFF8DFFF349DFF34FF8DFFF349DFF84DAFF349DFF84DAFF349DFF84D3S0CONFF32FF34D3S0CONFF32FF34D3S0CONFF32FFA4D5TFRFFA4D5FF34FF44D5FF34FF44D5FF22FF44D3FF44D3FF44D3FF44D5FF44D5FF44D5FF44D5FF45D4FF46D3FF46D3FF47D5FF48D4FF44D5FF45D1FF46D3 <td>FFDE</td> <td>EF</td> <td></td> <td>FF5E</td> <td>AF</td>	FFDE	EF		FF5E	AF
FFDAEDFFDAADFFD3ECFF5AADFFD4EAP8FF56ABFFD2E9DP7FF52A9FFD0E8P7FF50A8FFC2E7DP6FF42A7FFC4E5DP4FF42A1FFC3E4P4FF44A5FFC4E3DP3FF46A3FFC4E2P3FF44A2FFC6E3DP3FF42A1FFC6E3DP3FF42A1FFC6E3DP3FF42A1FFC6E3DP3FF44A2FFC6E3DP3FF44A2FFC7E1DP2FF42A1FF26D6P2FF3290FF86D7A7FF3292FF84D0A0FF3392FF84DAFF3493FF84D3S0CONFF3299FFA4D5A7FF2291FFA4D5A7FF2291FFA4D5A7FF2492FFA4D3A2FF2492FFA4D3A2FF2492FFA4D3A2FF2493FFA4D5A7FF2291FFA4D3A2FF2492FFA4D3A2FF2492FFA4<	FFDC	EE		FF5C	AE
FFD8ECFF58ACFFD6EBDP8FF56ABFFD4EAP8FF54AAFFD2E9DP7FF50A8FFC2E7DP6FF42A7FFC2E6P6FF44A5FFC3E4P4FF44A5FFC4E2P3FF46A3FFC4E2P3FF42A1FFC2E1DP2FF42A1FF26E3DP3FF42A1FF27E1DP2FF42A1FF28DFP2FF42A1FF86DEP2FF329FFF86DBP2FF349DFF88DCP2FF389CFF88DCP4FF3292FF84DAP5FF3292FF84DAP5FF3293FFA4D5TFRFF3293FFA4D5TFRFF2291FFA4D5TFRFF2291FFA4D5TFRFF2492FFA4D2P5FF2492FFA4D3ADCONFF2291FFA4D2P5FF2492FFA4D2ADCONFF2291FFA4D2ADCONFF2291FFA4D2ADCONFF1E8FFF94CDADCICFF1E	FFDA	ED		FF5A	AD
FFD6EBDP8FF56ABFFD4EAP8FF54AAFFD2E9DP7FF52A9FFC0E8P7FF50A8FFC2E7DP6FF42A1FFC4E5DP4FF44A5FFC8E4P4FF44A2FFC4E2P3FF44A2FFC2E1DP2FF40A0FF86DFP2FF40A0FF88DFFF329FFF84DDFF339CFF86DBFF349DFF84DAFF349DFF84D7WDTCONFF3299FFA4D5TFR9FFFA4D5FF2497FFA6D3COFF2492FFA4D5FF2497FFA4D2FF2492FFA4D3FF2492FFA4D5FF2492FF44D2FF2492FF44D2FF2492FF44D2FF2492FF45D1P5FF2291FF24D1P5FF2492FF34D2ADCONFF2291FF34D2ADCONFF2291FF44CET1ICFF1E8FFF94CDADCICFF1E8FFF94CDADCICFF1A <td>FFD8</td> <td>EC</td> <td></td> <td>FF58</td> <td>AC</td>	FFD8	EC		FF58	AC
FFD4EAP8FF54AAFFD2E9DP7FF52A9FFD0E8P7FF50A8FFC2E7DP6FF4CA6FFC4E5DP4FF4AA5FFC8E4P4FF4AA5FFC6E3DP3FF44A2FFC4E2P3FF44A2FFC2E1DP2FF42A1FFC0E0P2FF329FFFB4DFFF349DFF32FFB5DFFF349DFF34FFB6DBFF349DFFB7D9SSCCONFF33FFA4D7WDTCONFF32FFA4D5FF349RFFA4D5FF2497FFA6D3ADCFF22FFA4D2FF2492FFA4D2FF2492FFA4D2FF2492FFA4D2FF2492FFA4D2FF2492FF44D2FF2492FF44D2FF2492FF45D1P5FF2291FF24D1P5FF2492FF34D2ADCINFF2291FF34CET1ICFF1E8FFF94CDADEICFF1A8DFF98CCADCICFF188C	FFD6	EB	DP8	FF56	AB
FFD2E9DP7FF52A9FFD0E8P7FF50A8FFCEE7DP6FF4EA7FFCCE6P6FF4EA6FFCAE5DP4FF4AA5FFC6E3DP3FF4AA3FFC4E2P3FF44A2FFC2E1DP2FF42A1FFC0E0P2FF329FFFBCDFDP2FF329FFFB6DFFF349DFF38DCP2FF389CFFB8DCFF389CFF84DAFF339CFF84DAFF339DFF84D7WDTCONFF3299FFA4D5SCCONFF3290FFA4D5ACCFF2291FFA4D5FF4FF2292FFA4D5FF495FF44D2FF293FFA4D3FF293FF44D3FF293FF44D3FF293FF44D3FF293FF45D4FF293FF46D3FF293FF47D1P5FF42D1P5FF42D1P5FF40C0ADCINFF1284FF9CET1ICFF1480FF98CCADCIC	FFD4	EA	P8	FF54	AA
FFD0E8P7FF50A8FFCEE7DP6FF4EA7FFCCE6P6FF4CA6FFCAE5DP4FF4AA5FFC8E4P4FF4AA3FFC6E3DP3FF4AA2FFC2E1DP2FF42A1FFC0E0P2FF40A0FF8EDFP7FF329FFF8ADDP7FF389CFF8ADDFF339DFF8BDCFF339DFF86D8FF339DFF86D8FF339DFF86D8FF339DFF86D8FF339DFF86D3SOCONFF339BFF4AD5FF349AFF3AD4FF2495FFA4D5FF494FF24D1P5FF2492FFA4D2P5FF2492FFA4D2ADCONFF2291FF30CET0ICFF1E8FFF94CDADEICFF1A8DFF94CDADEICFF1A8DFF98CCADCICFF188C	FFD2	E9	DP7	FF52	A9
FFCEE7DP6FF4EA7FFCCE6P6FF4CA6FFCAE5DP4FF4AA5FFC6E3DP3FF4AA3FFC4E2P3FF44A2FFC2E1DP2FF42A1FFC0E0P2FF42A1FF20E0P2FF329FFFB2DFFF349DFF32FFB4DDIFF339CFFB5DBIFF349AFF84DAFF349AFF84DAFF3299FF84D3SOCONFF3299FFA4D5IFF3297FFA4D5IFF2297FFA4D5IFF2297FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FFA4D3IFF2492FF44D3IFF2492FF45D1P5FF2492FF46CFT1ICFF168FFF94CDADEICFF148DFF98CCADCICFF148DFF98CCADCICFF188C <td>FFD0</td> <td>E8</td> <td>P7</td> <td>FF50</td> <td>A8</td>	FFD0	E8	P7	FF50	A8
FFCCE6P6FF4CA6FFCAE5DP4FF4AA5FFC8E4P4FF4AA3FFC6E3DP3FF46A3FFC4E2P3FF44A2FFC2E1DP2FF42A1FFC0E0P2FF40A0FFBCDFFF39FFFBCDEFF39EFFBADDFF39DFFB4DAFF349DFFB4DAFF349AFF84D3S0CONFF3299FFA2D9SSCCONFF3299FFA4D5FF497FFA4D5FF497FFA4D5FF297FFA4D3FF297FFA4D4FF297FF44D5FF494FF2493FF2492FFA4D4FF2492FF44D5FF2492FF44D2FF2492FF44D2FF2492FF44D1P5FF24D1P5FF32D1P5FF34CDADEICFF34CDADEICFF34CDADEICFF34CDADEICFF38CCADCICFF38CCADCIC	FFCE	E7	DP6	FF4E	A7
FFCAE5DP4FF4AA5FFC8E4P4FF48A4FFC6E3DP3FF46A3FFC4E2P3FF44A2FFC2E1DP2FF44A0FF20E0P2FF40A0FF80DFP2FF329FFF84DDP2FF349DFF84DDP7FF389CFF84DDP7FF389DFF84DDP7FF389DFF84DAFF349AFF82D9SSCCONFF3299FF84DAFF3299FF84D3S0CONFF3290FFA4D5FF4FF2291FFA4D5FF8FF2492FFA4D3P5FF2492FFA4D3P5FF2492FFA4D3P5FF2492FFA4D2P5FF2492FFA4D0ADCONFF2291FF94CDADEICFF1485FF94CDADEICFF1480FF98CCADCICFF1880	FFCC	E6	P6	FF4C	A6
FFC8 E4 P4 FF48 A4 FFC6 E3 DP3 FF46 A3 FFC4 E2 P3 FF42 A1 FFC2 E1 DP2 FF42 A1 FFC0 E0 P2 FF42 A1 FFBC DF P7 FF42 A1 FFBC DE P7 FF32 9F FFBA DD P7 FF33 9D FFB4 DA P73 FF38 9D FFB4 DA P73 9D FF84 DA P74 9A FF44 D5 P74 97 FF45 D3 P74 97 FF45 D3 P74 92	FFCA	E5	DP4	FF4A	A5
FFC6 E3 DP3 FF46 A3 FFC4 E2 P3 FF44 A2 FFC2 E1 DP2 FF40 A0 FFBC DE P2 FF40 A0 FFBC DE P2 FF40 A0 FFBC DE P2 FF3C 9E FFBA DD FF3C 9E FFBA DD FF38 9D FFB6 DB PF38 9C FF84 DA FF33 9D FF84 DA FF33 9D FF84 DA FF33 9D FF84 DA FF33 9B FF84 DA FF33 9B FF44 D2 SCCON FF32 99 FF45 D7 WDTCON FF22 91 FF4A D5 IFF3 95 FF24 92 FF4A D2 IFF3 <	FFC8	E4	P4	FF48	A4
FFC4 E2 P3 FF44 A2 FFC2 E1 DP2 FF42 A1 FFC0 E0 P2 FF40 A0 FFBE DF P2 FF3C 9F FFBC DE P7 FF3C 9E FFBA DD P7 FF3C 9E FFB4 DD P7 FF3A 9D FFB6 DB P7 FF3A 9D FFB4 DA FF3A 9D FFB4 DA FF33 9C FF84 DA FF33 9D FF84 DA FF33 9D FF84 DA FF33 9B FF84 DA FF33 9B FF44 D3 SOCON FF32 99 FF45 D7 WDTCON FF22 97 FF44 D5 FF4 FF24 95 FF43 D4 F	FFC6	E3	DP3	FF46	A3
FFC2 E1 DP2 FF42 A1 FFC0 E0 P2 FF40 A0 FFBE DF FF3C 9F FFBC DE FF32 9F FFBA DD FF33 9D FFB4 DD FF38 9C FFB6 DB FF38 9C FFB4 DA FF38 9D FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFA6 D7 WDTCON FF22 97 FFAA D5 ITFR FF22 96 FFAA D5 ITFR FF24 95 FFAA D5 ITFR FF24 95 FFA4 D2 ITFR FF24 92 FFA4 D2 ITFR FF22 91 FFA4 D2 ITFR FF22 91 FFA4 D2 <td>FFC4</td> <td>E2</td> <td>P3</td> <td>FF44</td> <td>A2</td>	FFC4	E2	P3	FF44	A2
FFC0 E0 P2 FF40 A0 FFBE DF FF3E 9F FFBC DE FF3C 9E FFBA DD FF3A 9D FFBA DD FF3A 9D FFB4 DA FF3A 9D FFB4 DA FF3A 9D FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFAE D7 WDTCON FF2E 97 FFAA D5 FF2C 96 FFAA D5 FF2C 97 FFAA D5 FF2C 97 FFAA D5 FF2C 96 FFAA D5 FF2C 95 FFAA D2 FF2A 95 FFAA D2 FF2A <td>FFC2</td> <td>E1</td> <td>DP2</td> <td>FF42</td> <td>A1</td>	FFC2	E1	DP2	FF42	A1
FFBE DF FF3E 9F FFBC DE FF3C 9E FFBA DD FF3A 9D FFBA DD FF3A 9D FFBA DC FF3A 9D FFBA DD FF3A 9D FFBA DA FF3A 9B FFB4 DA FF3A 9B FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFAC D7 WDTCON FF22 97 FFAA D5 SCCON FF2A 95 FFAA D5 SCCON FF2A 92 FFAA D5 SCCON FF2A 93 FFAA D5 SCCON FF2A 94 FFAA D5 SCCON FF2A 92 FFAA D2 FF3 94 FF2A 92 FFAA D2 FF3	FFC0	E0	P2	FF40	A0
FFBC DE FF3C 9E FFBA DD FF3A 9D FFB8 DC FF3A 9D FFB6 DB FF3A 9D FFB4 DA FF3A 9D FFB4 DA FF3A 9B FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFA2 D7 WDTCON FF22 97 FFA4 D5 FF22 96 FFA4 D5 FF24 95 FFA4 D2 FF24 92 FFA4 D2 FF24 92 FFA4 D2 FF22 91 FFA4 D2 FF22 91 FFA4 D2 FF22 91 FFA4 D2 ADCON FF22<	FFBE	DF		FF3E	9F
FFBA DD FF3A 9D FFB8 DC FF3A 9D FFB6 DB FF3B 9C FFB4 DA FF3C 9B FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFAC D6 TFR FF32 99 FFAC D6 TFR FF32 99 FFAA D5 FF32 97 FFAA D5 FF24 92 FFAA D5 FF24 95 FFA4 D2 FF24 92 FFA4 D2 FF24 92 FFA4 D2 FF24 92 FFA4 D2 FF24 92 FFA2 D1 P5 FF22 91 FF30 D0 ADCON FF20 90 FF94 CF T1IC FF1C	FFBC	DE		FF3C	9E
FFB8 DC FF38 9C FFB6 DB FF36 9B FFB4 DA FF36 9B FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF32 99 FFB2 D9 SSCCON FF32 99 FFB4 D7 WDTCON FF22 97 FFA4 D6 TFR FF2C 96 FFA4 D5 I FF2 97 FFA6 D3 I FF2 91 FFA4 D2 I FF24 92 FFA2 D1 P5 FF22 91 FF30 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF1A 8D	FFBA	DD		FF3A	9D
FFB6 DB FF36 9B FFB4 DA FF34 9A FFB2 D9 SSCCON FF32 99 FFB0 D8 SOCON FF32 99 FFB0 D8 SOCON FF32 99 FFB0 D8 SOCON FF32 99 FFA0 D7 WDTCON FF32 97 FFAA D5 FF4 97 FF2C 96 FF44 D2 FF4 97 FF2C 93 FFA4 D2 FF4 92 FF2C 93 FF40 D0 ADCON FF20 90 FF9E CF T1IC	FFB8	DC		FF38	9C
FFB4 DA FF34 9A FFB2 D9 SSCCON FF32 99 FFB0 D8 SOCON FF32 99 FFA0 D7 WDTCON FF32 97 FFAE D7 WDTCON FF2E 97 FFAA D5 TFR FF2C 96 FFAA D5 FF32 91 FF2C 96 FFAA D5 TFR FF2A 95 FF2A 95 FFAA D5 FF3 PF32 94 FF2A 95 FFAA D5 FF3 PF3 94 FF2A 95 FFA4 D2 FF3 PF4 92 FF2A 91 FFA2 D1 P5 FF22 91 FF20 90 FF94 CF T1IC FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC F	FFB6	DB		FF36	9B
FFB2 D9 SSCCON FF32 99 FFB0 D8 S0CON FF30 98 FFAE D7 WDTCON FF2E 97 FFAC D6 TFR FF2C 96 FFAA D5 FF2C 96 FFAA D4 FF2C 96 FFAA D2 FF2A 95 FFA4 D2 FF2C 91 FFA2 D1 P5 FF22 91 FF4A D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF	FFB4	DA		FF34	9A
FFB0 D8 SOCON FF30 98 FFAE D7 WDTCON FF2E 97 FFAC D6 TFR FF2C 96 FFAA D5 FF2A 95 FFAA D5 FF2A 95 FFAA D3 FF2A 93 FFA4 D2 FF2A 92 FFA2 D1 P5 FF22 91 FF9A D0 ADCON FF20 90 FF9E CF T11C FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF1A 8C	FFB2	D9	SSCCON	FF32	99
FFAE D7 WDTCON FF2E 97 FFAC D6 TFR FF2C 96 FFAA D5 FF2A 95 FFAA D4 FF2A 95 FFA6 D3 FF2A 91 FFA4 D2 FF2A 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T11C FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFB0	D8	SOCON	FF30	98
FFAC D6 TFR FF2C 96 FFAA D5 FF2A 95 FFA8 D4 FF2A 95 FFA6 D3 FF2A 93 FFA4 D2 FF2A 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9A CD ADEIC FF1C 8E FF98 CC ADCIC FF18 8C	FFAE	D7	WDTCON	FF2E	97
FFAA D5 FF2A 95 FFA8 D4 FF28 94 FFA6 D3 FF26 93 FFA4 D2 FF24 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFAC	D6	TFR	FF2C	96
FFA8 D4 FF28 94 FFA6 D3 FF26 93 FFA4 D2 FF24 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFAA	D5		FF2A	95
FFA6 D3 FF26 93 FFA4 D2 FF24 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9C CE T0IC FF1C 8E FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFA8	D4		FF28	94
FFA4 D2 FF24 92 FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9C CE T0IC FF1C 8E FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFA6	D3		FF26	93
FFA2 D1 P5 FF22 91 FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9C CE T0IC FF1C 8E FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFA4	D2		FF24	92
FFA0 D0 ADCON FF20 90 FF9E CF T1IC FF1E 8F FF9C CE T0IC FF1C 8E FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFA2	D1	P5	FF22	91
FF9E CF T1IC FF1E 8F FF9C CE T0IC FF1C 8E FF9A CD ADEIC FF1A 8D FF98 CC ADCIC FF18 8C	FFA0	D0	ADCON	FF20	90
FF9CCETOICFF1C8EFF9ACDADEICFF1A8DFF98CCADCICFF188C	FF9E	CF	T1IC	FF1E	8F
FF9ACDADEICFF1A8DFF98CCADCICFF188C	FF9C	CE	TOIC	FF1C	8E
FF98 CC ADCIC FF18 8C	FF9A	CD	ADEIC	FF1A	8D
	FF98	CC	ADCIC	FF18	8C

CC3IC	1	FEFE	7F	
CC2IC		FEFC	7E	
CC1IC		FEFA	7D	
CC0IC		FEF8	7C	
SSCEIC		FEF6	7B	
SSCRIC		FEF4	7A	
SSCTIC		FEF2	79	
SOEIC		FEF0	78	
SORIC		FEEE	77	
SOTIC		FFFC	76	
CRIC		FFFA	75	
TAIC		FFF8	74	
T5IC		FEE6	73	
TAIC		FEEA	72	
T4IC			72	
T3IC		T LLZ	70	
1210		FEDE	65	
		FEDE	65	
00140			60	
	•			
			1 6B	
		FED4	6A	
		FED2	69	
T01CON		FED0	68	
		FECE	67	PECC7
		FECC	66	PECC6
		FECA	65	PECC5
T6CON		FEC8	64	PECC4
T5CON		FEC6	63	PECC3
T4CON		FEC4	62	PECC2
T3CON		FEC2	61	PECC1
T2CON		FEC0	60	PECC0
		FEBE	5F	
		FEBC	5E	
		FEBA	5D	
		FEB8	5C	
		FEB6	5B	
		FEB4	5A	SOBG
PWMCON1		FEB2	59	SORBUF
PWMCON0		FEB0	58	S0TBUF
]	FEAE	57	WDT
		FEAC	56	
]	FEAA	55	
CCM7	1	FEA8	54	
CCM6	1	FEA6	53	
CCM5	1	FEA4	52	
CCM4	1	FEA2	51	
T78CON	1	FEA0	50	ADDAT
ONES	1	FE9E	4F	CC15
ZEROS		FE9C	4F	CC14
BUSCON4	1	FE9A	4D	CC13
BUSCON3	1	FE98	40.	CC12
	1			

FE6E	37	CC23
FE6C	36	CC22
FE6A	35	CC21
FE68	34	CC20
FE66	33	CC19
FE64	32	CC18
FE62	31	CC17
FE60	30	CC16
FE5E	2F	
FE5C	2E	
FE5A	2D	
FE58	2C	
FE56	2B	T1REL
FE54	2A	T0REL
FE52	29	T1
FE50	28	Т0
FE4E	27	
FE4C	26	
FE4A	25	CAPREL
FE48	24	Т6
FE46	23	T5
FE44	22	T4
FE42	21	Т3
FE40	20	T2
FE3E	1F	
FE3C	1E	
FE3A	1D	
FE38	1C	
FE36	1B	PW3
FE34	1A	PW2
FE32	19	PW1
FE30	18	PW0
FE2E	17	
FE2C	16	
FE2A	15	
FE28	14	
FE26	13	
FE24	12	
FE22	11	
FE20	10	
FE1E	0F	ADDRSEL4
FE1C	0E	ADDRSEL3
FE1A	0D	ADDRSEL2
FE18	0C	ADDRSEL1

174/180

C167 FAMILY PRELIMINARY USER MANUAL

FF96	СВ	CC15IC
FF94	CA	CC14IC
FF92	C9	CC13IC
FF90	C8	CC12IC
FF8E	C7	CC11IC
FF8C	C6	CC10IC
FF8A	C5	CC9IC
FF88	C4	CC8IC
FF86	C3	CC7IC
FF84	C2	CC6IC
FF82	C1	CC5IC
FF80	C0	CC4IC

FF16	8B	BUSCON2
FF14	8A	BUSCON1
FF12	89	SYSCON
FF10	88	PSW
FF0E	87	MDC
FF0C	86	BUSCON0
FF0A	85	
FF08	84	
FF06	83	P1H
FF04	82	P1L
FF02	81	P0H
FF00	80	P0L

FE96	4B	CC11
FE94	4A	CC10
FE92	49	CC9
FE90	48	CC8
FE8E	47	CC7
FE8C	46	CC6
FE8A	45	CC5
FE88	44	CC4
FE86	43	CC3
FE84	42	CC2
FE82	41	CC1
FE80	40	CC0

FE16	0B	STKUN
FE14	0A	STKOV
FE12	09	SP
FE10	08	CP
FE0E	07	MDL
FE0C	06	MDH
FE0A	05	(EMUCON)
FE08	04	CSP
FE06	03	DPP3
FE04	02	DPP2
FE02	01	DPP1
FE00	00	DPP0

Table 2.4-2: Special Function Registers in Extended ESFR Space

Bitaddressable ESFRs

Non-Bitaddressable ESFRs

	FF	R15
	FE	R14
	FD	R13
	FC	R12
	FB	R11
	FA	R10
	F9	R9
	F8	R8
	F7	R7
	F6	R6
	F5	R5
	F4	R4
	F3	R3
	F2	R2
	F1	R1
	F0	R0
F1DE	EF	
F1DC	EE	
F1DA	ED	
F1D8	EC	
F1D6	EB	ODP8
F1D4	EA	
F1D2	E9	ODP7
F1D0	E8	
F1CE	E7	ODP6
F1CC	E6	
F1CA	E5	
F1C8	F4	
F1C6	E3	ODP3
F1C4	E2	
F1C2	E1	ODP2
F1C0	E0	EXICON
F1BE	DF	
F1BC	DE	
F1BA	DD	
F1B8	DC	
F1B6	DB	
F1B4	DA	
F1B2	D9	
F1B0	D8	
F1AF	 D7	
F1AC	D6	
F1AA	D5	
F1A8	D4	
F1A6	27	
F1A4	20	
F1A2		
E1A0		
FIAU E10E		YDOLO
FISE		
F190		(reserved)
F19A	CD	(reserved)

F17E	BF	PWMIC
F17C	BE	T8IC
F17A	BD	T7IC
F178	BC	CC28IC
F176	BB	CC27IC
F174	BA	CC26IC
F172	B9	CC25IC
F170	B8	CC24IC
F16E	B7	CC23IC
F16C	B6	CC22IC
F16A	B5	CC21IC
F168	B4	CC20IC
F166	B3	CC19IC
F164	B2	CC18IC
F162	B1	CC17IC
F160	B0	CC16IC
F15F	AF	001010
F15C	AF	
F15A		
F158	AC	
F156	AR	
F154		
F152	Δα	
F150	Δ <u>8</u>	
F1/F	Δ7	
	46	
E140	A5	
E1/18	A3 A4	
E1/6	A3	
E144	A3	
F144	AZ	
F142		
F140		
F13E	95	
E12A	95	
E120	90	
F 130	9C	
F130	AR AR	
F134	9A	
F132	99	
F130	98	
F12E	9/	
F12C	96	
F12A	95	
F128	94	
F126	93	
F124	92	
F122	91	
F120	90	
F11E	8F	(reserved)
F11C	8E	(reserved)
F11A	BD	(reserved)

F0F0	7F	
F0FC	7E	
F0FA	7D	
F0F8	7C	
F0F6	7B	
F0F4	7A	
F0F2	79	
F0F0	78	
F0EE	77	
FOEC	76	
F0EA	75	
F0E8	74	
F0E6	73	
F0E4	72	
F0E2	71	
F0E0	70	
F0DE	6F	
F0DC	6E	
F0DA	6D	
F0D8	6C	
F0D6	6B	
F0D4	6A	
F0D2	69	
F0D0	68	
F0CE	67	
F0CC	66	
F0CA	65	
F0C8	64	
F0C6	63	
F0C4	62	
F0C2	61	
F0C0	60	
F0BE	5F	
F0BC	5E	
F0BA	5D	
F0B8	5C	
F0B6	5B	
F0B4	5A	SSCBR
F0B2	59	SSCRB
F0B0	58	SSCTB
F0AE	57	
F0AC	56	
F0AA	55	
F0A8	54	
F0A6	53	
F0A4	52	
F0A2	51	
F0A0	50	ADDAT2
F09E	4F	
F09C	4E	
F09A	4D	

F07E	3F	
F07C	3E	
F07A	3D	
F078	3C	
F076	3B	
F074	3A	
F072	39	
F070	38	
F06E	37	
F06C	36	
F06A	35	
F068	34	
F066	33	
F064	32	
F062	31	
F060	30	
F05E	2F	
F05C	2E	
F05A	2D	
F058	2C	
F056	2B	T8REL
F054	2A	T7REL
F052	29	Т8
F050	28	T7
F04E	27	
F04C	26	
F04A	25	
F048	24	
F046	23	
F044	22	
F042	21	
F040	20	
F03E	1F	PP3
F03C	1E	PP2
F03A	1D	PP1
F038	1C	PP0
F036	1B	PT3
F034	1A	PT2
F032	19	PT1
F030	18	PT0
F02E	17	
F02C	16	
F02A	15	
F028	14	
F026	13	
F024	12	
F022	11	
F020	10	
F01E	0F	(reserved)
F01C	0E	(reserved)
F01A	0D	(reserved)

176/180

C167 FAMILY PRELIMINARY USER MANUAL

F198	CC	(reserved)
F196	СВ	XP2IC
F194	CA	CC31IC
F192	C9	(reserved)
F190	C8	(reserved)
F18E	C7	XP1IC
F18C	C6	CC30IC
F18A	C5	(reserved)
F188	C4	(reserved)
F186	C3	XP0IC
F184	C2	CC29IC
F182	C1	(reserved)
F180	C0	(reserved)

F118	8C	(reserved)
F116	8B	(reserved)
F114	8A	(reserved)
F112	89	(reserved)
F110	88	(reserved)
F10E	87	(reserved)
F10C	86	(reserved)
F10A	85	(reserved)
F108	84	RP0H
F106	83	DP1H
F104	82	DP1L
F102	81	DP0H
F100	80	DP0L

F098	4C	
F096	4B	
F094	4A	
F092	49	
F090	48	
F08E	47	
F08C	46	
F08A	45	
F088	44	
F086	43	
F084	42	
F082	41	
F080	40	

0C	(reserved)
0B	(reserved)
0A	(reserved)
09	(reserved)
08	(reserved)
07	(reserved)
06	(reserved)
05	(reserved)
04	(reserved)
03	(reserved)
02	(reserved)
01	(reserved)
00	(reserved)
	0C 0B 0A 09 08 07 06 05 04 03 02 01 00

14. INDEX (FIGURES)

A/D Converter Channel Injection Example, 123 A/D Converter Channel Injection Wait for Read Examples, 124 A/D Converter Wait for Read Mode Example, 121 Address Chip Select Operation (MUX-Bus Example), 45 Address Range Configuration Example, 32

Basic Serial Configuration with the SSC, 105 BHE#/A0 versus WRH#/WRL# Operation (DEMUX-Bus Example), 50 Block Diagram of a PORT6 Pin (P6.7, P6.6, P6.4..P6.0), 157 Block Diagram of a PORT7 Pin (P7.3..P7.0), 161 Block Diagram of a PORT7 Pin (P7.7..P7.4), 162 Block Diagram of a PORT8 Pin, 165 Block diagram of the major units of the C167, 6 Block Diagram of the PORT6 Pin P6.5, HOLD#, 158 BUSCON Configuration Examples, 42

CAPCOM1/CAPCOM2 Configuration Example, 84 CAPCOM2 Unit Block Diagram, 80 Connection Possibilities of an External Read / Write Device, 48

Dedicated Pins and Alternate Functions, 168

Example: Half-Duplex Config., Slave Transmit, Open Drain Outputs, 112 Example: Half-Duplex Config., Slave Transmit, Push/pull Outputs, 111

Full-Duplex, Multi-Master Configuration Example, 109 Full-Duplex, Single Master Configuration Example, 106

Half-Duplex Configuration Example, Push/Pull Outputs, 110

Internal Address Space (Segment 0), 30

LSB First / MSB First Operation Examples, 98

On-Chip RAM Address Map, 25 On-chip ROM Address Range, Mapping Option, and Expandability, 24

PORT0 I/O Alternate Functions, 143 PORT1 I/O and Alternate Functions, 146 PORT2 I/O and Alternate Functions, 148 PORT3 and Alternate Functions, 150 PORT4 I/O and Alternate Functions, 152

178/180

PORT5 Input and Alternate Functions, 153 PORT6 I/O Alternate Functions, 158 PORT7 I/O and Alternate Functions, 162 PORT8 I/O and Alternate Functions, 166 Push/Pull and Open Drain Output Drivers / Port Pin Symbols, 140 PWM Channel Block Diagram, 62 PWM Mode 0 Operation and Output Waveforms (Examples), 65 PWM Mode 1 Operation and Output Waveforms (Examples), 67 PWM Pulse Burst Mode Operation (Example), 68 PWM Single Shot Mode Operation & Output Waveforms (Examples), 70 Read / Write Chip Select Examples, 46 Read / Write Chip Select Operation (MUX-Bus Example), 46 Serial Clock Phase and Polarity Options, 99 SFRs and Port Pins Associated with the A/D Converter, 118 SFRs and Port Pins Associated with the CAPCOM2 Unit. 82 SFRs and Port Pins Associated with the I/O Ports, 138 SFRs and Port Pins Associated with the PWM Unit, 72 SFRs and Port Pins Associated with the Synchronous Serial Channe, 94 SSC Alternate Input / Output Port Structures, 103 SSC Error Interrupt Control, 114 Standard and Extended SFR Spaces, 28

Synchronous Serial Channel SSC Block Diagram, 92

NOTES :

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor forany infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics are not authorized for use as critical componentsin life support devices or systems without the express written approval of SGS-THOMSON Microelectronics.

©1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of ²C Components by SGS-THOMSON Microelectronics conveys a license under the Philips²C Patent. Rights to use these components in an ²C system is granted provided that the system conforms to the ²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

