August 2000

LM2672 SIMPLE SWITCHER[®] Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features

General Description

The LM2672 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

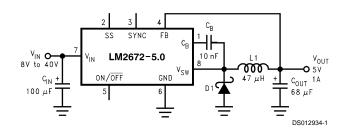
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.

The LM2672 series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2672 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

Other features include a guaranteed ±1.5% tolerance on output voltage within specified input voltages and output load conditions, and ±10% on the oscillator frequency. External shutdown is included, featuring typically 50 μ A stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2672 buck regulator design procedure, there exists computer design software, *LM267X Made Simple* version 6.0.


Features

- Efficiency up to 96%
- Available in SO-8 and 8-pin DIP packages
- Computer Design Software LM267X Made Simple version 6.0
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21V to 37V
- ±1.5% max output voltage tolerance over line and load conditions
- Guaranteed 1A output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8V to 40V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators

Typical Application (Fixed Output Voltage Versions)

 $\label{eq:SIMPLE} SWITCHER^{\otimes} \ is a registered trademark of National Semiconductor Corporation. Windows^{\otimes} \ is a registered trademark of Microsoft Corporation.$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	45V	Infr
ON/OFF Pin Voltage	$-0.1V \le V_{SH} \le 6V$	N Pao
Switch Voltage to Ground	-1V	Maxir
Boost Pin Voltage	V_{SW} + 8V	0
Feedback Pin Voltage	$-0.3V \le V_{\sf FB} \le 14V$	Ope
ESD Susceptibility		Suppl
Human Body Model (Note 2)	2 kV	Temp
Power Dissipation	Internally Limited	

Storage Temperature Range	–65°C to +150°C
Lead Temperature	
M Package	
Vapor Phase (60s)	+215°C
Infrared (15s)	+220°C
N Package (Soldering, 10s)	+260°C
Maximum Junction Temperature	+150°C

Operating Ratings

Supply Voltage	6.5V to 40V
Temperature Range	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$

Electrical Characteristics Specifications with standard type face are for $T_J = 25^{\circ}C$, and those in **bold type** face apply over full Operating Temperature Range.

LM2672-3.3

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
Vout	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	86			%

LM2672-5.0

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	5.0	4.925/ 4.850	5.075/ 5.150	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%

LM2672-12

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
V _{OUT}	Output Voltage	V_{IN} = 15V to 40V, I_{LOAD} = 20 mA to 1A	12	11.82/ 11.64	12.18/ 12.36	V
η	Efficiency	$V_{IN} = 24V, I_{LOAD} = 1A$	94			%

LM2672-ADJ

Symbol	Parameter	Conditions	Тур	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM	I PARAMETERS TO	est Circuit Figure 3 (Note 3)		•		
V _{FB}	Feedback Voltage	V_{IN} = 8V to 40V, I_{LOAD} = 20 mA to 1A	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of Figure 3)				
V _{FB}	Feedback Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of <i>Figure 3</i>)				

LM2	672-ADJ (Cont	inued)				
Symbol	Parameter	Conditions	Тур	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 3 (Note 3)						
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%

All Output Voltage Versions

Electrical Characteristics

Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

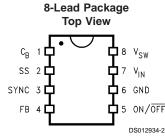
Symbol	Parameters	Conditions	Тур	Min	Max	Units
DEVICE	PARAMETERS					
Ι _Q	Quiescent Current	V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions	2.5		3.6	mA
		V _{FEEDBACK} = 15V For 12V Versions	2.5			mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
I _{CL}	Current Limit		1.55	1.25/ 1.2	2.1/ 2.2	A
I _L	Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V $V_{SWITCH} = 0V$	1		25	μA
		$V_{SWITCH} = -1V, ON/\overline{OFF} Pin = 0V$	6		15	mA
R _{DS(ON)}	Switch On-Resistance	I _{SWITCH} = 1A	0.25		0.30/ 0.50	Ω
f _o	Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
D	Maximum Duty Cycle		95			%
	Minimum Duty Cycle		0			%
I _{BIAS}	Feedback Bias Current	V _{FEEDBACK} = 1.3V ADJ Version Only	85			nA
V _{S/D}	ON/OFF Pin Voltage Thesholds		1.4	0.8	2.0	V
I _{S/D}	ON/OFF Pin Current	ON/\overline{OFF} Pin = 0V	20	7	37	μA
F _{SYNC}	Synchronization Frequency	V _{SYNC} = 3.5V, 50% duty cycle	400			kHz
V _{SYNC}	Synchronization Threshold Voltage		1.4			V
V _{SS}	Soft-Start Voltage		0.63	0.53	0.73	V
I _{SS}	Soft-Start Current		4.5	1.5	6.9	μA
θ _{JA}	Thermal Resistance	N Package, Junction to Ambient (Note 6)	95			°C/W
		M Package, Junction to Ambient (Note 6)	105			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672 is used as shown in *Figure 2* and *Figure 3* test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.

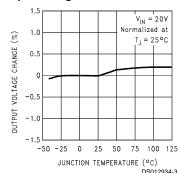
Note 4: Typical numbers are at 25°C and represent the most likely norm.

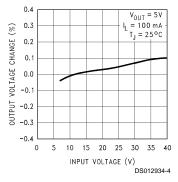

Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* version 6.0 software.

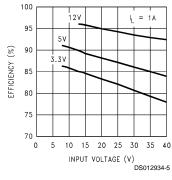
LM2672

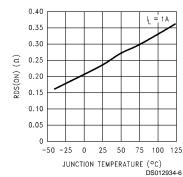
LM2672

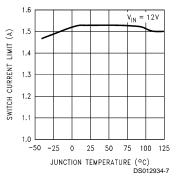

Connection Diagram

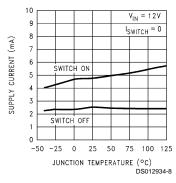

For Surface Mount Package Order Number LM2672M-3.3, LM2672M-5.0, LM2672M-12 or LM2672M-ADJ See NSC Package Number M08A For DIP Package Order Number LM2672N-3.3, LM2672N-5.0, LM2672N-12 or LM2672N-ADJ See NSC Package Number N08E

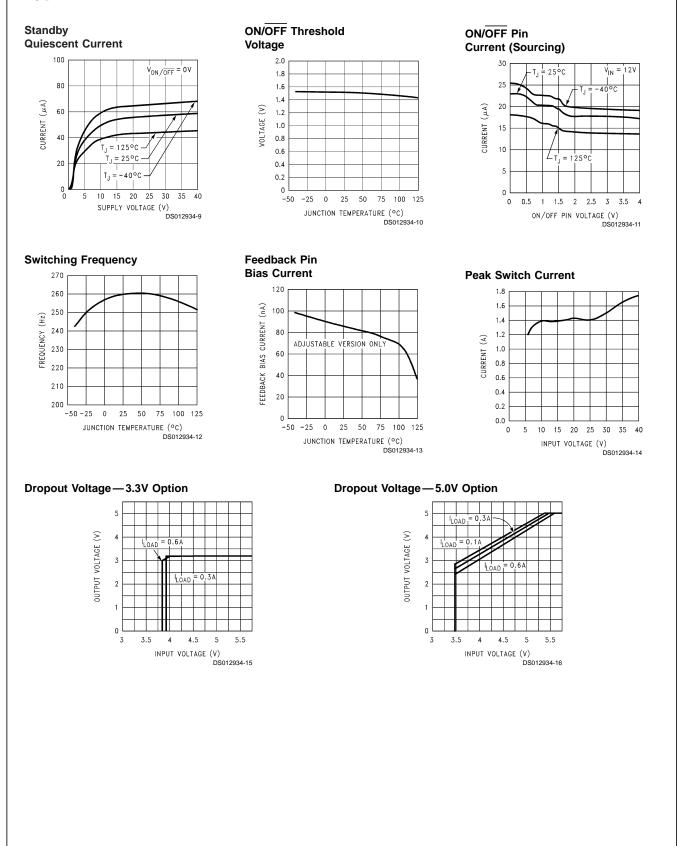
Typical Performance Characteristics

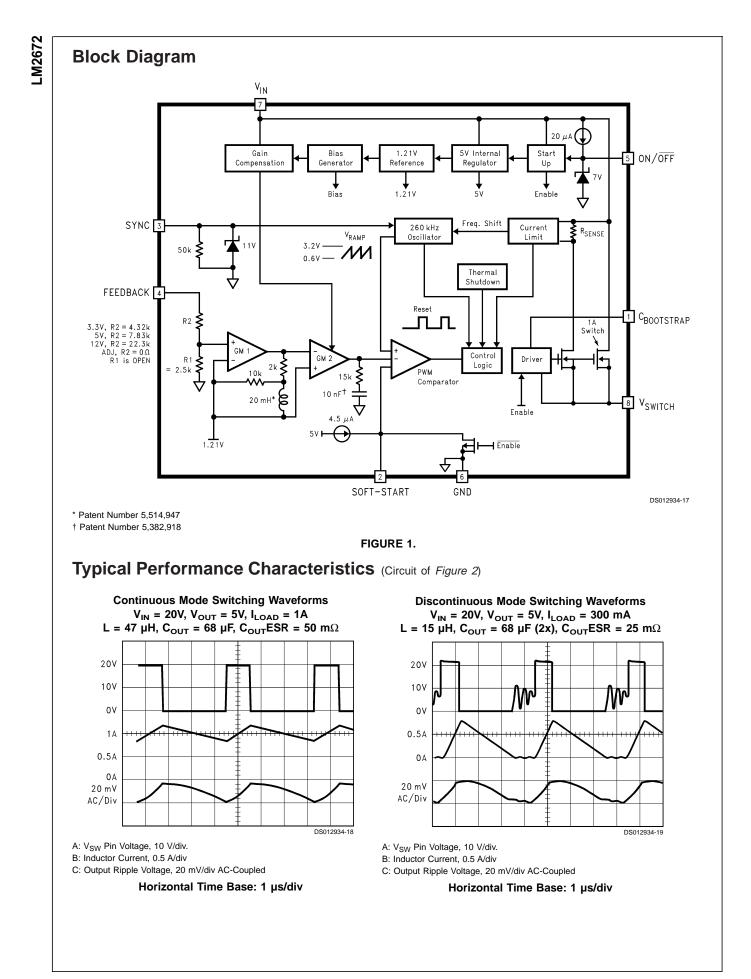


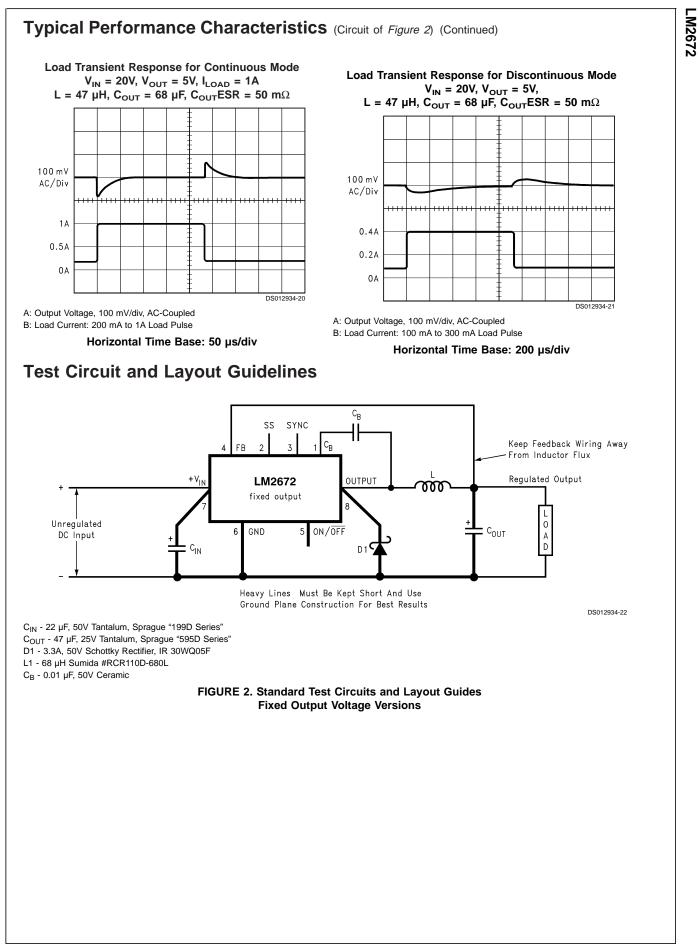

Line Regulation

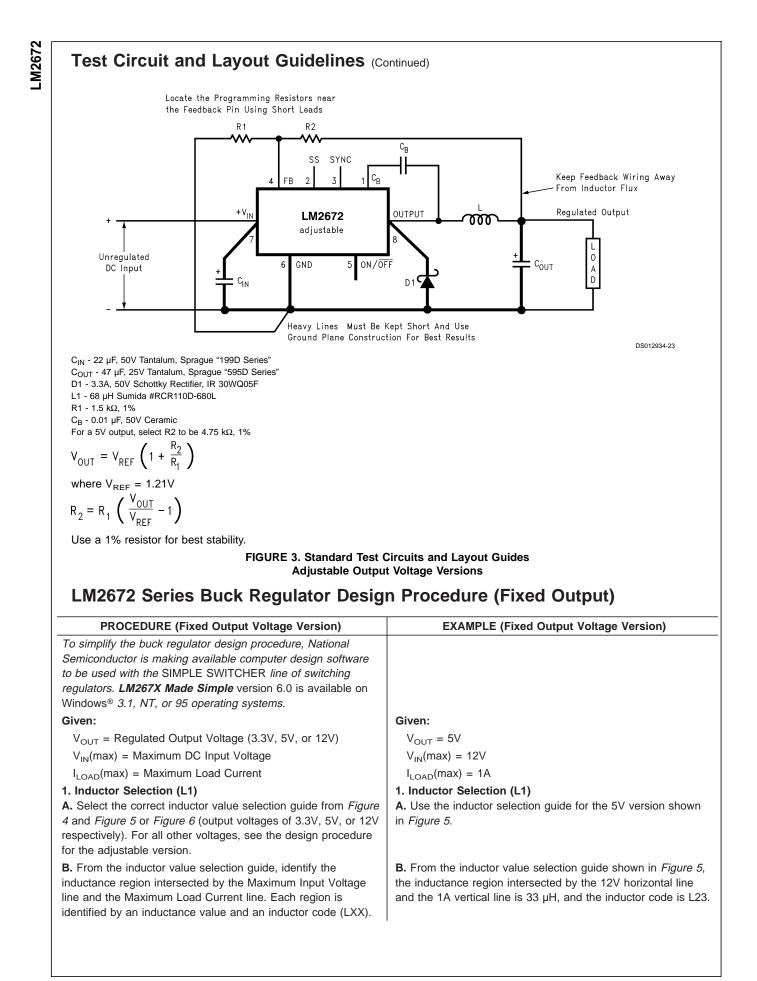



Drain-to-Source Resistance


Switch Current Limit




Operating Quiescent Current



Typical Performance Characteristics (Continued)

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
C. Select an appropriate inductor from the four manufacturer's part numbers listed in <i>Figure 8.</i> Each manufacturer makes a different style of inductor to allow flexibility in meeting various design requirements. Listed below are some of the differentiating characteristics of each manufacturer's inductors: <i>Schott:</i> ferrite EP core inductors; these have very low leakage magnetic fields to reduce electro-magnetic interference (EMI) and are the lowest power loss inductors <i>Renco:</i> ferrite stick core inductors; benefits are typically lowest cost inductors and can withstand E•T and transient peak currents above rated value. Be aware that these inductors have an external magnetic field which may generate more EMI than other types of inductors.	C. The inductance value required is 33 µH. From the table in <i>Figure 8</i> , go to the L23 line and choose an inductor part number from any of the four manufacturers shown. (In most instances, both through hole and surface mount inductors are available.)
<i>Pulse:</i> powered iron toroid core inductors; these can also be low cost and can withstand larger than normal E•T and transient peak currents. Toroid inductors have low EMI.	
<i>Coilcraft:</i> ferrite drum core inductors; these are the smallest physical size inductors, available only as SMT components. Be aware that these inductors also generate EMI—but less than stick inductors.	
Complete specifications for these inductors are available from the respective manufacturers. A table listing the manufacturers' phone numbers is located in <i>Figure 9</i> .	
2. Output Capacitor Selection (C_{OUT}) A. Select an output capacitor from the output capacitor table in <i>Figure 10</i> . Using the output voltage and the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor value and voltage rating.	2. Output Capacitor Selection (C _{OUT}) A. Use the 5.0V section in the output capacitor table in <i>Figure 10.</i> Choose a capacitor value and voltage rating from the line that contains the inductance value of 33 μ H. The capacitance and voltage rating values corresponding to the 33 μ H inductor are the:
The capacitor list contains through-hole electrolytic capacitors from four different capacitor manufacturers and surface mount tantalum capacitors from two different capacitor manufacturers. It is recommended that both the manufacturers and the manufacturer's series that are listed in the table be used. A table listing the manufacturers' phone numbers is located in <i>Figure 11</i> .	Surface Mount: $68 \ \mu\text{F}/10\text{V}$ Sprague 594D Series. $100 \ \mu\text{F}/10\text{V}$ AVX TPS Series. Through Hole: $68 \ \mu\text{F}/10\text{V}$ Sanyo OS-CON SA Series. $220 \ \mu\text{F}/35\text{V}$ Sanyo MV-GX Series. $220 \ \mu\text{F}/35\text{V}$ Nichicon PL Series. $220 \ \mu\text{F}/35\text{V}$ Panasonic HFQ Series.
 3. Catch Diode Selection (D1) A. In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately the output voltage divided by the input voltage). The largest value of the catch diode average current occurs at the maximum load current and maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2672. The most stressful condition for this diode is a shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage. 	3. Catch Diode Selection (D1) A. Refer to the table shown in <i>Figure 12</i> . In this example, a 1A, 20V Schottky diode will provide the best performance. If the circuit must withstand a continuous shorted output, a higher current Schottky diode is recommended.
 1.25 times the maximum input voltage. C. Because of their fast switching speed and low forward 	

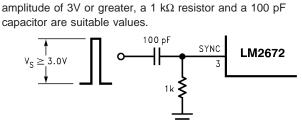
C. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. This Schottky diode must be located close to the LM2672 using short leads and short printed circuit traces.

LM2672

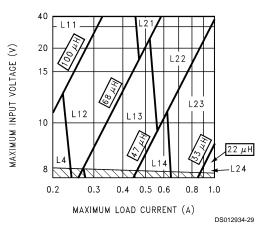
LM2672

LM2672 Series Buck Regulator Design Procedure (Fixed Output) (Continued)

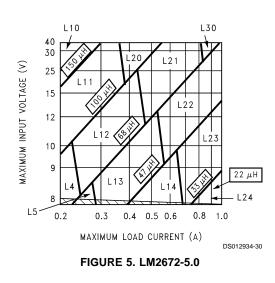
PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
PROCEDURE (Fixed Output Voltage Version) 4. Input Capacitor (C _{IN}) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor should be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. The curves shown in <i>Figure 14</i> show typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS current rating to suit the application requirements. For an aluminum electrolytic capacitor, the voltage rating should be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current stresses on the input capacitor is to	EXAMPLE (Fixed Output Voltage Version) 4. Input Capacitor (C _{IN}) The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a maximum input voltage of 12V, an aluminum electrolytic capacitor with a voltage rating greater than 15V (1.25 x V _{IN}) would be needed. The next higher capacitor voltage rating is 16V. The RMS current rating requirement for the input capacitor in a buck regulator is approximately $\frac{1}{2}$ the DC load current. In this example, with a 1A load, a capacitor with a RMS current rating of at least 500 mA is needed. The curves shown in <i>Figure 14</i> can be used to select an appropriate input capacitor. From the curves, locate the 16V line and note which capacitor values have RMS current ratings greater than 500 mA. For a through hole design, a 330 µF/16V electrolytic capacitor (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate. Additionally, for a complete surface mount design, electrolytic capacitors such as the Sanyo CV-C or CV-BS and the Nichicon WF or UR and the NIC Components NACZ series could be considered. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating and voltage rating. In this
add a small inductor in series with the input supply line. Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the V_{IN} pin.	example, checking <i>Figure 15</i> , and the Sprague 594D series datasheet, a Sprague 594D 15 μ F, 25V capacitor is adequate.
5. Boost Capacitor (C _B) This capacitor develops the necessary voltage to turn the switch gate on fully. All applications should use a 0.01 μ F, 50V ceramic capacitor.	5. Boost Capacitor (C_B) For this application, and all applications, use a 0.01 μ F, 50V ceramic capacitor.
6. Soft-Start Capacitor (C _{SS} - optional) This capacitor controls the rate at which the device starts up. The formula for the soft-start capacitor C_{SS} is:	6. Soft-Start Capacitor (C _{SS} - optional) For this application, selecting a start-up time of 10 ms and using the formula for C _{SS} results in a value of:
$C_{SS} \approx (I_{SS} \cdot t_{SS}) / [V_{SSTH} + 2.6V \cdot (\frac{V_{OUT} + V_{SCHOTTKY}}{V_{IN}})]$	$C_{SS} \approx (4.5 \ \mu A \cdot 10 \ ms) / [0.63V + 2.6V \cdot (\frac{5V + 0.4V}{12V})]$
where:	= 25 nF ≈ 0.022 µF.

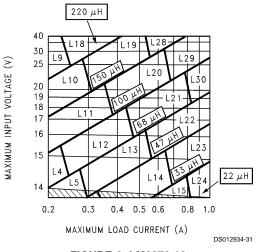

where:

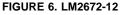
 $\begin{array}{ll} I_{SS} &= Soft-Start \ Current &: 4.5 \ \mu A \ typical. \\ t_{SS} &= Soft-Start \ Time &: Selected. \\ V_{SSTH} &= Soft-Start \ Threshold \ Voltage &: 0.63V \ typical. \\ V_{OUT} &= Output \ Voltage &: Selected. \\ V_{SCHOTTKY} &= Schottky \ Diode \ Voltage \ Drop &: 0.4V \ typical. \\ V_{IN} &= Input \ Voltage &: Selected. \end{array}$

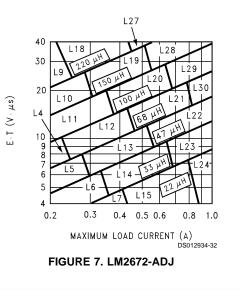

If this feature is not desired, leave this pin open.

LM2672 Series Buck Regulator De


LM2672 Series Buck Regulator Desig	n Procedure (Fixed Output) (Continued)
PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
7. Frequency Synchronization (optional)	7. Frequency Synchronization (optional)
The LM2672 (oscillator) can be synchronized to run with an	For all applications, use a 1 k Ω resistor and a 100 pF capacitor
external oscillator, using the sync pin (pin 3). By doing so, the	for the RC filter.
LM2672 can be operated at higher frequencies than the	
standard frequency of 260 kHz. This allows for a reduction in	
the size of the inductor and output capacitor.	
As shown in the drawing below, a signal applied to a RC filter	
at the sync pin causes the device to synchronize to the	
frequency of that signal. For a signal with a peak-to-peak	
amplitude of 3V or greater, a 1 k Ω resistor and a 100 pF	




INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation)



Ind.	Induc-		Sc	hott	Reno	:0	Pulse E	ngineering	Coilcraft
Ref.	tance	Current	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	(µH)	(A)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L4	68	0.32	67143940	67144310	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-683
L5	47	0.37	67148310	67148420	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	67148320	67148430	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L7	22	0.52	67148330	67148440	RL-1284-22-43	RL1500-22	PE-53807	PE-53807-S	DO1608-223
L9	220	0.32	67143960	67144330	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	67143970	67144340	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	67143980	67144350	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	67143990	67144360	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	67144000	67144380	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	67148340	67148450	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	67148350	67148460	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L18	220	0.55	67144040	67144420	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224
L19	150	0.66	67144050	67144430	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	67144060	67144440	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	67144070	67144450	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683
L22	47	1.17	67144080	67144460	RL-5471-6	—	PE-53822	PE-53822-S	DO3316-473
L23	33	1.40	67144090	67144470	RL-5471-7	—	PE-53823	PE-53823-S	DO3316-333
L24	22	1.70	67148370	67148480	RL-1283-22-43	—	PE-53824	PE-53824-S	DO3316-223
L27	220	1.00	67144110	67144490	RL-5471-2		PE-53827	PE-53827-S	DO5022P-224
L28	150	1.20	67144120	67144500	RL-5471-3		PE-53828	PE-53828-S	DO5022P-154
L29	100	1.47	67144130	67144510	RL-5471-4		PE-53829	PE-53829-S	DO5022P-104
L30	68	1.78	67144140	67144520	RL-5471-5	_	PE-53830	PE-53830-S	DO5022P-683

FIGURE 8. Inductor Manufacturers' Part Numbers

Coilcraft Inc.	Phone	(800) 322-2645		
	FAX	(708) 639-1469		
Coilcraft Inc., Europe	Phone	+44 1236 730 595		
	FAX	+44 1236 730 627		
Pulse Engineering Inc.	Phone	(619) 674-8100		
	FAX	(619) 674-8262		
Pulse Engineering Inc.,	Phone	+353 93 24 107		
Europe	FAX	+353 93 24 459		
Renco Electronics Inc.	Phone	(800) 645-5828		
	FAX	(516) 586-5562		
Schott Corp.	Phone	(612) 475-1173		
	FAX	(612) 475-1786		

FIGURE 9. Inductor Manufacturers' Phone Numbers

LM2672

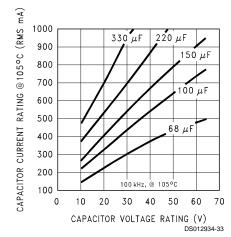
		Output Capacitor								
Output		Surface	Mount	Through Hole						
Voltage		Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic			
(V)	(µH)	594D Series	Series	SA Series	Series	PL Series	HFQ Series			
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)			
	22	120/6.3	100/10	100/10	330/35	330/35	330/35			
	33	120/6.3	100/10	68/10	220/35	220/35	220/35			
3.3	47	68/10	100/10	68/10	150/35	150/35	150/35			
3.3	68	120/6.3	100/10	100/10	120/35	120/35	120/35			
	100	120/6.3	100/10	100/10	120/35	120/35	120/35			
	150	120/6.3	100/10	100/10	120/35	120/35	120/35			
	22	100/16	100/10	100/10	330/35	330/35	330/35			
	33	68/10	10010	68/10	220/35	220/35	220/35			
5.0	47	68/10	100/10	68/10	150/35	150/35	150/35			
5.0	68	100/16	100/10	100/10	120/35	120/35	120/35			
	100	100/16	100/10	100/10	120/35	120/35	120/35			
	150	100/16	100/10	100/10	120/35	120/35	120/35			
	22	120/20	(2x) 68/20	68/20	330/35	330/35	330/35			
	33	68/25	68/20	68/20	220/35	220/35	220/35			
	47	47/20	68/20	47/20	150/35	150/35	150/35			
12	68	47/20	68/20	47/20	120/35	120/35	120/35			
	100	47/20	68/20	47/20	120/35	120/35	120/35			
	150	47/20	68/20	47/20	120/35	120/35	120/35			
	220	47/20	68/20	47/20	120/35	120/35	120/35			

FIGURE 10. Output Capacitor Table

Nichicon Corp.	Phone	(847) 843-7500
	FAX	(847) 843-2798
Panasonic	Phone	(714) 373-7857
	FAX	(714) 373-7102
AVX Corp.	Phone	(803) 448-9411
	FAX	(803) 448-1943
Sprague/Vishay	Phone	(207) 324-4140
	FAX	(207) 324-7223
Sanyo Corp.	Phone	(619) 661-6322
	FAX	(619) 661-1055

FIGURE 11. Capacitor Manufacturers' Phone Numbers

LM2672


LM2672 Series Buck Regulator Design Procedure (Fixed Output) (Continued)

	1A D	iodes	3A D	iodes
V _R	Surface	Through	Surface	Through
	Mount	Hole	Mount	Hole
20V	SK12	1N5817	SK32	1N5820
	B120	SR102		SR302
30V	SK13	1N5818	SK33	1N5821
	B130	11DQ03	30WQ03F	31DQ03
	MBRS130	SR103		
40V	SK14	1N5819	SK34	1N5822
	B140	11DQ04	30BQ040	MBR340
	MBRS140	SR104	30WQ04F	31DQ04
	10BQ040		MBRS340	SR304
	10MQ040		MBRD340	
	15MQ040			
50V	SK15	MBR150	SK35	MBR350
	B150	11DQ05	30WQ05F	31DQ05
	10BQ050	SR105		SR305

FIGURE 12. Schottky Diode Selection Table

International Rectifier Corp.	Phone	(310) 322-3331
	FAX	(310) 322-3332
Motorola, Inc.	Phone	(800) 521-6274
	FAX	(602) 244-6609
General Instruments Corp.	Phone	(516) 847-3000
	FAX	(516) 847-3236
Diodes, Inc.	Phone	(805) 446-4800
	FAX	(805) 446-4850

AVX TPS

Recommended Application Voltage	Voltage Rating						
+85°C Rating							
3.3	6.3						
5	10						
10	20						
12	25						
15	35						

Sprague 594D

stability with time, use 1% metal film resistors.)

 $R_{2} = R_{1} \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$

Recommended Application Voltage	Voltage Rating			
+85°C Rati	ng			
2.5	4			
3.3	6.3			
5	10			
8	16			
12	20			
18	25			
24	35			
29	50			

FIGURE 15. Recommended Application Voltage for AVX TPS and Sprague 594D Tantalum Chip Capacitors Derated for 85°C.

LM2672 Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software	
to be used with the SIMPLE SWITCHER line of switching regulators. LM267X Made Simple version 6.0 is available on	
Windows 3.1, NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage	$V_{OUT} = 20V$
V _{IN} (max) = Maximum Input Voltage	$V_{IN}(max) = 28V$
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 1A$
F = Switching Frequency (<i>Fixed at a nominal 260 kHz</i>).	F = Switching Frequency (Fixed at a nominal 260 kHz).
1. Programming Output Voltage (Selecting R_1 and R_2 , as shown in <i>Figure 3</i>)	1. Programming Output Voltage (Selecting R ₁ and R ₂ , as shown in <i>Figure 3</i>)
Use the following formula to select the appropriate resistor	Select R_1 to be 1 k Ω , 1%. Solve for R_2 .
values.	
$V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1} \right)$	$R_{2} = R_{1} \left(\frac{V_{OUT}}{V_{DEE}} - 1 \right) = 1 k\Omega \left(\frac{20V}{1.23V} - 1 \right)$
where $V_{REF} = 1.21V$	REF 7 COLLEGE 7
Select a value for $R^{}_1$ between 240 Ω and 1.5 k $\Omega.$ The lower	R_2 = 1 kΩ (16.53 – 1) = 15.53 kΩ, closest 1% value is
resistor values minimize noise pickup in the sensitive feedback	15.4 kΩ.
pin. (For the lowest temperature coefficient and the best	$R_2 = 15.4 \text{ k}\Omega.$

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
2. Inductor Selection (L1)	2. Inductor Selection (L1)
A. Calculate the inductor Volt • microsecond constant $E • T$ (V • μ s), from the following formula:	A. Calculate the inductor Volt • microsecond constant (E • T),
$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} (V \cdot \mu s)$	$E \cdot T = (28 - 20 - 0.25) \cdot \frac{20 + 0.5}{28 - 0.25 + 0.5} \cdot \frac{1000}{260} (V \cdot \mu s)$
	$E \cdot T = (7.75) \cdot \frac{20.5}{28.25} \cdot 3.85 (V \cdot \mu s) = 21.6 (V \cdot \mu s)$
where V_{SAT} =internal switch saturation voltage=0.25V and V_D = diode forward voltage drop = 0.5V	
B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in <i>Figure 7</i> .	B. E • T = 21.6 (V • μs)
C. On the horizontal axis, select the maximum load current.	C. $I_{LOAD}(max) = 1A$
D. Identify the inductance region intersected by the E • T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).	D. From the inductor value selection guide shown in <i>Figure 7</i> , the inductance region intersected by the 21.6 (V \cdot µs) horizontal line and the 1A vertical line is 68 µH, and the inductor code is L30.
E. Select an appropriate inductor from the four manufacturer's part numbers listed in <i>Figure 8</i> . For information on the different types of inductors, see the inductor selection in the fixed output voltage design procedure.	E. From the table in <i>Figure 8</i> , locate line L30, and select an inductor part number from the list of manufacturers' part numbers.
3. Output Capacitor Selection (C _{OUT})	3. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the capacitor code selection guide in <i>Figure 16</i> . Using the inductance value found in the inductor selection guide, step 1, locate the appropriate capacitor code corresponding to the desired output voltage.	A. Use the appropriate row of the capacitor code selection guide, in <i>Figure 16</i> . For this example, use the $15-20V$ row. The capacitor code corresponding to an inductance of 68 μ H is C20.
B. Select an appropriate capacitor value and voltage rating, using the capacitor code, from the output capacitor selection table in <i>Figure 17</i> . There are two solid tantalum (surface	B. From the output capacitor selection table in <i>Figure 17</i> , choose a capacitor value (and voltage rating) that intersects the capacitor code(s) selected in section A, C20.
mount) capacitor manufacturers and four electrolytic (through hole) capacitor manufacturers to choose from. It is recommended that both the manufacturers and the	The capacitance and voltage rating values corresponding to the capacitor code C20 are the: Surface Mount:
manufacturer's series that are listed in the table be used. A table listing the manufacturers' phone numbers is located in	33 μF/25V Sprague 594D Series.33 μF/25V AVX TPS Series.
Figure 11.	Through Hole: 33 μF/25V Sanyo OS-CON SC Series.
	120 μF/35V Sanyo MV-GX Series. 120 μF/35V Nichicon PL Series.
	120 μF/35V Panasonic HFQ Series.
	Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the characteristics of the capacitors
	listed in the output capacitor table. Refer to the capacitor manufacturers' data sheet for this information.

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
. Catch Diode Selection (D1)	4. Catch Diode Selection (D1)
. In normal operation, the average current of the catch diode	A. Refer to the table shown in <i>Figure 12</i> . Schottky diodes
the load current times the catch diode duty cycle, 1-D (D is	provide the best performance, and in this example a 1A, 40V
e switch duty cycle, which is approximately V_{OUT}/V_{IN}). The	Schottky diode would be a good choice. If the circuit must
gest value of the catch diode average current occurs at the	withstand a continuous shorted output, a higher current (at
aximum input voltage (minimum D). For normal operation,	least 2.2A) Schottky diode is recommended.
e catch diode current rating must be at least 1.3 times	
eater than its maximum average current. However, if the	
wer supply design must withstand a continuous output short,	
e diode should have a current rating greater than the	
aximum current limit of the LM2672. The most stressful	
ondition for this diode is a shorted output condition.	
. The reverse voltage rating of the diode should be at least	
25 times the maximum input voltage.	
. Because of their fast switching speed and low forward	
ltage drop, Schottky diodes provide the best performance	
nd efficiency. The Schottky diode must be located close to	
e LM2672 using short leads and short printed circuit traces.	
Input Capacitor (C _{IN})	5. Input Capacitor (C _{IN})
low ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input
etween the input pin and ground to prevent large voltage	voltage rating and the RMS current rating. With a maximum
ansients from appearing at the input. This capacitor should	input voltage of 28V, an aluminum electrolytic capacitor with
e located close to the IC using short leads. In addition, the	voltage rating of at least 35V (1.25 x V_{IN}) would be needed.
MS current rating of the input capacitor should be selected to	The RMS current rating requirement for the input capacitor in
e at least 1/2 the DC load current. The capacitor manufacturer	buck regulator is approximately 1/2 the DC load current. In this
ata sheet must be checked to assure that this current rating	example, with a 1A load, a capacitor with a RMS current ratir
not exceeded. The curves shown in <i>Figure 14</i> show typical	of at least 500 mA is needed. The curves shown in Figure 14
MS current ratings for several different aluminum electrolytic	can be used to select an appropriate input capacitor. From th
apacitor values. A parallel connection of two or more	curves, locate the 35V line and note which capacitor values
apacitors may be required to increase the total minimum RMS	have RMS current ratings greater than 500 mA.
urrent rating to suit the application requirements.	For a through hole design, a 330 µF/35V electrolytic capacito
or an aluminum electrolytic capacitor, the voltage rating	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series of
hould be at least 1.25 times the maximum input voltage.	equivalent) would be adequate. Other types or other
aution must be exercised if solid tantalum capacitors are	manufacturers' capacitors can be used provided the RMS
sed. The tantalum capacitor voltage rating should be twice	ripple current ratings are adequate. Additionally, for a comple-
he maximum input voltage. The tables in Figure 15 show the	surface mount design, electrolytic capacitors such as the
ecommended application voltage for AVX TPS and Sprague	Sanyo CV-C or CV-BS and the Nichicon WF or UR and the
94D tantalum capacitors. It is also recommended that they be	NIC Components NACZ series could be considered.
rge current tested by the manufacturer. The TPS series	For surface mount designs, solid tantalum capacitors can be
ailable from AVX, and the 593D and 594D series from	used, but caution must be exercised with regard to the
prague are all surge current tested. Another approach to	capacitor surge current rating and voltage rating. In this
inimize the surge current stresses on the input capacitor is to	example, checking <i>Figure 15</i> , and the Sprague 594D series
dd a small inductor in series with the input supply line.	datasheet, a Sprague 594D 15 µF, 50V capacitor is adequate
se caution when using ceramic capacitors for input	
passing, because it may cause severe ringing at the $V_{\rm IN}$ pin.	
Boost Capacitor (C _B)	6. Boost Capacitor (C _B)
his capacitor develops the necessary voltage to turn the	For this application, and all applications, use a 0.01 μ F, 50V
vitch gate on fully. All applications should use a 0.01 µF, 50V	ceramic capacitor.
eramic capacitor.	
the soft-start and frequency synchronization features are	
sired, look at steps 6 and 7 in the fixed output design	
sired, look at steps 6 and 7 in the fixed output design occure.	

Case	Output	Inductance (µH)						
Style (Note 7)	Voltage (V)	22	33	47	68	100	150	220
SM and TH	1.21-2.50	_	_	_	—	C1	C2	C3
SM and TH	2.50-3.75	_	_	_	C1	C2	C3	C3
SM and TH	3.75-5.0	_	_	C4	C5	C6	C6	C6
SM and TH	5.0-6.25	_	C4	C7	C6	C6	C6	C6
SM and TH	6.25-7.5	C8	C4	C7	C6	C6	C6	C6
SM and TH	7.5–10.0	C9	C10	C11	C12	C13	C13	C13
SM and TH	10.0-12.5	C14	C11	C12	C12	C13	C13	C13
SM and TH	12.5–15.0	C15	C16	C17	C17	C17	C17	C17
SM and TH	15.0-20.0	C18	C19	C20	C20	C20	C20	C20
SM and TH	20.0-30.0	C21	C22	C22	C22	C22	C22	C22
TH	30.0-37.0	C23	C24	C24	C25	C25	C25	C25

Note 7: SM - Surface Mount, TH - Through Hole

FIGURE 16. Capacitor Code Selection Guide

Output Capacitor						
Cap. Ref.	Surface Mount		Through Hole			
	Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic
Desg.	594D Series	Series	SA Series	Series	PL Series	HFQ Series
#	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)
C1	120/6.3	100/10	100/10	220/35	220/35	220/35
C2	120/6.3	100/10	100/10	150/35	150/35	150/35
C3	120/6.3	100/10	100/35	120/35	120/35	120/35
C4	68/10	100/10	68/10	220/35	220/35	220/35
C5	100/16	100/10	100/10	150/35	150/35	150/35
C6	100/16	100/10	100/10	120/35	120/35	120/35
C7	68/10	100/10	68/10	150/35	150/35	150/35
C8	100/16	100/10	100/10	330/35	330/35	330/35
C9	100/16	100/16	100/16	330/35	330/35	330/35
C10	100/16	100/16	68/16	220/35	220/35	220/35
C11	100/16	100/16	68/16	150/35	150/35	150/35
C12	100/16	100/16	68/16	120/35	120/35	120/35
C13	100/16	100/16	100/16	120/35	120/35	120/35
C14	100/16	100/16	100/16	220/35	220/35	220/35
C15	47/20	68/20	47/20	220/35	220/35	220/35
C16	47/20	68/20	47/20	150/35	150/35	150/35
C17	47/20	68/20	47/20	120/35	120/35	120/35
C18	68/25	(2x) 33/25	47/25 (Note 8)	220/35	220/35	220/35
C19	33/25	33/25	33/25 (Note 8)	150/35	150/35	150/35
C20	33/25	33/25	33/25 (Note 8)	120/35	120/35	120/35
C21	33/35	(2x) 22/25	(Note 9)	150/35	150/35	150/35
C22	33/35	22/35	(Note 9)	120/35	120/35	120/35

Note 8: The SC series of Os-Con capacitors (others are SA series)

(Note 9)

(Note 9)

(Note 9)

C21 C22 C23

C24

C25

Note 9: The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages.

(Note 9)

(Note 9)

(Note 9)

FIGURE 17. Output Capacitor Selection Table

(Note 9)

(Note 9)

(Note 9)

220/50

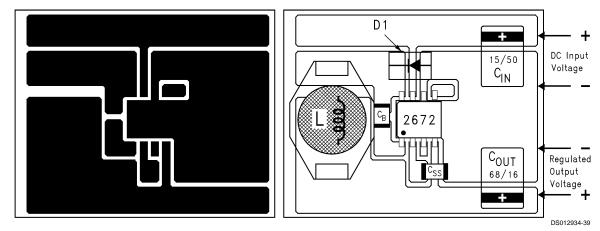
150/50

150/50

100/50

100/50

82/50

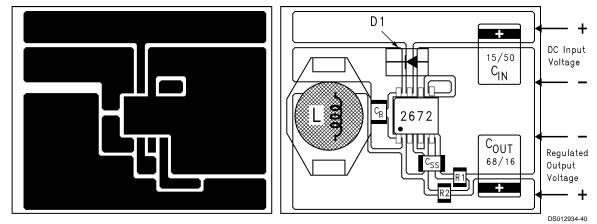

120/50

120/50

82/50

Application Information

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXED OUTPUT (4X SIZE)


 C_{IN} - 15 $\mu F,$ 50V, Solid Tantalum Sprague, "594D series" C_{OUT} - 68 $\mu F,$ 16V, Solid Tantalum Sprague, "594D series" D1 - 1A, 40V Schottky Rectifier, Surface Mount

L1 - 33 µH, L23, Coilcraft DO3316

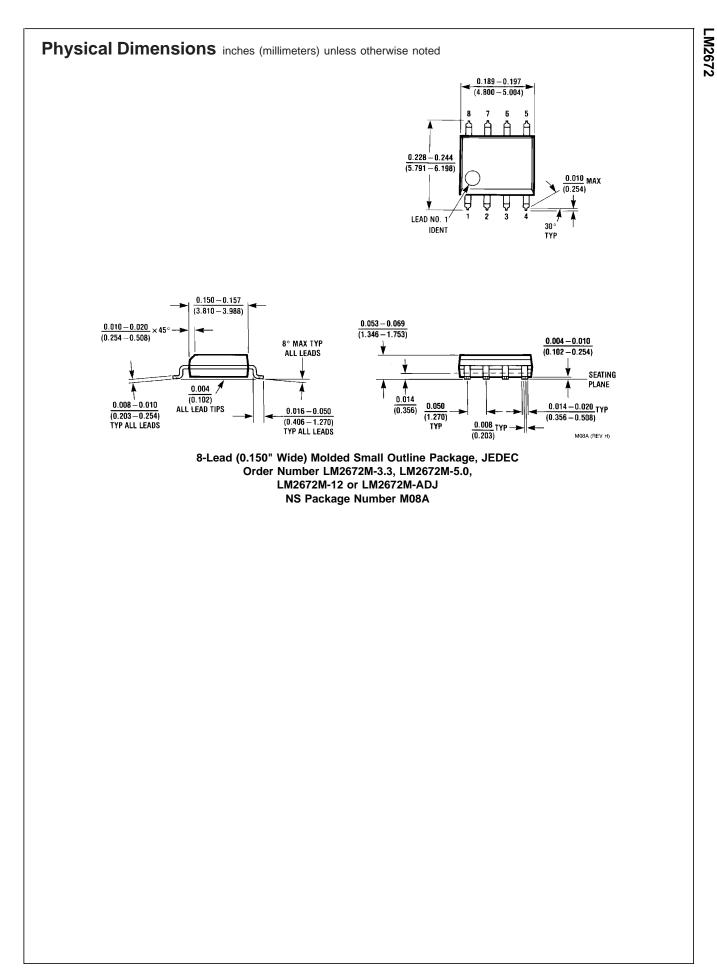
L1 - 35 μΠ, L23, Coliciait DO3

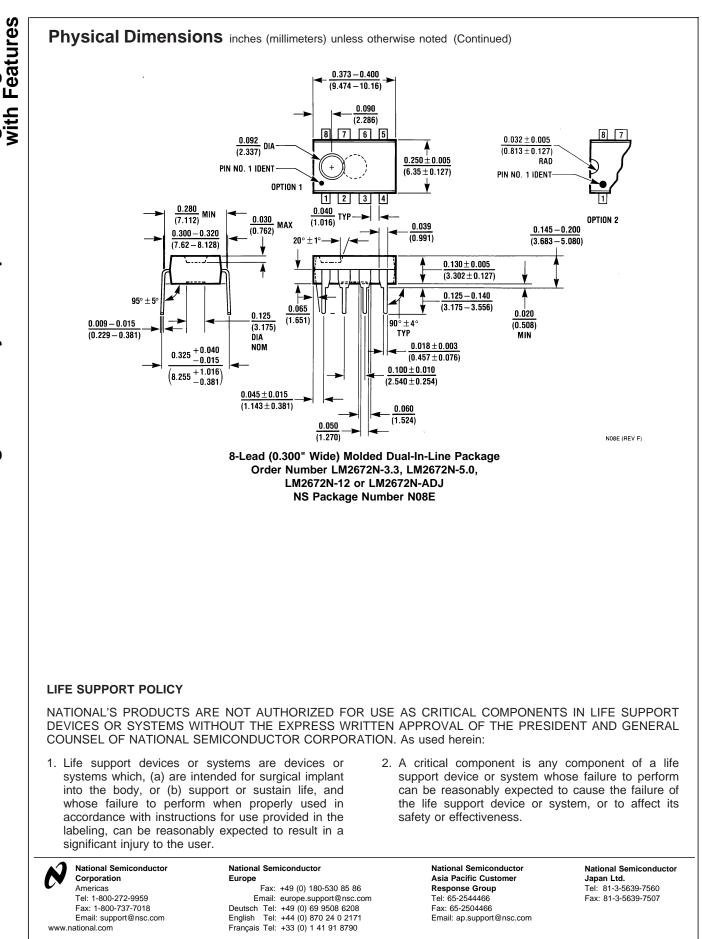
 C_B - 0.01 $\mu\text{F},$ 50V, Ceramic

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)

 C_{IN} - 15 $\mu F,$ 50V, Solid Tantalum Sprague, "594D series" C_{OUT} - 33 $\mu F,$ 25V, Solid Tantalum Sprague, "594D series"

- D1 1A, 40V Schottky Rectifier, Surface Mount
- L1 68 µH, L30, Coilcraft DO3316
- $C_{\rm B}$ 0.01 µF, 50V, Ceramic
- R1 1k. 1%


R2 - Use formula in Design Procedure


FIGURE 18. PC Board Layout

Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines (in *Figure 2* and *Figure 3*) should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If **open core inductors are used**, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and C_{OUT} wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.