

Ultra Fast USB 2.0 Hub and Multi-Format Flash Media Controller with Dual SD Interfaces

General Description

The Microchip USB2660/USB2660i is a USB 2.0 compliant, Hi-Speed hub, card reader, and protocol converter combo solution. This fully integrated single chip solution provides USB expansion and flash card media reader/writer integration. The Microchip USB2660/USB2660i provides an ultra fast interface between a USB host and today's popular flash media formats. The controller allows read/write capability to flash media from the following families:

- Secure Digital[™] (SD)
- MultiMediaCard™ (MMC)
- Memory Stick® (MS)
- xD-Picture Card™ (xD)¹

The USB2660/USB2660i offers a versatile, cost-effective, and energy-efficient hub controller with 2 downstream USB 2.0 ports. This combo solution leverages Microchip's innovative technology that delivers industry-leading data throughput in mixed-speed USB environments. Average sustained transfer rates exceeding 35 MB/s are possible².

Highlights

- 2 exposed Hi-Speed USB 2.0 downstream ports for external peripheral expansion
- The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB Compound Device
 - a single or multiplexed flash media reader interface
 - a non-multiplexed SD interface (slot) for SD card reader
- PortMap Flexible port mapping and port disable sequencing supports multiple platform designs
- PortSwap Programmable USB differential-pair pin locations eases PCB design by aligning USB signal traces directly to connectors
- PHYBoost Programmable USB transceiver drive strength recovers signal integrity

Features

- Compliance with the following flash media card specifications SD 2.0 / MMC 4.2 / MS 1.43 / MS-Pro 1.02 / MS-Pro-HG 1.01 / MS-Duo 1.10 / xD 1 2
- Supports a single external 3.3 V supply source; internal regulators provide 1.8 V internal core voltage for additional bill of materials and power savings
- The transaction translator (TT) in the hub supports operation of Full-Speed and Low-Speed peripherals
- 9 K RAM | 64 K on-chip ROM
- Enhanced EMI rejection and ESD protection performance
- Hub and flash media reader/writer configuration from a single source: External I²C[®] ROM or external SPI ROM
 - Configures internal code using an external I²C EEPROM
 - Supports external code using an SPI Flash EEPROM
 - Customizable vendor ID, product ID, and language ID if using an external EEPROM
- · Additional SD port for card reader
- The USB2660 supports the commercial temperature range of 0°C to +70°C
- The USB2660i supports the industrial temperature range of -40°C to +85°C
- 64-pin QFN RoHS compliant package (9 x 9 mm)

Applications

- · Desktop and mobile PCs
- Printers
- · GPS navigation systems
- Media players/viewers
- Consumer A/V
- Set-top boxes
- · Industrial products

For xD-Picture CardTM support, please obtain a user license from the xD-Picture Card License Office.

^{2.} Host and media dependent.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

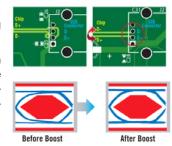
Table of Contents

1.0 Overview	4
2.0 Block Diagram	6
3.0 Pin Configuration	7
1.0 Overview 2.0 Block Diagram 3.0 Pin Configuration 4.0 Pin Descriptions	9
5.() Pin Reset States	19
6.0 Configuration Options	22
7.0 AC Specifications	45
7.0 AC Specifications	47
9.0 Package Specifications	52
9.0 Package Specifications	55
Appendix B: Data Sheet Revision History	56
Product Identification System	57
The Microchip Web Site	59
Customer Change Notification Service	59
Customer Support	59

1.0 OVERVIEW

The Microchip USB2660/USB2660i is an integrated USB 2.0 compliant, Hi-Speed hub, card reader, and protocol converter combo solution. This combo solution supports today's popular multi-format flash media cards. This multi-format flash media controller and USB hub combo features two exposed downstream USB ports available for external peripheral expansion. The dedicated flash media reader/writer is internally attached to a third downstream port of the hub as a USB Compound Device which supports the following two interfaces: One interface is multiplexed for xD-Picture Card, Memory Stick, Secure Digital/MultiMediaCard, and SD/Secure Digital Input/Output. The other interface is dedicated to a second SD card slot.

The USB2660/USB2660i will attach to an upstream port as a Full-Speed hub or as a Full-/Hi-Speed hub. The hub supports Low-Speed, Full-Speed, and Hi-Speed (if operating as a Hi-Speed hub) downstream devices on all of the enabled downstream ports.


All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors on D+ and D- pins and all required pull-down and pull-up resistors. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB2660/USB2660i includes programmable features such as:

PortMap which provides flexible port mapping and disable sequences. The downstream ports of a USB2660/USB2660i hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB2660/USB2660i automatically reorders the remaining ports to match the USB host controller's port numbering scheme.

PortSwap which adds per-port programmability to USB differential-pair pin locations. PortSwap allows direct alignment of USB signals (D+/D-) to connectors avoiding uneven trace length or crossing of the USB differential signals on the PCB.

PHYBoost which enables four programmable levels of USB signal drive strengths in downstream port transceivers. PHYBoost attempts to restore USB signal integrity. The diagram on the right shows an example of Hi-Speed USB eye diagrams before (PHYBoost at 0%) and after (PHYBoost at 12%) signal integrity restoration in a compromised system environment.

1.1 Hardware Features

- · Single chip hub and flash media controller combo
- USB2660 supports the commercial temperature range of 0°C to +70°C
- USB2660i supports the industrial temperature range of -40°C to +85°C
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- Full power management with individual or ganged power control of each downstream port
- · Optional support for external firmware access via SPI interface
- Onboard 24 MHz crystal driver circuit
- Optional external 24 MHz clock input which must be a 1.8 V signal
- · Code execution via SPI ROM which must meet
 - 30 MHz or 60 MHz operation support
 - Single bit or dual bit mode support
 - Mode 0 or mode 3 SPI support

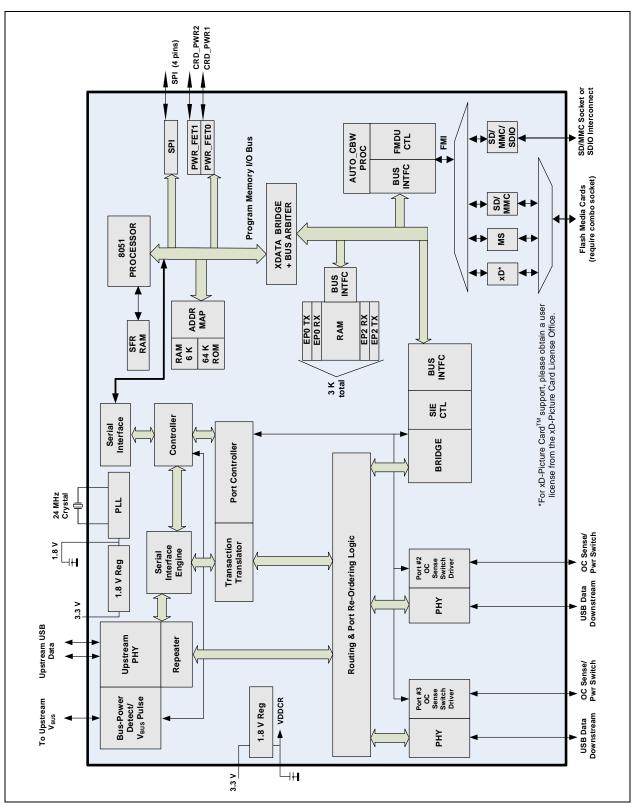
1.1.1 COMPLIANCE WITH THE FOLLOWING FLASH MEDIA CARD SPECIFICATIONS:

- Secure Digital 2.0 / MultiMediaCard 4.2
 - SD 2.0, SD-HS, SD-HC
 - TransFlash™ and reduced form factor media
 - 1/4/8 bit MMC 4.2
- · Memory Stick 1.43
- Memory Stick Pro Format 1.02

- · Memory Stick Pro-HG Duo Format 1.01
 - Memory Stick, MS Duo, MS-HS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2
- 8051 8-bit microprocessor
 - 60 MHz single cycle execution
 - 64 KB ROM | 9 KB RAM
- Integrated regulator for 1.8 V core operation

1.2 Software Features

- Hub and flash media reader/writer configuration from a single source: External I²C ROM or external SPI ROM
- If the OEM is using an external EEPROM or an external SPI ROM, the following features are available:
 - Customizable vendor ID, product ID, and device ID
 - 12-hex digits maximum for the serial number string
 - 28-character manufacturer ID and product strings for the flash media reader/writer


1.3 OEM Selectable Hub Features

A default configuration is available in the USB2660/USB2660i following a reset. The USB2660/USB2660i may also be configured by an external I²C EEPROM or via external SPI ROM flash.

- · Compound Device support on a port-by-port basis
 - a port is permanently hardwired to a downstream USB peripheral device
- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the OEM's choice of circuit board component selection
- · Port power control and over-current detection/delay features
- · Configure the delay time for filtering the over-current sense inputs
- Configure the delay time for turning on downstream port power
- · Bus- or self-powered selection
- Hub port disable or non-removable configurations
- Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location eases PCB layout by aligning USB signal lines directly to connectors
- Programmable USB signal drive strength recovers USB signal integrity using 4 levels of signal drive strength
- Indicate the maximum current that the 2-port hub consumes from the USB upstream port
- · Indicate the maximum current required for the hub controller

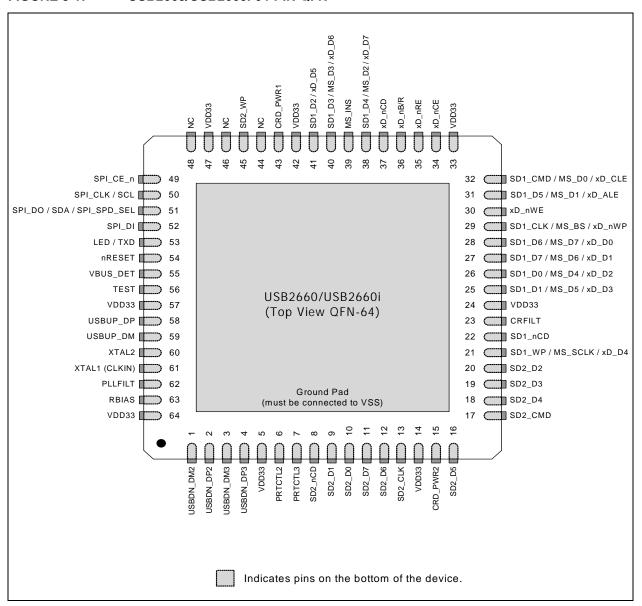

2.0 BLOCK DIAGRAM

FIGURE 2-1: USB2660/USB2660I BLOCK DIAGRAM

3.0 PIN CONFIGURATION

FIGURE 3-1: USB2660/USB2660I 64-PIN QFN

3.1 **64-Pin Table**

TABLE 3-1: USB2660/USB2660I 64-PIN TABLE

ABLE 3-1: USB2660	/USB2660I 64-PIN TABLE		
SEC	CURE DIGITAL / MEMORY S	TICK / xD INTERFACE (18 P	INS)
SD1_D7 / MS_D6 / xD_D1	SD1_D6 / MS_D7 / xD_D0	SD1_D5 / MS_D1 / xD_ALE	SD1_D4 / MS_D2 / xD_D7
SD1_D3 / MS_D3 / xD_D6	SD1_D2 / xD_D5	SD1_D1 / MS_D5 / xD_D3	SD1_D0 / MS_D4 / xD_D2
SD1_CLK / MS_BS / xD_ nWP	SD1_CMD / MS_D0 / xD_CLE	SD1_nCD	MS_INS
SD1_WP / MS_SCLK / xD_D4	xD_nCD	xD_nB/R	xD_nRE
xD_nCE	xD_nWE		
	SECOND SECURE DIGIT	AL INTERFACE (12 PINS)	
SD2_D7	SD2_D6	SD2_D5	SD2_D4
SD2_D3	SD2_D2	SD2_D1	SD2_D0
SD2_NCD	SD2_CLK	SD2_CMD	SD2_W
	USB INTERF	ACE (5 PINS)	
USBUP_DP	USBUP_DM	XTAL1 (CLKIN)	XTAL2
RBIAS			
	2-PORT USB INT	ERFACE (7 PINS)	
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3
USBDN_DP3	USBDN_DM3	VBUS_DET	
	SPI INTERFA	ACE (4 PINS)	
SPI_CE_n	SPI_CLK / SCL	SPI_DO / SDA / SPI_SPD_SEL	SPI_DI
	MISC (8 PINS)	
nRESET	TEST	LED	
CRD_PWR2	CRD_PWR1	(3) NC	
	POWER	(10 PINS)	
(8) VDD33	CRFILT	PLLFILT	
	ТОТ	AL 64	

4.0 PIN DESCRIPTIONS

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Section 6.0, "Configuration Options," on page 22. Please reference Section Appendix A:, "Acronyms," on page 55 for a list of the acronyms used.

The "n" symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. When "n" is not present in the signal name, the signal is asserted at a high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

4.1 USB2660/USB2660i Pin Descriptions

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description
	II.	S	ECURE DIGITAL INTERFACE
SD1_D[7:0]	27 28 31 38 40 41 25 26	I/O8PU	Secure Digital Data 7-0 These are the bi-directional data signals SD_D0 - SD_D7 with weak pull-up resistors.
SD1_CLK	29	O8	Secure Digital Clock
			This is an output clock signal to the SD/MMC device.
SD1_CMD	32	I/O8PU	Secure Digital Command This is a bi-directional signal that connects to the CMD signal of the SD/MMC device. The bi-directional signal has a weak internal pull-up resistor.
SD1_nCD	22	I/O8PU	Secure Digital Card Detect Designates as the Secure Digital card detection pin and has an internal pull-up.
SD1_WP	21	I/O8	Secure Digital Write Protected Designates as the Secure Digital card mechanical write protect detect pin.
		SECO	ND SECURE DIGITAL INTERFACE
SD2_D[7:0]	11 12 16 18 19 20 9	I/O8PU	SD2 Data 7-0 These are the bi-directional data signals SD2_D0 - SD2_D7 and have weak pull-up resistors.
SD2_CLK	13	O8	SD2 Clock This is an output clock signal designated for to the SD2/MMC device.

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS (CONTINUED)

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description	
SD2_CMD	17	I/O8PU	SD2 Command	
			This is a bi-directional signal designated by for the CMD signal of the SD2/MMC device. The bi-directional signal has a weak internal pull-up resistor.	
SD2_nCD	8	I/O8	SD2 Card Detect	
			Designates as the second Secure Digital card detection pin and has an internal pull-up.	
SD2_WP	45	I/O8	SD2 Write Protected	
			Designates as the second Secure Digital card interface mechanical write detect pin.	
		N	MEMORY STICK INTERFACE	
MS_BS	29	O8	Memory Stick Bus State	
			This pin is connected to the bus state pin of the MS device. It is used to control the Bus States 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.	
MS_INS	39	IPU	Memory Stick Card Insertion	
			Designates as the Memory Stick card detection pin and has a weak internal pull-up resistor.	
MS_SCLK	21	O8	Memory Stick System Clock	
			This pin is an output clock signal to the MS device.	
MS_D[7:0]	28 27 25 26 40 38 31 32	I/O8PD	Memory Stick System Data In/Out These pins are the bi-directional data signals for the MS device. In serial mode, the most significant bit (MSB) of each byte is transmitted first by either MSC or MS device on MS_D0. MS_D0, MS_D2, and MS_D3 have weak pull-down resistors. MS_D1 has a pull-down resistor if in parallel mode, otherwise it is disabled. In 4- or 8-bit parallel modes, all MS_D7 - MS_D0 signals have weak pull-down resistors.	
	1		P-PICTURE CARD INTERFACE	
xD_D[7:0]	38 40 41 21 25 26 27 28	I/O8PD	xD-Picture Card Data 7-0 These pins are the bi-directional data signals xD_D7 - xD_D0 and have weak internal pull-down resistors.	
xD_ALE	31	O8PD	xD-Picture Card Address Strobe	
			This pin is an active high Address Latch Enable (ALE) signal for the xD device. This pin has a weak pull-down resistor that is permanently enabled.	

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS (CONTINUED)

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description	
xD_nB/R	36	IPU	xD-Picture Card Busy or Data Ready	
			This pin is connected to the BSY/RDY pin of the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (the internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_nCE	34	O8PU	xD-Picture Card Chip Enable	
			This pin is an active low chip enable signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_CLE	32	O8PD	xD-Picture Card Command Strobe	
			This pin is an active high Command Latch Enable signal for the xD device. This pin has a weak pull-down resistor that is permanently enabled.	
xD_nCD	37	I/O8	xD-Picture Card Detection	
			Designates as the xD-Picture Card detection pin.	
xD_nRE	35	O8PU	xD-Picture Card Read Enable	
			This pin is an active low read strobe signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_nWE	30	O8PU	xD-Picture Card Write Enable	
			This pin is an active low write strobe signal for the xD-Picture Card device.	
			When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal power FET.	
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).	
xD_nWP	29	O8PD	xD-Picture Card Write Protect	
			This pin is an active low write protect signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.	

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS (CONTINUED)

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description		
	USB INTERFACE				
USBUP_DM USBUP_DP	59 58	I/O-U	USB Bus Data		
			These pins connect to the upstream USB bus data signals (host port or upstream hub). USBUP_DM and USBUP_DP can be swapped using the PortSwap feature (See Section 6.4.4.20, "F1h: Port Swap," on page 38).		
USBDN_DM	3	I/O-U	USB Bus Data		
[3:2] USBDN_DP [3:2]	1 4 2		These pins connect to the downstream USB bus data signals and can be swapped using the PortSwap feature (See Section 6.4.4.20, "F1h: Port Swap," on page 38).		
PRTCTL[3:2]	7	I/OD6	USB Power Enable		
	6	PU	As an output, these pins enable power to downstream USB peripher devices and have weak internal pull-up resistors. See Section 4.3, "Power Control" for diagram and usage instructions.		
			As an input, when the power is enabled, these pins monitor the over- current condition. When an over-current condition is detected, the pins turn the power off.		
VBUS_DET	55	I	Detect Upstream VBUS Power		
			Detects the state of upstream VBUS power. The hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event).		
			When designing a detachable hub, connect this pin to the VBUS power pin of the USB port that is upstream of the hub.		
			For self-powered applications with a permanently attached host, this pin should be pulled up, typically to VDD33.		
			VBUS is a 3.3 volt input. A resistor divider must be used if connecting to 5 volts of USB power.		
RBIAS	63	I-R	USB Transceiver Bias		
			A 12.0 k Ω , \pm 1.0% resistor is attached from VSS to this pin in order to set the transceiver's internal bias currents.		
XTAL1 (CLKIN)	61	ICLKx	24 MHz Crystal Input or External Clock Input		
			This pin can be connected to one terminal of the crystal or it can be connected to an external 24 MHz clock when a crystal is not used.		
XTAL2	60	OCLKx	24 MHz Crystal Output		
			This is the other terminal of the crystal, or it is left open when an external clock source is used to drive XTAL1(CLKIN).		
	SPI INTERFACE				
SPI_CE_n	49	O12	SPI Chip Enable		
			This is the active low chip enable output. If the SPI interface is enabled, this pin must be driven high in power down states.		
SPI_CLK SCL	50	I/O12	This is the SPI clock out to the serial ROM. See Section 4.4, "ROM BOOT Sequence" for diagram and usage instructions. During reset, drive this pin low.		
		I/O6	When configured, this is the I ² C EEPROM clock pin.		

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS (CONTINUED)

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description
SPI_DO /	51	I/O12	This is the data out for the SPI port. See Section 4.4, "ROM BOOT Sequence" for diagram and usage instructions.
SDA / SPI_SPD_SEL		I/O6	This pin is the data pin when the device is connected to the optional I ² C EEPROM.
SFI_SFD_SEL		I/O12	This pin is used to select the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, the internal pull-down will be disabled.
			'0' = 30 MHz (No external resistor should be applied.) '1' = 60 MHz (A 10 K external pull-up resistor must be applied.)
			If the latched value is '1', then the pin is tri-stated when the chip is in the suspend state.
			If the latched value is '0', then the pin is driven low during a suspend state.
SPI_DI	52	I/O12PD	This is the data in to the controller from the ROM. This pin has a weak internal pull-down applied at all times to prevent floating.
			MISC
LED	53	1/06	It can be used as an LED output.
NC	44		
CRD_PWR2	15	I/O200	Card power drive: 3.3 V (100 mA or 200 mA)
			This pin specifically powers the second Secure Digital interface (slot).
			Please reference Section 6.4.5.9, "147h-14Bh: Device to LUN Mapping," on page 42.
CRD_PWR1	43	I/O200	Card power drive: 3.3 V (100 mA or 200 mA)
			This pin powers the multiplexed flash media interface (slot) for xD, MS, and SD/MMC.
			Please reference Section 6.4.2.3, "A4h-A5h: Smart Media Device Power Configuration," on page 30.
REG_EN		IPU	REG_EN: This pin is internally pulled up to enable the internal 1.8 V regulators.
			In order to disable the regulators, this pin will need to be externally connected to ground.
			When the internal regulator is enabled, the 1.8 V power pins must be left unconnected, except for the required bypass capacitors.
nRESET	54	IS	RESET Input
			The system uses this active low signal reset the chip. The active low pulse should be at least 1 μs wide.
TEST	56	I	TEST Input
			Tie this pin to ground for normal operation.

TABLE 4-1: USB2660/USB2660I PIN DESCRIPTIONS (CONTINUED)

Symbol	64-PIN QFN	Buffer Type (Table 4-2)	Description	
		[DIGITAL / POWER / GROUND	
CRFILT	23		VDD Core Regulator Filter Capacitor	
			This pin requires a 1.0 μF (or greater) \pm 20% (ESR <0.1 $\!\Omega$) capacitor to VSS.	
PLLFILT	62		Phase-locked Loop Regulator Filter Capacitor	
			This pin requires 1.0 μF (or greater) \pm 20% (ESR <0.1 $\!\Omega\!$) capacitor to VSS.	
VDD33	5		3.3 V Power and Regulator Input	
	14 24 33 42		3.3 V Power and Regulator Input Please refer to Section 8.0, "DC Parameters," on page 47 for more information.	
	47 57 64		Pins 24 and 64 require external bypass capacitors of 4.7 μF minimum.	
VSS	ePad		The ground pad is the only VSS for the device and must be tied to ground with multiple vias.	
NC	46 48		No Connect pins	
			No trace or signal should be routed/attached to these pins.	

4.2 Buffer Type Descriptions

TABLE 4-2: USB2660/USB2660I BUFFER TYPE DESCRIPTIONS

Buffer	Description
I	Input.
IPU	Input with weak internal pull-up.
IS	Input with Schmitt trigger.
I/O6	Input/output buffer with 6 mA sink and 6 mA source.
I/OD6PU	Input/open drain output buffer with a 6 mA sink.
O8	Output buffer with an 8 mA sink and an 8 mA source.
O8PD	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor.
O8PU	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor.
I/O8	Input/output buffer with an 8 mA sink and an 8 mA source.
I/O8PD	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor.
I/O8PU	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor.
012	Output buffer with a 12 mA sink and a 12 mA source.
I/O12	Input/output buffer with 12 mA sink and 12 mA source.
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source with a weak internal pull-down resistor.
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled.
ICLKx	XTAL clock input.
OCLKx	XTAL clock output.
I/O-U	Analog input/output as defined in the USB 2.0 Specification.
I-R	RBIAS.

4.3 Port Power Control

Port Power control using a USB Power Switch

The USB2660/USB2660i has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a '0'. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The internal over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.

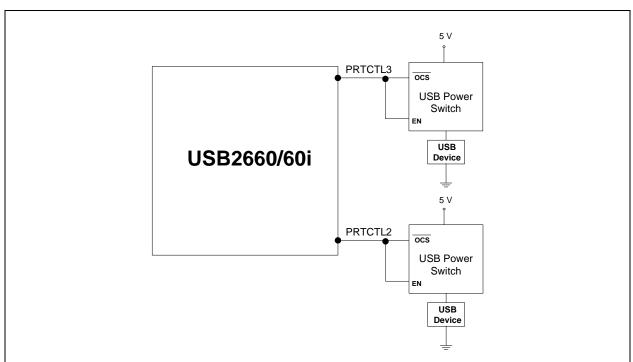
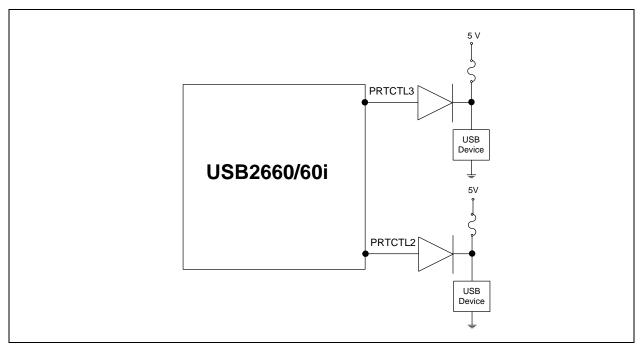



FIGURE 4-1: PORT POWER CONTROL WITH USB POWER SWITCH

4.3.1 PORT POWER CONTROL USING A POLY FUSE

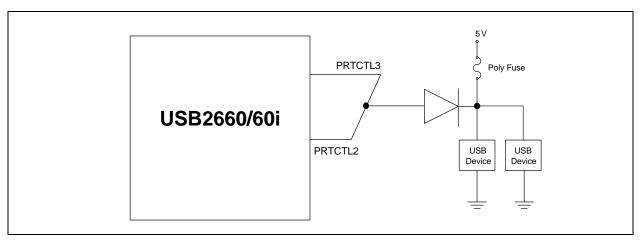

When using the USB2660/USB2660i with a poly fuse, an external diode must be used (See Figure 4-2). When disabling port power, the USB2660/USB2660i will drive a '0'. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB2660/USB2660i output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This open drain output condition means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

FIGURE 4-2: PORT POWER CONTROL WITH A SINGLE POLY FUSE AND MULTIPLE LOADS

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

FIGURE 4-3: PORT POWER WITH GANGED CONTROL WITH POLY FUSE

4.4 ROM BOOT Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of "2DFU" (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an I²C ROM. The firmware looks for the signature 'ATA2' at the offset of FCh-FFh and 'ecf1' at the offset of 17Ch-17Fh in the I²C ROM. The firmware reads in the I²C ROM to configure the hardware and software internally. Please refer to Section 6.3.2, "EEPROM Data Descriptor," on page 23 for the details of the configuration options.

The SPI ROM required for the USB2660/USB2660i is a recommended minimum of 1 Mbit and support either 30 MHz or 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 30 MHz operation, this pin must be pulled to ground through a 100 k Ω resistor. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor.

The SPI_SPD_SEL pin is used to choose the speed of the SPI interface. During nRESET assertion, this pin will be tristated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality. The internal pull-down will be disabled.

The firmware can determine the speed of operation on the SPI port by checking the SPI_SPEED in the SPI_CTL register (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

FIGURE 4-4: SPI ROM CONNECTION

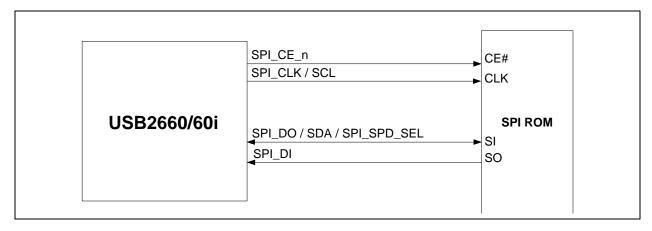
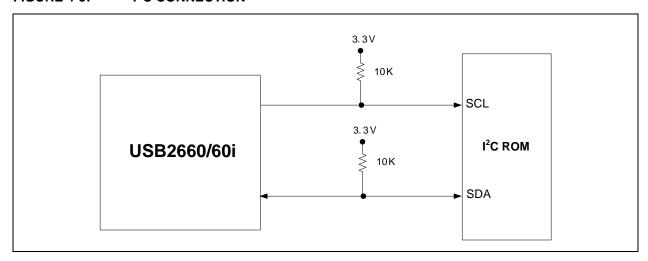



FIGURE 4-5: I²C CONNECTION

5.0 PIN RESET STATES

FIGURE 5-1: PIN RESET STATES

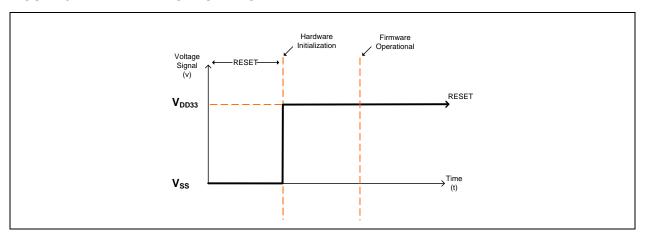


TABLE 5-1: LEGEND FOR PIN RESET STATES TABLE

Symbol	Description
0	Output driven low
1	Output driven high
IP	Input enabled
PU	Hardware enables pull-up
PD	Hardware enables pull-down
none Hardware disables pad	
	Hardware disables function
Z	Hardware disables pad. Both output driver and input buffers are disabled.

5.1 Pin Reset States

TABLE 5-2: USB2660/USB2660I RESET STATES TABLE

		Rese	t State	
Pin	Pin Name	Function	Input/ Output	PU/PD
1	USBDN_DM2	USBDN_DM2	IP	PD
2	USBDN_DP2	USBDN_DP2	IP	PD
3	USBDN_DM3	USBDN_DM3	IP	PD
4	USBDN_DP3	USBDN_DP3	IP	PD
6	PRTCTL2	PRTCTL	0	
7	PRTCTL3	PRTCTL	0	
8	SD2_nCD	none	IP	PU
9	SD2_D1	SD2_D1	Z	

TABLE 5-2: USB2660/USB2660I RESET STATES TABLE (CONTINUED)

		Reset State		
Pin	Pin Name	Function	Input/ Output	PU/PD
10	SD2_D0	SD2_D0	Z	
11	SD2_D7	SD2_D7	Z	
12	SD2_D6	SD2_D6	Z	
13	SD2_CLK	SD2_CLK	Z	
15	CRD_PWR2	none	Z	
16	SD2_D5	SD2_D5	Z	
17	SD2_CMD	SD2_CMD	Z	
18	SD2_D4	SD2_D4	Z	
19	SD2_D3	SD2_D3	Z	
20	SD2_D2	SD2_D2	Z	
21	SD1_WP/MS_SCLK/xD_D4	none	0	
22	SD1_nCD	none	IP	PU
25	SD1_D1 / MS_D5 / xD_D3	none	Z	
26	SD1_D0 / MS_D4 / xD_D2	none	Z	
27	SD1_D7 / MS_D6 / xD_D1	none	Z	
28	SD1_D6 / MS_D7 / xD_D0	none	Z	
29	SD1_CLK / MS_BS / xD_nWP	none	Z	
30	xD_nWE	xD_nWE	Z	
31	SD1_D5 / MS_D1 / xD_ALE	none	Z	
32	SD1_CMD / MS_D0 / xD_CLE	none	Z	
34	xD_nCE	xD_nCE	Z	
35	xD_nRE	xD_nRE	Z	
36	xD_nB/R	xD_nB/R	Z	
37	xD_nCD	none	IP	PU
38	SD1_D4 / MS_D2 / xD_D7	none	Z	
39	MS_INS	none	IP	PU
40	SD1_D3 / MS_D3 / xD_D6	none	Z	

TABLE 5-2: USB2660/USB2660I RESET STATES TABLE (CONTINUED)

		Rese	t State	
Pin	Pin Name	Function	Input/ Output	PU/PD
41	SD1_D2 / xD_D5	none	Z	
43	CRD_PWR1	none	Z	
44	NC	none	0	
45	SD2_WP	none	0	
49	SPI_CE_n	SPI_CE_n	1	
50	SPI_CLK / SCL	none	0	
51	SPI_DO / SDA / SPI_SPD_SEL	none	0	
52	SPI_DI	SPI_DI	IP	PD
53	LED / TXD	none	0	
54	nRESET	nRESET	IP	
55	VBUS_DET	VBUS_DET	IP	
56	TEST	TEST	IP	PD
58	USBUP_DP	USBUP_DP	Z	
59	USBUP_DM	USBUP_DM	Z	
			1	

6.0 CONFIGURATION OPTIONS

6.1 Hub

Microchip's USB 2.0 hub is fully compliant to the Universal Serial Bus Specification available from the USB Implementer's Forum found at http://www.usb.org (Revision 2.0 April 27, 2000 and the 12/7/2000 and 5/28/2002 Errata). Please reference Chapter 11 (Hub Specification) for general details regarding hub operation and functionality.

For performance reasons, the hub provides 1 transaction translator (TT) that is shared by both downstream ports defined as a single-TT configuration. The TT contains 4 non-periodic buffers.

6.1.1 HUB CONFIGURATION OPTIONS

The Microchip hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub:

- · via the internal default settings or
- · by settings stored in an external EEPROM or SPI Flash device.

6.1.1.1 Power Switching Polarity

The hub will only support active high power controllers.

6.1.2 VBUS DETECT

According to Section 7.2.1 of the USB 2.0 Specification, a device cannot provide power to its D+ or D- pull-up resistors unless the upstream port's VBUS is in the asserted (powered) state. The VBUS_DET pin on the hub monitors the state of the upstream VBUS signal and will not pull-up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (not powered), the hub will remove power from the D+ pull-up resistor within 10 seconds.

6.2 Card Reader

The Microchip USB2660/USB2660i is fully compliant with the following flash media card reader specifications:

- Secure Digital 2.0 / MultiMediaCard 4.2
 - SD 2.0, HS-SD, HC-SD
 - TransFlash™ and reduced form factor media
 - 1/4/8 bit MMC 4.2
- Memory Stick 1.43
- Memory Stick Pro Format 1.02
- Memory Stick Pro-HG Duo Format 1.01
 - Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2

6.3 System Configurations

6.3.1 EEPROM/SPI INTERFACE

The USB2660/USB2660i can be configured via a 2-wire (I²C) EEPROM (512x8) or an external SPI flash device containing the firmware for the USB2660/USB2660i. If an external configuration device does not exist the internal default values will be used. If one of the external devices is used for configuration, the OEM can update the values through the USB interface. The hub will then "attach" to the upstream USB host.

The USBDM tool set is available in the USB264x Hub Card reader combo software release package. To download the software package from Microchip's website, please visit:

http://www.microchip.com/search/searchapp/searchhome.aspx?id=2&q=mkt/CW_SFT_PUB.nsf/Agree-ments/OBJ+Hub+Card+Reader

to go to the OBJ Hub Card Reader Software Download Agreement. Review the license, and if you agree, check the "I agree" box and then select "Confirm". You will then be able to download USB264x Hub Card reader combo release package zip file containing the USBDM tool set.

Please note that the following applies to the system values and descriptions when used:

- N/A = Not applicable to this part
- Reserved = For internal use

6.3.2 EEPROM DATA DESCRIPTOR

TABLE 6-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
00h	USB_SER_LEN	USB Serial String Descriptor Length	1Ah
01h	USB_SER_TYP	USB Serial String Descriptor Type	03h
02h-19h	USB_SER_NUM	USB Serial Number	"000008264001" (See Note 6-1)
1Ah-1Bh	USB_VID	USB Vendor Identifier	0424
1Ch-1Dh	USB_PID	USB Product Identifier	4040
1Eh	USB_LANG_LEN	USB Language String Descriptor Length	04h
1Fh	USB_LANG_TYP	USB Language String Descriptor Type	03h
20h	USB_LANG_ID_LSB	USB Language Identifier Least Significant Byte	09h (See Note 6-3)
21h	USB_LANG_ID_MSB	USB Language Identifier Most Significant Byte	04h (See Note 6-3)
22h	USB_MFR_STR_LEN	USB Manufacturer String Descriptor Length	10h
23h	USB_MFR_STR_TYP	USB Manufacturer String Descriptor Type	03h
24h-31h	USB_MFR_STR	USB Manufacturer String	"Generic" (See Note 6-1)
32h-5Dh	Reserved	-	00h
5Eh	USB_PRD_STR_LEN	USB Product String Descriptor Length	30h
5Fh	USB_PRD_STR_TYP	USB Product String Descriptor Type	03h
60h-99h	USB_PRD_STR	USB Product String	"Ultra Fast Media Reader" (See Note 6-1)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (Reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	80h (Reverse SD2_WP only
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h	MS_PWR_LB	Memory Stick Device Power Lo byte	00h
A1h	MS_PWR_HB	Memory Stick Device Power Hi byte	0Ah
A2h-A3h	Not Applicable	-	00h
A4h	SM_PWR_LB	Smart Media Device Power Lo byte	00h (See Note 6-2)
A5h	SM_PWR_HB	Smart Media Device Power Hi byte	0Ah (See Note 6-2)
	•		

TABLE 6-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS (CONTINUED)

Address	Register Name	Description	Internal Default Value
A6h	SD_PWR_LB	Secure Digital Device Power Lo byte	00h
A7h	SD_PWR_HB	Secure Digital Device Power Hi byte	0Ah
A8h	LED_BLK_INT	LED Blink Interval	02h
A9h	LED_BLK_DUR	LED Blink After Access	28h
AAh - B0h	DEV0_ID_STR	Device 0 Identifier String	N/A
B1h - B7h	DEV1_ID_STR	Device 1 Identifier String	"MS"
B8h - BEh	DEV2_ID_STR	Device 2 Identifier String	"SM" (See Note 6-2)
BFh - C5h	DEV3_ID_STR	Device 3 Identifier String	"SD/MMC"
C6h - CDh	INQ_VEN_STR	Inquiry Vendor String	"Generic"
CEh - D2h	INQ_PRD_STR	Inquiry Product String	82660
D3h	DYN_NUM_LUN	Dynamic Number of LUNs	01h
D4h - D7h	DEV_LUN_MAP	Device to LUN Mapping	FFh, 00h, 00h, 00h
D8h - DAh	Reserved	-	00h, 06h, 0Dh
DBh - DDh	Reserved	-	59h, 56h, 97h

TABLE 6-2: HUB CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	Product ID Least Significant Byte	60h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	A1h
E3h	DID_MSB	Device ID Most Significant Byte	08h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:0	Boost_3:0	00h
F1h	PRT_SWP	Port Swap	00h
F2h	PRTM12	Port Map 12	00h
F3h	PRTM3	Port Map 3	00h

TABLE 6-3: OTHER INTERNAL CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
F4h	Reserved	Reserved	00h
F5h	Reserved	Reserved	66h
F6h	Reserved	Reserved	00h
F7h	Reserved	Reserved	00h
F8h-FAh	Reserved	Reserved	59h, 56h, 97h
FBh	Not Applicable	-	00h
FCh-FFh	NVSTORE_SIG	Non-Volatile Storage Signature	"ATA2"

6.4 Set bit 7 of bmAttribute to enable the registers in Table 6-4.

TABLE 6-4: INTERNAL FLASH MEDIA CONTROLLER EXTENDED CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
100h - 106h	CLUN0_ID_STR	Combo LUN 0 Identifier String	"COMBO"
107h - 10Dh	CLUN1_ID_STR	Combo LUN 1 Identifier String	"COMBO"
10Eh - 114h	CLUN2_ID_STR	Combo LUN 2 Identifier String	"COMBO"
115h - 11Bh	CLUN3_ID_STR	Combo LUN 3 Identifier String	"COMBO"
11Ch - 122h	CLUN4_ID_STR	Combo LUN 4 Identifier String	"COMBO"
123h - 129h	DEV4_ID_STR	Device 4 Identifier String	"SD/MMC2"
12Ah-145h	Not applicable	-	00h
12Ah - 130h			00h
131h - 137h			00h
138h - 13Eh			00h
13Fh - 145h			00h
146h	DYN_NUM_ EXT_LUN	Dynamic Number of Extended LUNs	01h
147h - 14Bh	DEV_LUN_MAP	Device to LUN Mapping	01h, FFh, FFh, FFh, FFh
14Ch	SD2_PWR_LB	Second Secure Digital Power Lo byte-	0Ah
14Dh	SD2_PWR_HB	Second Secure Digital Power Hi byte	00h
14Eh-17Bh	Not Applicable	-	00h
17Ch-17Fh	NVSTORE_SIG2	Non-Volatile Storage Signature	"ecf1"

Note 6-1 This value is a UNICODE UTF-16LE encoded string value that meets the USB 2.0 specification (Revision 2.0, 2000). Values in double quotations without this note are ASCII values.

Note 6-2 A value of "SM" will be overridden with "xD" once an xD-Picture Card has been identified.

Note 6-3 For a list of the most current 16-bit language ID's defined by the USB-IF, please visit http://www.unicode.org or consult *The Unicode Standard, Worldwide Character Encoding*, (Version 4.0), The Unicode Consortium, Addison-Wesley Publishing Company, Reading, Massachusetts.

6.4.1 EEPROM DATA DESCRIPTOR REGISTER DESCRIPTIONS

6.4.1.1 00h: USB Serial String Descriptor Length

Byte	Name	Description
0	USB_SER_LEN	USB serial string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

6.4.1.2 01h: USB Serial String Descriptor Type

Byte	Name	Description
1	USB_SER_TYP	USB serial string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

6.4.1.3 02h-19h: USB Serial Number Option

Byte	Name	Description
25:2	USB_SER_NUM	Maximum string length is 12 hex digits. Must be unique to each device.

6.4.1.4 1Ah-1Bh: USB Vendor ID Option

Byte	Name	Description
1:0	USB_VID	This ID is unique for every vendor. The vendor ID is assigned by the USB Implementer's Forum.

6.4.1.5 1Ch-1Dh: USB Product ID Option

Byte	Name	Description
1:0	USB_PID	This ID is unique for every product. The product ID is assigned by the vendor.

6.4.1.6 1Eh: USB Language Identifier Descriptor Length

Byte	Name	Description
0	USB_LANG_LEN	USB language ID string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

6.4.1.7 1Fh: USB Language Identifier Descriptor Type

Byte	Name	Description
1		USB language ID string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

6.4.1.8 20h: USB Language Identifier Least Significant Byte

Byte	Name	Description
2	USB_LANG_ID _LSB	English language code = '0409'. See Note 6-3 to reference additional language ID's defined by the USB-IF.

6.4.1.9 21h: USB Language Identifier Most Significant Byte

Byte	Name	Description
3	USB_LANG_ID _MSB	English language code = '0409'. See Note 6-3 to reference additional language ID's defined by the USB-IF.

6.4.1.10 22h: USB Manufacturer String Descriptor Length

Byte	Name	Description
0		USB manufacturer string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

6.4.1.11 23h: USB Manufacturer String Descriptor Type

Byte	Name	Description
1	USB_MFR_STR _TYP	USB manufacturer string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

6.4.1.12 24h-31h: USB Manufacturer String Option

Byte	Name	Description
15:2	USB_MFR_STR	The maximum string length is 28 characters.

6.4.1.13 32h-5Dh: Reserved

Byte	Name	Description
59:16	Reserved	Reserved.

6.4.1.14 5Eh: USB Product String Descriptor Length

Byte	Name	Description
0	USB_PRD_STR _LEN	USB product string descriptor length as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bLength" which describes the size of the string descriptor (in bytes).

6.4.1.15 5Fh: USB Product String Descriptor Type

Byte	Name	Description
1	USB_PRD_STR _TYP	USB product string descriptor type as defined by Section 9.6.7 "String" of the USB 2.0 Specification (Revision 2.0, 2000). This field is the "bDescriptorType" which is a constant value associated with a string descriptor type.

6.4.1.16 60h-99h: USB Product String Option

Byte	Name	Description
59:2	USB_PRD_STR	This string will be used during the USB enumeration process in the Windows [®] operating system. Maximum string length is 28 characters.

6.4.1.17 9Ah: USB BmAttribute (1 byte)

Bit	Name	Description
7:0	USB_BM_ATT	Self- or Bus-Power: Selects between self- and bus-powered operation.
		The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).
		When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 Specification is not violated.
		When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		80 = Bus-powered operation (default) C0 = Self-powered operation A0 = Bus-powered operation with remote wake-up E0 = Self-powered operation with remote wake-up

6.4.1.18 9Bh: USB MaxPower (1 byte)

Bit	Name	Description
7:0	USB_MAX_PWR	USB Max Power per the USB 2.0 Specification. Do NOT set this value greater than 100 mA.

6.4.1.19 9Ch-9Fh: Attribute Byte Descriptions

Byte	Byte Name	Bit	Description
0	ATT_LB	3:0	Always reads '0'.
		4	Inquire Manufacturer and Product ID Strings
			'1' - Use the Inquiry Manufacturer and Product ID Strings.
			'0' (default) - Use the USB Descriptor Manufacturer and Product ID Strings.
		5	Always reads '0'.
		6	Reverse SD Card Write Protect Sense
			'1' (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			'0' - SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.
		7	Extended Configuration Enable
			'1' - This bit must be set to '1' to enable editing, updating, and reading from registers 100h-17Fh.
			'0' - The internal configuration is loaded. When this bit is not set (and it equals '0'). It will not read from registers 100h-17Fh.
1	ATT_HLB	3:0	Always reads '0'.
		4	Activity LED True Polarity
			'1' - Activity LED to Low True.
			'0' (default) - Activity LED polarity to High True.
		5	Common Media Insert / Media Activity LED
			'1' - The activity LED will function as a common media inserted/media access LED.
			'0' (default) - The activity LED will remain in its idle state until media is accessed.
		6	Always reads '0'.
		7	Reverse SD2 Card Write Protect Sense
			'1' (default) - SD cards in LUN 1 will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			'0' - SD cards in LUN 1 will be write protected when SW_nWP is low, and writable when SW_nWP is high.
2	ATT_LHB	0	Attach on Card Insert / Detach on Card Removal
			'1' - Attach on Insert is enabled.
			'0' (default) - Attach on Insert is disabled.
		1	Always reads '0'.
		2	Enable Device Power Configuration
			'1' - Custom Device Power Configuration stored in the NVSTORE is used.
			'0' (default) - Default Device Power Configuration is used.
		7:3	Always reads '0'.
3	ATT_HB	6:0	Always reads '0'.
		7	xD Player Mode

6.4.2 A0H-A7H: DEVICE POWER CONFIGURATION

The USB2660/USB2660i has two internal FETs which can be utilized for card power. For information about the other internal FET, please see Section 6.4.5.10, "14Ch-14Dh: Second Secure Digital Device Power Configuration," on page 42. This section describes the default internal configuration. The settings are stored in NVSTORE and provide the following features:

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (Default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The "Device Power Configuration" bits are ignored unless the "Enable Device Power Configuration" bit is set. See Section 6.4.1.19, "9Ch-9Fh: Attribute Byte Descriptions," on page 29.

6.4.2.1 A0h-A1h: Memory Stick Device Power Configuration

FET	Туре	Bits	Bit Type	Description
0	FET Lo Byte	3:0	Low Nibble	0000b Disabled
1	MS_PWR_LB	7:4	High Nibble	
2	FET Hi Byte MS_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

6.4.2.2 A2h-A3h: Not Applicable

Byte	Name	Description
1:0	Not Applicable	Not applicable.

6.4.2.3 A4h-A5h: Smart Media Device Power Configuration

FET	Туре	Bits	Bit Type	Description
0	FET Lo Byte	3:0	Low Nibble	0000b Disabled
1	SM_PWR_LB	7:4	High Nibble	
2	FET Hi Byte SM_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

6.4.2.4 A6h-A7h: Secure Digital Device Power Configuration

FET	Туре	Bits	Bit Type	Description
0	FET Lo Byte	3:0	Low Nibble	0000b Disabled
1	SD_PWR_LB	7:4	High Nibble	
2	FET Hi Byte SD_PWR_HB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
3		7:4	High Nibble	0000b Disabled

6.4.2.5 A8h: LED Blink Interval

Byte	Name	Description
0	LED_BLK_INT	The blink rate is programmable in 50 ms intervals. The high bit (7) indicates an idle state:
		'0' - Off '1' - On
		The remaining bits (6:0) are used to determine the blink interval up to a max of 128 x 50 ms.

6.4.2.6 A9h: LED Blink Duration

Ву	te	Name	Description
1		LED_BLK_DUR	LED Blink After Access. This byte is used to designate the number of seconds that the LED will continue to blink after a drive access. Setting this byte to "05" will cause the LED to blink for 5 seconds after a drive access.

6.4.3 DEVICE ID STRINGS

These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the device to LUN mapping bytes in applications where the OEM wishes to reorder and rename the LUNs. If multiple devices are mapped to the same LUN (a COMBO LUN), then the CLUN#_ID_STR will be used to name the COMBO LUN instead of the individual device strings. When applicable, the "SM" value will be overridden with xD once an xD-Picture Card has been identified.

6.4.3.1 AAh-B0h: Device 0 Identifier String

Byte	Name	Description
6:0	DEV0_ID_STR	Not applicable.

6.4.3.2 B1h-B7h: Device 1 Identifier String

Byte	Name	Description
6:0	DEV1_ID_STR	This ID string is associated with the Memory Stick device.

6.4.3.3 B8h-BEh: Device 2 Identifier String

Byte	Name	Description
6:0	DEV2_ID_STR	This ID string is associated with the Smart Media (Note 6-2) device.

6.4.3.4 BFh-C5h: Device 3 Identifier String

Ву	/te	Name	Description
6:	:0	DEV3_ID_STR	This ID string is associated with the Secure Digital / MultiMediaCard device.

6.4.3.5 C6h-CDh: Inquiry Vendor String

Byte	Name	Description
7:0	INQ_VEN_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

6.4.3.6 CEh-D2h: Inquiry Product String

Byte	Name	Description
4:0	INQ_PRD_STR	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings.

6.4.3.7 D3h: Dynamic Number of LUNs

Byte	Name	Description
7:0	DYN_NUM_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces.
		If this field is set to "FF", the program assumes that you are using the default value and icons will be configured per the default configuration.

6.4.3.8 D4h-D7h: Device to LUN Mapping

Byte	Name	Description
3:0	DEV_LUN_MAP	These registers map a device controller (SD/MMC, SM (Note 6-2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields. Setting a register to "FF" indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to "FF" forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and OEM board layout. The number of unique LUNs mapped must match the value in the Section 6.4.3.7, "D3h: Dynamic Number of LUNs," on page 32.

6.4.3.9 D8h-DDh: Reserved

Byte	Name	Description
2:0	Reserved	Reserved.

6.4.4 HUB CONTROLLER CONFIGURATIONS

6.4.4.1 DEh: Vendor ID (LSB)

Bit	Byte Name	Description
7:0	VID_LSB	Least Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

6.4.4.2 DFh: Vendor ID (MSB)

Bit	Byte Name	Description
7:0		Most Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the vendor of the user device (assigned by USB Implementer's Forum).

6.4.4.3 E0h: Product ID (LSB)

Bit	Name	Description
7:0		Least Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

6.4.4.4 E1h: Product ID (MSB)

Bit	Name	Description
7:0	PID_MSB	Most Significant Byte of the Product ID. This is a 16-bit value that the vendor can assign that uniquely identifies this particular product.

6.4.4.5 E2h: Device ID (LSB)

Bit	Name	Description
7:0	DID_LSB	Least Significant Byte of the Device ID. This is a 16-bit device release number in BCD (binary coded decimal) format.

6.4.4.6 E3h: Device ID (MSB)

Bit	Name	Description
7:0	DID_MSB	Most Significant Byte of the Device ID. This is a 16-bit device release number in BCD format.

6.4.4.7 E4h: Configuration Data Byte 1 (CFG_DAT_BYT1)

Bit	Name	Description
7	SELF_BUS_PWR	Self- or Bus-Power: Selects between self- and bus-powered operation.
		The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).
		When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated.
		When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		'0' = Bus-powered operation '1' = Self-powered operation
6	Reserved	Reserved
5	HS_DISABLE	Hi-Speed Disable: Disables the capability to attach as either a Hi-/Full-Speed device, and forces attachment as Full-Speed only (i.e. no Hi-Speed support).
		'0' = Hi-/Full-Speed '1' = Full-Speed-Only (Hi-Speed disabled!)
4	Reserved	Reserved

Bit	Name	Description
3	EOP_DISABLE	EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the USB 2.0 Specification for additional details.
		'0' = An EOP is generated at the EOF1 point if no traffic is detected. '1' = EOP generation at EOF1 is disabled (normal USB operation).
		Note: Generation of an EOP at the EOF1 point may prevent a host controller (operating in FS mode) from placing the USB bus in suspend.
2:1	CURRENT_SNS	Over-Current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a per port or ganged basis is dependent upon the hardware implementation.
		'00' = Ganged sensing (all ports together) '01' = Individual (port-by-port) '1x' = Over-current sensing not supported (must only be used with buspowered configurations!)
0	PORT_PWR	Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation.
		'0' = Ganged switching (all ports together) '1' = Individual port-by-port switching

6.4.4.8 E5h: Configuration Data Byte 2 (CFG_DAT_BYT2)

Bit	Name	Description
7:6	Reserved	Reserved
5:4	OC_TIMER	OverCurrent Timer: Over-current timer delay. '00' = 50 ns '01' = 100 ns '10' = 200 ns '11' = 400 ns
3	COMPOUND	Compound Device: Allows OEM to indicate that the hub is part of a compound device (per the USB 2.0 Specification). The applicable port(s) must also be defined as having a "non-removable device". Note: When configured via strapping options, declaring a port as non-
		removable automatically causes the hub controller to report that it is part of a compound device. '0' = No '1' = Yes, the hub is part of a compound device
2:0	Reserved	Reserved

6.4.4.9 E6h: Configuration Data Byte 3 (CFG_DAT_BYT3)

Bit	Name	Description
7:4	Reserved	Reserved
3	PRTMAP_EN	Port Mapping Enable: Selects the method used by the hub to assign port numbers and disable ports. '0' = Standard Mode. Strap options or the following registers are used to define which ports are enabled, and the ports are mapped as port 'n' on the hub is reported as port 'n' to the host, unless one of the ports is disabled, then the higher numbered ports are remapped in order to report contiguous port numbers to the host. Register 300Ah: Port disable for self-powered operation (Reset = 0x00). Register 300Bh: Port disable for bus-powered operation (Reset = 0x00). '1' = Port Map mode. The mode enables remapping via the registers defined below. Register 30FBh: Port Map 12 (Reset = 0x00) Register 30FCh: Port Map 3 (Reset = 0x00)
2:0	Reserved	Reserved

6.4.4.10 E7h: Non-Removable Device

Bit	Byte Name	Description
7:0	NR_DEVICE	Indicates which port(s) include non-removable devices.
		'0' = Port is removable '1' = Port is non-removable
		Informs the host if one of the active ports has a permanent device that is undetachable from the hub. The device must provide its own descriptor data.
		When using the internal default option, the NON_REM[1:0] pins will designate the appropriate ports as being non-removable.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0= Reserved
		Note: Bit 1 must be set to a '1' by the firmware for proper identification of the card reader as a non-removable device.

6.4.4.11 E8h: Port Disable For Self-Powered Operation

Bit	Byte Name	Description
7:0	PORT_DIS_SP	Disables 1 or more ports.
		'0' = Port is available '1' = Port is disabled
		During self-powered operation this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order since the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3
		Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0= Reserved

6.4.4.12 E9h: Port Disable For Bus-Powered Operation

Bit	Byte Name	Description
7:0	PORT_DIS_BP	Disables 1 or more ports.
		'0' = Port is available '1' = Port is disabled
		During self-powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		When using the internal default option, the PRT_DIS[1:0] pins will disable the appropriate ports.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Controls physical port 1 Bit 0 is Reserved

6.4.4.13 EAh: Max Power For Self-Powered Operation

Bit	Byte Name	Description
7:0	MAX_PWR_SP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.
		Note: The USB 2.0 Specification does not permit this value to exceed 100 mA.

6.4.4.14 EBh: Max Power For Bus-Powered Operation

Bit	Byte Name	Description
7:0	MAX_PWR_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.

6.4.4.15 ECh: Hub Controller Max Current For Self-Powered Operation

Bit	Byte Name	Description	
7:0	HC_MAX_C_SP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.	
		Note: The USB 2.0 Specification does not permit this value to exceed 10 mA.	
		A value of 50 (decimal) indicates 100 mA, which is the default value.	

6.4.4.16 EDh: Hub Controller Max Current For Bus-Powered Operation

Bit	Byte Name	Description
7:0	HC_MAX_C_BP	Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value will include the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value will NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device. A value of 50 (decimal) would indicate 100 mA, which is the default value.

6.4.4.17 EEh: Power-On Time

Bit	Byte Name	Description
7:0	PWR_ON_TIME	The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. If the host requests the power-on time, the system software uses this value to determine how long to wait before accessing a powered-on port.

6.4.4.18 EFh: Boost_Up

Bit	Name	Description	
7:2	Reserved	Reserved	
1:0	BOOST_IOUT	<u>'</u>	

6.4.4.19 F0h: Boost_3:0

Bit	Name	Description		
7:6	Reserved	Reserved		
5:4	BOOST_IOUT_3	Upstream USB electrical signaling drive strength boost bit for downstream port '3'.		
		'00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)		
3:2	BOOST_IOUT_2	Upstream USB electrical signaling drive strength boost bit for downstream port '2'.		
		'00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)		
		Note: "Boost" could result in non-USB Compliant parameters. OEM should use a '00' value unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.		
1:0	Reserved	Always reads '0'.		

6.4.4.20 F1h: Port Swap

Bit	Byte Name	Description	
7:0	PRT_SWP	Swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors.	
		'0' = USB D+ functionality is associated with the DP pin and D- functionality is associated with the DM pin.	
		'1' = USB D+ functionality is associated with the DM pin and D- functionality is associated with the DP pin.	
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= Controls physical port 3 Bit 2= Controls physical port 2 Bit 1= Reserved Bit 0= Controls physical port 0	

6.4.4.21 F2h: Port Map 12

Bit	Byte Name			Description
7:0	PRTM12	PortMap register	for ports 1 & :	2
		to report how mar	ny ports it has; ent. The host	a USB host controller, the hub is only permitted the hub is not permitted to select a numerical controller will number the downstream ports of er '1', up to the number of ports that the hub
		port on the hub is enabled (see PR	s the "physical TMAP_EN in I n port number	ed to as "logical port number" and the physical I port number". When remapping mode is Register 08h: Configuration Data Byte 3) the scan be remapped to different logical port solution.
		used, sta enabled	arting from nu ports; this en:	e that contiguous logical port numbers are imber '1' up to the maximum number of sures that the hub's ports are numbered in way a host will communicate with the ports.
		TABLE 6-5:	PORT MAP	REGISTER FOR PORTS 1 & 2
		Bit [7:4]	'0000'	Physical port 2 is disabled
			'0001'	Physical port 2 is mapped to Logical port 1
			'0010'	Physical port 2 is mapped to Logical port 2
			'0011'	Physical port 2 is mapped to Logical port 3
			'0100' to	Illegal; Do not use
			'1111'	
		Bit [3:0]	'0000'	Physical port 1 is disabled
			'0001'	Physical port 1 is mapped to Logical port 1
			'0010'	Physical port 1 is mapped to Logical port 2
			'0011'	Physical port 1 is mapped to Logical port 3
			'0100' to '1111'	Illegal; Do not use
			'0100' to	

6.4.4.22 F3h: Port Map 3

Bit	Byte Name			Description
7:0	PRTM3	PortMap register for	port 3.	
		to report how many range or assignmen	ports it has; t. The host o	a USB host controller, the hub is only permitted the hub is not permitted to select a numerical controller will number the downstream ports of er '1', up to the number of ports that the hub
		port on the hub is the enabled (see PRTM	he "physical IAP_EN in I port number	ed to as "logical port number" and the physical port number". When remapping mode is Register 08h: Configuration Data Byte 3) the s can be remapped to different logical port).
		used, start enabled po	ing from nu orts; this ens	e that contiguous logical port numbers are mber '1' up to the maximum number of sures that the hub's ports are numbered in vay a host will communicate with the ports.
		TABLE 6-6: P	ORT MAP	REGISTER FOR PORT 3
		Bit [7:4]	'0000'	Reserved
			'0001'	Reserved
			'0010'	Reserved
			'0011'	Reserved
			'0100' to '1111'	Illegal; Do not use
		Bit [3:0]	'0000'	Physical port 3 is disabled
			'0001'	Physical port 3 is mapped to Logical port 1
			'0010'	Physical port 3 is mapped to Logical port 2
			'0011'	Physical port 3 is mapped to Logical port 3
			'0100' to '1111'	Illegal; Do not use

6.4.4.23 F4h-FAh: Reserved

Byte	Byte Name	Description
6:0	Reserved	Reserved.

6.4.4.24 FBh: Not Applicable

Bit	Byte Name	Description
7:0	Not Applicable	Not applicable.

6.4.4.25 FCh-FFh: Non-Volatile Storage Signature

Byte	Name	Description
3:0		This signature is used to verify the validity of the data in the first 256 bytes of the configuration area. The signature must be set to 'ATA2' for USB2660/USB2660i.

6.4.5 INTERNAL FLASH MEDIA CONTROLLER EXTENDED CONFIGURATIONS

Enable Registers 100h - 17Fh by setting bit 7 of bmAttribute.

6.4.5.1 100h-106h: Combo LUN 0 Identifier String

Byte	Name	Description
6:0	CLUN0_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

6.4.5.2 107h-10Dh: Combo LUN 1 Identifier String

BYTE	NAME	DESCRIPTION
6:0	CLUN1_ID_STR	If the device to LUN bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

6.4.5.3 10Eh-114h: Combo LUN 2 Identifier String

Byte	Name	Description
6:0	CLUN2_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

6.4.5.4 115h-11Bh: Combo LUN 3 Identifier String

Byte	Name	Description	
6:0	CLUN3_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.	

6.4.5.5 11Ch-122h: Combo LUN 4 Identifier String

Byte	Name	Description	
6:0	CLUN4_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.	

6.4.5.6 123h-129h: Device 4 Identifier String

Byte	Name	Description	
6:0	DEV4_ID_STR	This ID string is associated with the second Secure Digital / MultiMediaCard "SD/MMC2" device.	

6.4.5.7 130h-145h: Not Applicable

Е	Byte	Name	Description
2	21:0	Not Applicable	Not applicable.

6.4.5.8 146h: Dynamic Number of Extended LUNs

Bit	Name	Description	
7:0	DYN_NUM_ EXT_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces.	
		If this field is set to "FF", the program assumes that you are using the default value and icons will be configured per the default configuration.	

6.4.5.9 147h-14Bh: Device to LUN Mapping

Byte	Name	Description
4:0	DEV_LUN_MAP	These registers map a device controller (SD/MMC, SM (Note 6-2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields. Setting a register to "FF" indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to "FF" forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and OEM board layout. The number of unique LUNs mapped must match the value in the Section 6.4.3.7, "D3h: Dynamic Number of LUNs," on page 32.

6.4.5.10 14Ch-14Dh: Second Secure Digital Device Power Configuration

The device has two internal FETs which can be utilized for card power. For information about the other internal FET, please see Section 6.4.2.3, "A4h-A5h: Smart Media Device Power Configuration," on page 30. The settings are stored in NVSTORE. This section describes the default internal configuration.

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (Default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The "Device Power Configuration" bits are ignored unless the "Enable Device Power Configuration" bit is set. See Section 6.4.1.19, "9Ch-9Fh: Attribute Byte Descriptions," on page 29.

FET	Туре	Bits	Bit Type	Description
0	FET Lo Byte SD2_PWR_LB	3:0	Low Nibble	0000b Disabled 0001b External FET enabled 1000b Internal FET with 100 mA power limit 1010b Internal FET with 200 mA power limit
1		7:4	High Nibble	0000b Disabled
2	FET Hi Byte	3:0	Low Nibble	0000b Disabled
3	SD2_PWR_HB	7:4	High Nibble	0000b Disabled

6.4.5.11 14Eh-17Bh: Not Applicable

Bit	Name	Description
47:0	Not Applicable	Not applicable.

6.4.5.12 17Ch -17Fh: Non-Volatile Storage Signature for Extended Configuration

Byte Name		Description
3:0	NVSTORE_SIG2	This signature is used to verify the validity of the data in the upper 256 bytes if a 512 byte EEPROM is used, otherwise this bank is a read-only configuration area. The signature must be set to 'ecf1'.

6.4.6 I²C EEPROM

The I²C EEPROM interface implements a subset of the I²C Master Specification (Please refer to the Philips Semiconductor Standard I²C-Bus Specification for details on I²C bus protocols). The device's I²C EEPROM interface is designed to attach to a single "dedicated" I²C EEPROM, and it conforms to the Standard-mode I²C Specification (100 kbps transfer rate and 7-bit addressing) for protocol and electrical compatibility.

Note:	Extensions to the I ² C Specification are not supported. The device acts as the master and generates the
	serial clock SCL, controls the bus access (determines which device acts as the transmitter and which
	device acts as the receiver), and generates the START and STOP conditions.

6.4.6.1 Implementation Characteristics

The device will only access an EEPROM using the sequential read protocol.

6.4.6.2 Pull-Up Resistor

The circuit board designer is required to place external pull-up resistors (10 k Ω recommended) on the SPI_DO / SDA / SPI_SPD_SEL and SPI_CLK / SCL lines (per SMBus 1.0 Specification and EEPROM manufacturer guidelines) to VDD33 in order to assure proper operation.

6.4.7 IN-CIRCUIT EEPROM PROGRAMMING

The EEPROM can be programmed via automatic test equipment (ATE). Pulling nRESET low tri-states the device's EEPROM interface and allows an external source to program the EEPROM.

6.5 Default Configuration Option

The Microchip device can be configured via its internal default configuration. Please see Section 6.3.2, "EEPROM Data Descriptor" for specific details on how to enable default configuration. Please refer to Table 6-1 for the internal default values that are loaded when this option is selected.

6.5.1 EXTERNAL HARDWARE NRESET

A valid hardware reset is defined as assertion of nRESET for a minimum of 1 μ s after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than 500 μ A of current from the upstream USB power source.

Assertion of nRESET (external pin) causes the following:

- All downstream ports are disabled and PRTCTL power to downstream devices is removed.
- 2. The PHYs are disabled and the differential pairs will be in a high-impedance state.
- 3. All transactions immediately terminate; no states are saved.
- 4. All internal registers return to the default state (in most cases, 00h).
- 5. The external crystal oscillator is halted.
- 6. The PLL is halted.

6.5.1.1 nRESET for EEPROM Configuration

TABLE 6-7: NRESET TIMING FOR EEPROM MODE

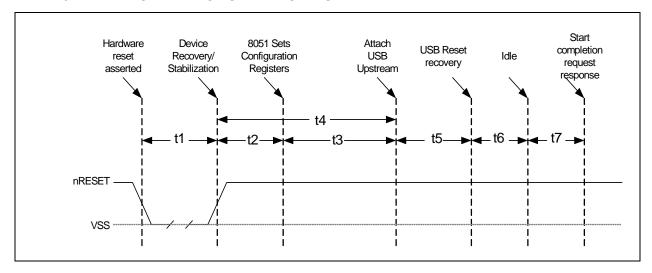


TABLE 6-8: NRESET TIMING FOR EEPROM MODE

Name	Description	MIN	TYP	MAX	Units
t1	nRESET asserted	1			μsec
t2	Device recovery/stabilization			500	μsec
t3	8051 programs device configuration		20	50	msec
t4	USB attach (See Note)			100	msec
t5	Host acknowledges attach and signals USB reset	100			msec
t6	USB idle		Undefined		msec
t7	Completion time for requests (with or without data stage)			5	msec

Note: All power supplies must have reached the operating levels mandated in Section 8.0, "DC Parameters", prior to (or coincident with) the assertion of nRESET.

6.5.2 USB BUS RESET

In response to the upstream port signaling a reset to the device, the device does the following:

Note: The device does not propagate the upstream USB reset to downstream devices.

- Sets default address to '0'.
- 2. Sets configuration to: Unconfigured.
- 3. Negates PRTCTL[3:2] to all downstream ports.
- 4. Clears all TT buffers.
- 5. Moves device from suspended to active (if suspended).
- 6. Complies with Section 11.10 of the USB 2.0 Specification for behavior after completion of the reset sequence.

The host then configures the device and the device's downstream port devices in accordance with the USB 2.0 Specification.

7.0 AC SPECIFICATIONS

7.1 Oscillator/Crystal

Parallel Resonant, Fundamental Mode, 24 MHz \pm 350 ppm.

FIGURE 7-1: TYPICAL CRYSTAL CIRCUIT

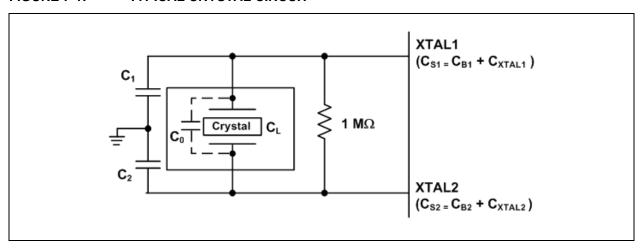
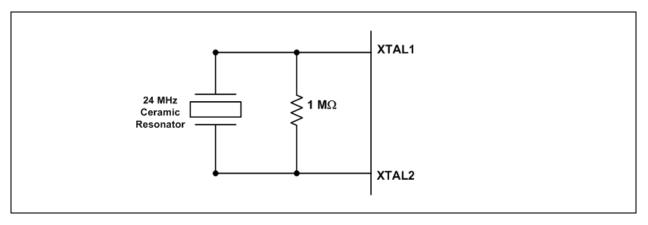


TABLE 7-1: CRYSTAL CIRCUIT LEGEND

Symbol	Description	In Accordance With			
\mathbf{C}_0	Crystal shunt capacitance	Constal manufacturer's an effection (Con Note 7.4)			
CL	Crystal load capacitance	Crystal manufacturer's specification (See Note 7-1)			
C _B	Total board or trace capacitance	OEM board design			
C _S	Stray capacitance	MCHP IC and OEM board design			
C _{XTAL}	XTAL pin input capacitance	MCHP IC			
C ₁	Load capacitors installed on OEM	Calculated values based on Figure 7-2 (See Note 7-2)			
C_2	board	Calculated values based off Figure 7-2 (See Note 7-2)			

FIGURE 7-2: CAPACITANCE FORMULAS


$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$

 $C_2 = 2 \times (C_L - C_0) - C_{S2}$

- Note 7-1 \mathbf{C}_0 is usually included (subtracted by the crystal manufacturer) in the specification for \mathbf{C}_L and should be set to '0' for use in the calculation of the capacitance formulas in Figure 7-2. However, the OEM PCB itself may present a parasitic capacitance between XTAL1 and XTAL2. For an accurate calculation of \mathbf{C}_1 and \mathbf{C}_2 , take the parasitic capacitance between traces XTAL1 and XTAL2 into account.
- Note 7-2 Each of these capacitance values is typically approximately 18 pF.

7.2 Ceramic Resonator

24 MHz \pm 350 ppm

FIGURE 7-3: CERAMIC RESONATOR USAGE WITH MCHP IC

7.3 External Clock

50% Duty cycle \pm 10%, 24 MHz \pm 350 ppm, Jitter < 100 ps rms.

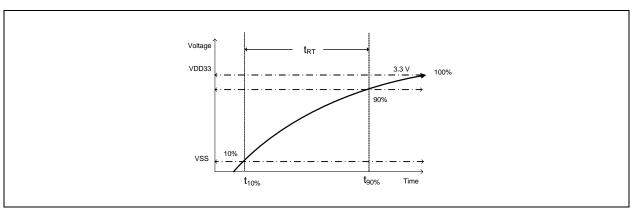
The external clock is recommended to conform to the signaling level designated in the JESD76-2 specification on 1.8 V CMOS Logic. XTAL2 should be treated as a no connect.

7.3.1 I^2C EEPROM

Frequency is fixed at 58.6 kHz \pm 20%

7.3.2 USB 2.0

The Microchip device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification. Please refer to the USB 2.0 Specification for more information.


8.0 DC PARAMETERS

8.1 Maximum Ratings

Parameter	Symbol	MIN	MAX	Units	Comments
Storage Temperature	T _{STOR}	-55	150	°C	
Lead Temperature				°C	Please refer to JEDEC specification J-STD-020D.
3.3 V supply voltage	VDD33	-0.5	4.0	V	
Voltage on USB+ and USB- pins		-0.5	(3.3 V supply voltage + 2) ≤ 6	V	
Voltage on CRD_PWR1 and CRD_PWR2		-0.5	VDD33 + 0.3	V	When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63 V indefinitely, without damage to the device as long as VDD33 is less than 3.63 V and T _A is less than 70°C.
Voltage on any signal pin		-0.5	VDD33 + 0.3	V	
Voltage on XTAL1		-0.5	3.6	V	
Voltage on XTAL2		-0.5	2.0	V	

Note: Stresses above the specified parameters may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at any condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies the absolute maximum ratings must not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, a clamp circuit should be used.

FIGURE 8-1: SUPPLY RISE TIME MODEL

8.2 Operating Conditions

Parameter	Symbol	MIN	MAX	Units	Comments
Commercial USB2660 Operating Temperature	T _A	0	70	°C	Ambient temperature in still air.
Industrial USB2660 Operating Temperature	T _A	-40	85	°C	Ambient temperature in still air.
3.3 V supply voltage	VDD33	3.0	3.6	V	A 3.3 V regulator with an output tolerance of 1% must be used if the output of the internal power FET's must support a 5% tolerance.
3.3 V supply rise time	t _{RT}	0	400	μs	(Figure 8-1)
Voltage on USB+ and USB- pins		-0.3	5.5	V	If any 3.3 V supply voltage drops below 3.0 V, then the MAX becomes: (3.3 V supply voltage) + 0.5 ≤ 5.5
Voltage on any signal pin		-0.3	VDD33	V	
Voltage on XTAL1		-0.3	2.0	V	
Voltage on XTAL2		-0.3	2.0	V	

8.3 DC Electrical Characteristics

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
I, IPU, IPD Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IS Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Hysteresis	V _{HYSI}		420		mV	
ICLK Input Buffer						
Low Input Level	V _{ILCK}			0.5	V	
High Input Level	V _{IHCK}	1.4			V	
Input Leakage	I _{IL}	-10		+10	μΑ	$V_{IN} = 0$ to VDD33
Input Leakage (All I and IS buffers)						
Low Input Leakage	I _{IL}	-10		+10	μΑ	V _{IN} = 0
High Input Leakage	I _{IH}	-10		+10	μΑ	V _{IN} = VDD33

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
I/O6, I/OD6PU Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 6 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -6 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to VDD33 (Note 8-1)
Pull Down	PD		72		μΑ	(130.5 1)
Pull Up	PU		58		μΑ	
O8, O8PD, 08PU, I/O8, I/O8PD, and I/O8PU Type Buffers	F0		36		μΑ	
Low Output Level	V _{OL}			0.4	V	I _{OL} = 8 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -8 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to VDD33 (Note 8-1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
O12, I/O12, and I/O12PD Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -12 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to VDD33 (Note 8-1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IO-U						Note 8-2
I-R						Note 8-3

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
I/O200 Integrated Power FET for CRD_PWR1 and CRD_PWR2						
High Output Current	I _{OUT}	200			mA	Vdrop _{FET} = 0.46 V
Low Output Current (Note 8-4)	I _{OUT}	100			mA	Vdrop _{FET} = 0.23 V
On Resistance (Note 8-4)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μs	C _{LOAD} = 10 μF
Integrated Power FET Set to 100 mA						
Output Current (Note 8-4)	I _{OUT}	100			mA	Vdrop _{FET} = 0.22 V
Short Circuit Current Limit	I _{SC}			140	mA	Vout _{FET} = 0 V
On Resistance (Note 8-4)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μs	C _{LOAD} = 10 μF
Integrated Power FET Set to 200 mA						
Output Current (Note 8-4)		000			A) / dans
Short Circuit Current Limit	I _{OUT}	200		404	mA	$Vdrop_{FET} = 0.46 V$
On Resistance (Note 8-4)	I _{SC}			181	mA	Vout _{FET} = 0 V
Output Voltage Rise Time	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Supply Current Unconfigured	t _{DSON}			800	μs	$C_{LOAD} = 10 \mu F$ Note 8-5
						Note 6-5
Hi-Speed Host						
USB2660 USB2660i	I _{CCINTHS} I _{CCINTHS}		70 70	80 80	mA mA	
Full Speed Host						
USB2660 USB2660i	I _{CCINITES}		65 65	75 75	mA mA	
Supply Current Configured Hi-Speed Host, 1 downstream port						(Note 8-5)
USB2660 USB2660i	I _{HCH1} I _{HCH1}		260 260	270 275	mA mA	
Supply Current Configured Hi-Speed Host, each additional downstream port						
USB2660 USB2660i			25 25	30 35	mA mA	
Supply Current Configured Full-Speed Host, 1 downstream port						
USB2660 USB2660i	I _{FCC1} I _{FCC1}		200 200	210 215	mA mA	
Supply Current Configured Full-Speed Host, each additional downstream port						
USB2660 USB2660i			20 20	25 25	mA mA	

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
Supply Current Suspend						(Note 8-5)
USB2660 USB2660i	I _{CSBY} I _{CSBY}		500 500	950 1200	μΑ μΑ	
Supply Current Reset						
USB2660 USB2660i	I _{RST} I _{RST}		230 230	700 900	μΑ μΑ	

- **Note 8-1** Output leakage is measured with the current pins in high impedance.
- Note 8-2 See the USB 2.0 Specification, Chapter 7, for USB DC electrical characteristics
- Note 8-3 RBIAS is a 3.3 V tolerant analog pin.
- **Note 8-4** Output current range is controlled by program software. The software disables the FET during short circuit condition.
- Note 8-5 Typical and maximum values were characterized using the following temperature ranges: The USB2660 supports the commercial temperature range of 0°C to +70°C

 The USB2660i supports the industrial temperature range of -40°C to +85°C

8.4 Capacitance

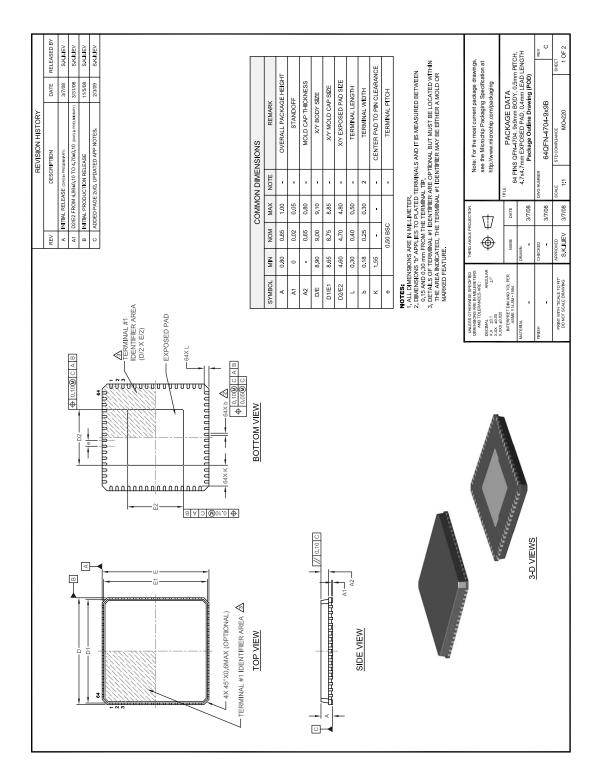
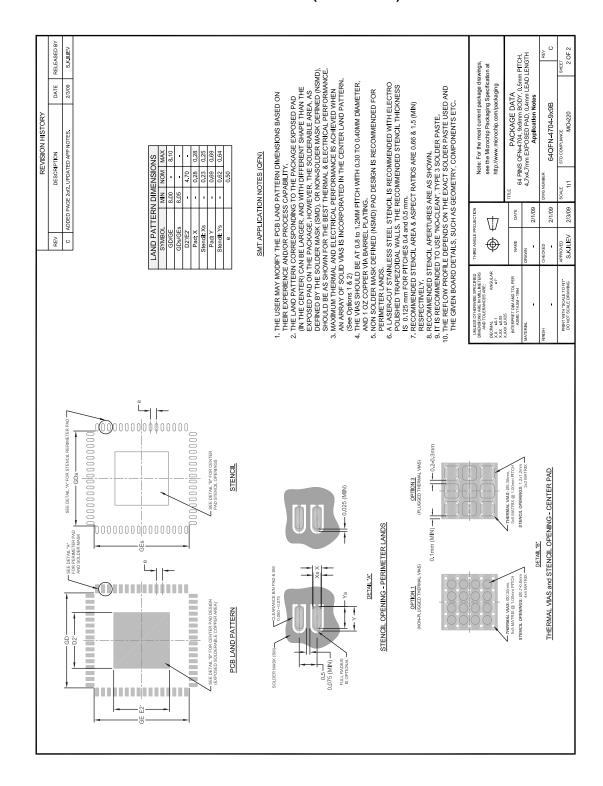

 $T_A = 25$ °C; fc = 1 MHz; VDD33= 3.3 V

TABLE 8-1: PIN CAPACITANCE


Parameter	Cumbal	Limits			Units	Test Condition	
Parameter	Symbol	MIN	TYP	MAX	Units	rest Condition	
Clock Input Capacitance	C _{XTAL}			2	pF	All pins (except USB pins and pins under test) are tied to AC ground.	
Input Capacitance	C _{IN}			10	pF		
Output Capacitance	C _{OUT}			20	pF		

9.0 PACKAGE SPECIFICATIONS

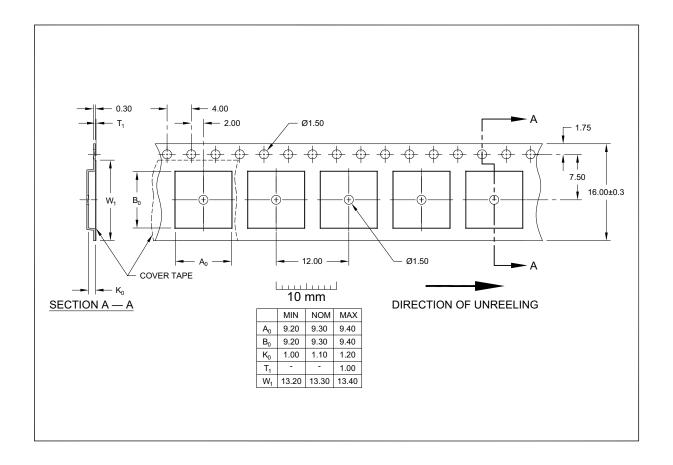

FIGURE 9-1: USB2660/USB2660I 64-PIN QFN

FIGURE 9-1: USB2660/USB2660I 64-PIN QFN (CONTINUED)

FIGURE 9-2: 64-PIN PACKAGE TAPE SPECIFICATIONS

APPENDIX A: ACRONYMS

ACK: Handshake packet (positive acknowledgement)

EOP: End of Packet

EOF: End of (micro) Frame

FM: Flash Media

FMC: Flash Media Controller
FS: Full-Speed Device
LS: Low-Speed Device
HS: Hi-Speed Device

I²C[®]: Inter-Integrated Circuit¹

MMC: MultiMediaCardMS: Memory Stick

MSC: Memory Stick Controller
OCS: Over-current Sense
PHY: Physical Layer

PLL: Phase-Locked Loop

RXD: Received eXchange Data

SD: Secure Digital

SDC: Secure Digital Controller

TXD: Transmit eXchange Data

UART: Universal Asynchronous Receiver-Transmitter

UCHAR: Unsigned CharacterUINT: Unsigned Integer

^{1.} I²C is a registered trademark of Philips Corporation.

APPENDIX B: DATA SHEET REVISION HISTORY

TABLE B-1: REVISION HISTORY

Revision	Section/Figure/Entry	Correction			
DS00001931A (05-11-15)	Throughout document	GPIOs and SDIO support removed; Package Outline diagrams updated.			
	REV A replaces previous SMSC version Rev. 1.1 (11-05-10)				

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	Temperature Package Tape and Reel Range Option	Examples: a) USB2660-JZX 64-pin QFN, 9 x 9mm RoHS Compliant Package, Tray
Device: Temperature Range: Package:	USB2660, USB2660i Blank = 0°C to +70°C (Extended Commercial) i = -40°C to +85°C (Industrial) JZX = 64-pin QFN	b) USB2660i-JZX-03 64-pin QFN, 9 x 9mm RoHS Compliant Package, Tray c) USB2660i-JZX-03-TR 64-pin QFN, 9 x 9mm RoHS Compliant Package, Tape & Reel
Tape and Reel Option:	Blank = Standard packaging (tray) TR = Tape and Reel ⁽¹⁾	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape & Reel option. Reel size is 3,000.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, Iogo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010 - 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 9781632773456

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

= ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087

Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464

Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Novi. MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Vieio, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6. The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongging

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan

Tel: 86-769-8702-9880

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

01/27/15