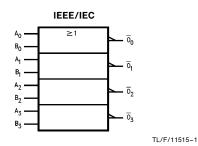


74VHC02 Quad 2-Input NOR Gate

General Description

The 'VHC02 is an advanced high-speed CMOS 2-Input NOR Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The internal circuit is composed of 3 stages, including buffer output, which provide high noise immunity and stable output. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

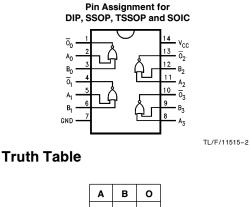

- Low power dissipation:
- $I_{CC} = 2 \ \mu A$ (max) at $T_A = 25^{\circ}C$
- \blacksquare High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- All inputs are equipped with a power down protection function
- Balanced propagation delays: $t_{PLH} \cong t_{PHL}$
- Low noise: V_{OLP} = 0.8V (max)
- Pin and function compatible with 74HC02

Commercial	Package Number	Package Description
74VHC02M	M14A	14-Lead Molded JEDEC SOIC
74VHC02SJ	M14D	14-Lead Molded EIAJ SOIC
74VHC02MSC	MSC14	14-Lead Molded EIAJ Type 1 SSOP
74VHC02MTC	MTC14	14-Lead Molded JEDEC Type 1 TSSOP
74VHC02N	N14A	14-Lead Molded DIP

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

EIAJ Type 1 SSOP available on tape and reel only, order MSCX.

Logic Symbol


Pin Description

Description

Outputs

Inputs

Connection Diagram

A	в	0	
L	L	Н	
L	Н	L	
н	L	L	
н	н	L	

©1995 National Semiconductor Corporation TL/F/11515

Pin Names

An, Bn

On

RRD-B30M125/Printed in U. S. A.

74VHC02 Quad 2-Input NOR Gate

October 1995

Absolute Maximum Ratings (Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to $+7.0V$
DC Output Voltage (V _{OUT})	$-0.5V$ to $V_{\mbox{CC}}$ $+$ 0.5V
Input Diode Current (I _{IK})	-20 mA
Output Diode Current (I _{OK})	\pm 20 mA
DC Output Current (I _{OUT})	\pm 25 mA
DC V_{CC} /GND Current (I _{CC})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L) (Soldering, 10 seconds)	260°C

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

Ъ°С	Supply Voltage (V _{CC})	2.0V to +5.5V
	Input Voltage (V _{IN})	0V to +5.5V
	Output Voltage (V _{OUT})	0V to V _{CC}
	Operating Temperature (T _{OPR})	-40°C to +85°C
	Input Rise and Fall Time (t _r , t _f)	
	$V_{CC} = 3.3V \pm 0.3V$	$0 \sim 100 \text{ns/V}$
	$V_{CC}=5.0V~\pm0.5V$	$0 \sim 20 \text{ ns/V}$

DC Characteristics for 'VHC Family Devices

			74VHC							
Symbol	Parameter	V _{CC} (V)	т,	a = 25	°C		−40°C 85°C	Units	Co	nditions
			Min	Тур	Max	Min	Мах			
V_{IH}	High Level Input Voltage	2.0 3.0-5.5	1.50 0.7 V _{CC}			1.50 0.7 V _{CC}		v		
V _{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.50 0.3 V _{CC}		0.50 0.3 V _{CC}	v		
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		v	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -50 \ \mu A$
		3.0 4.5	2.58 3.94			2.48 3.80		v		$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	v	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 50 μA
		3.0 4.5			0.36 0.36		0.44 0.44	v		$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V \text{ or GND}$	
ICC	Quiescent Supply Current	5.5			2.0		20.0	μΑ	$V_{IN} = V_{CC} \text{ or } GND$	

Symbol	Parameter	V _{CC} (V)	74	VHC	Units	Conditions
			T _A =	= 25°C		
		(•)	Тур	Limits		
V _{OLP} *	Quiet Output Maximum Dynamic V _{OL}	5.0	0.3	0.8	V	$C_L = 50 pF$
V _{OLV} *	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.3	-0.8	V	C _L = 50 pF
V _{IHD} *	Minimum High Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF
V _{ILD} *	Maximum Low Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF
Parameter guarar	nteed by design.	•			•	•

					74VHC				
Symbol Parameter		V _{CC} (V)	$T_A = 25^{\circ}C$			T _A = −40°C to +85°C		Units	Conditions
			Min	Тур	Мах	Min	Max		
t _{PHL} ,	Propagation Delay	$3.3\ \pm 0.3$		5.6	7.9	1.0	9.5		$C_L = 15 pF$
t _{PLH}				8.1	11.4	1.0	13.0	ns	$C_L = 50 pF$
		$5.0\ \pm 0.5$		3.6	5.5	1.0	6.5		$C_L = 15 pF$
				5.1	7.5	1.0	8.5	ns	$C_L = 50 pF$
C _{IN}	Input Capacitance			4	10		10	pF	$V_{CC} = Open$
C _{PD}	Power Dissipation Capacitance			15				pF	(Note 1)

Note 1: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} * V_{CC} * f_{IN} + I_{CC}/4$ (per gate).

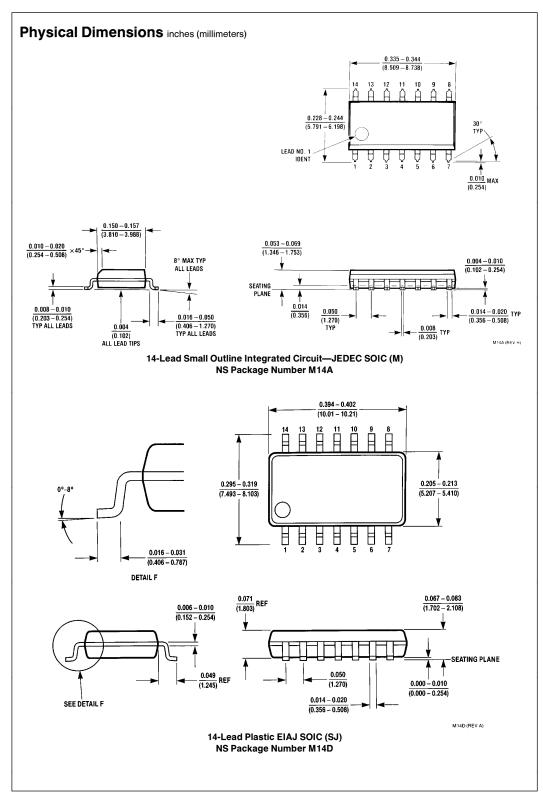
Ordering Information

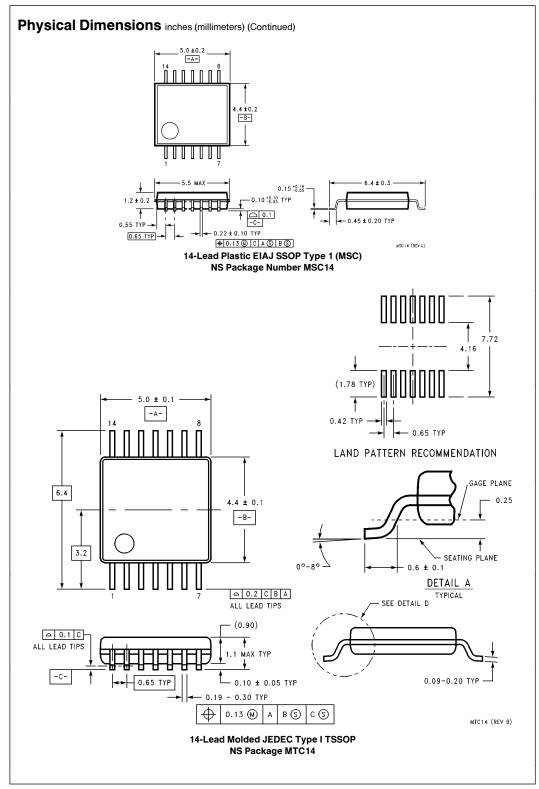
The device number is used to form part of a simplified purchasing code, where the package type and temperature range are defined as follows:

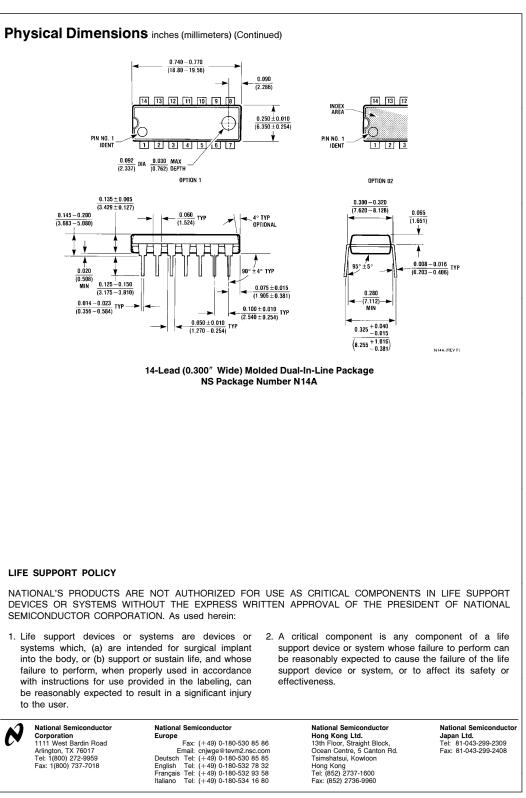
Temperature Range Family -74 VHC = Commercial

74 VHC 02 М χ Special Variations "X" = Tape and Reel " " = Rail/Tube

Device Type


Package Code -


M = Small Outline JEDEC SOIC SJ = Small Outline EIAJ SOIC


MSC = Shrink Small Outline EIAJ SSOP Type 1 MTC = Thin Shrink Small Outline JEDEC TSSOP Type 1

N = Molded Plastic DIP

TL/F/11515-3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications