untitled

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

 2008-2016 Microchip Technology Inc.

DS20002092G-page 

 

1

MCP1415/16

Features

• High Peak Output Current: 1.5A (typical)
• Wide Input Supply Voltage Operating Range:

- 4.5V to 18V

• Low Shoot-Through/Cross-Conduction Current in 

Output Stage

• High Capacitive Load Drive Capability:

- 470

 

pF in 13

 

ns (typical)

- 1000

 

pF in 18

 

ns (typical)

• Short Delay Times: 44

 

ns (t

D1

), 47

 

ns (MCP1415 

t

D2

), 54

 

ns (MCP1416 t

D2

) (typical)

• Low Supply Current:

- With Logic ‘1’ Input - 0.65

 

mA (typical)

- With Logic ‘0’ Input - 0.1

 

mA (typical)

• Latch-Up Protected: Withstands 500

 

mA Reverse 

Current

• Logic Input Withstands Negative Swing up to 5V
• Space-Saving 5L SOT-23 Package

Applications

• Switch Mode Power Supplies
• Pulse Transformer Drive
• Line Drivers
• Level Translator
• Motor and Solenoid Drive

General Description

The MCP1415/16 devices are high-speed, dual 
MOSFET drivers that are capable of providing up to 
1.5A of peak current while operating from a single 4.5V 
to 18V supply. The inverting or non-inverting single 
channel output is directly controlled from either TTL or 
CMOS (3V to 18V) logic. These devices also feature 
low shoot-through current, matched rise and fall time,
and short propagation delays which make them ideal 
for high switching frequency applications. They provide 
low enough impedances in both the ‘On’ and ‘Off’ 
states to ensure the intended state of the MOSFET is 
not affected, even by large transients.
These devices are highly latch-up resistant under any 
condition within their power and voltage ratings. They 
are not subject to damage when noise spiking (up to 
5V, of either polarity) occurs on the Ground pin. They 
can accept up to 500 mA of reverse current being 
forced back into their outputs without damage or logic 
upset. All terminals are fully protected against 
electrostatic discharge (ESD) up to 2.0

 

kV (HBM) and 

300V (MM).

Package Types

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

V

DD

NC

IN

V

DD

NC

IN

NC

IN

GND

NC

IN

GND

SOT-23-5

MCP1415

MCP1416

MCP1415R

MCP1416R

OUT

GND

OUT

GND

V

DD

OUT

OUT

V

DD

Tiny 1.5A, High-Speed Power MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

MCP1415/16

DS20002092G-page 

 

2

 2008-2016 Microchip Technology Inc.

Functional Block Diagram

Effective 

Input C = 25 pF

 

 

Input

GND

V

DD

300 mV 

 

4.7V

Inverting

Non-inverting

Note:

Unused inputs should be grounded.

650 μA 

Output

(Each Input) 

 

MCP1415

 Inverting

MCP1416

 Non-inverting

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

 2008-2016 Microchip Technology Inc.

DS20002092G-page 

 

3

MCP1415/16

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

, Supply Voltage.............................................+20V

V

IN

, Input Voltage..............(V

DD

 +

  0.3V)

 

to

  (GND

 

-  5V)

Package Power Dissipation (T

A

 =

  50°C)

     5L SOT23......................................................0.39W
ESD Protection on all Pins ......................2.0

 

kV (HBM)

................................................................... 300V (MM)

† Notice:

 Stresses above those listed under “Maximum 

Ratings” may cause permanent damage to the device. 
This is a stress rating only and functional operation of 
the device at those or any other conditions above those 
indicated in the operational sections of this 
specification is not intended. Exposure to maximum 
rating conditions for extended periods may affect 
device reliability.

DC CHARACTERISTICS

 

Electrical Specifications:

 Unless otherwise noted, T

A

 =

  +25°C, with 4.5V

 

 V

DD

 

 18V

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input
Logic ‘1’ High Input Voltage

V

IH

2.4

1.9

V

Logic ‘0’ Low Input Voltage

V

IL

1.6

0.8

V

Input Current

I

IN

-1

+1

μA

0V

 

 V

IN

 

 V

DD

Input Voltage

V

IN

-5

V

DD

 

+

  0.3

V

Output
High Output Voltage

V

OH

V

DD

 -  0.025

V

DC Test

Low Output Voltage

V

OL

0.025

V

DC Test

Output Resistance, High

R

OH

6

7.5

I

OUT

 =

  10

  mA, V

DD

 =

  18V 

(

Note

 

1

)

Output Resistance, Low

R

OL

4

5.5

I

OUT

 =

  10

  mA, V

DD

 =

  18V 

(

Note

 

1

)

Peak Output Current 

I

PK

1.5

A

V

DD

 =

  18V (

Note

 

1

)

Latch-Up Protection Withstand 
Reverse Current

I

REV

0.5

A

Duty cycle

 

 2%, t  300

 

μs

(

Note

 

1

)

Switching Time (

Note

 

1

)

Rise Time

t

R

18

25

ns

V

DD

 =

  18V, C

L

 =

  1000

 

pF 

Figure

 

4-1

Figure

 

4-2

 (

Note

 

1

)

Fall Time

t

F

21

28

ns

V

DD

 =

  18V, C

L

 =

  1000

 

pF 

Figure

 

4-1

Figure

 

4-2

 (

Note

 

1

)

Delay Time

t

D1

44

54

ns

V

DD

 =

  18V, V

IN

 =

  5V  

Figure

 

4-1

Figure

 

4-2

 (

Note

 

1

)

MCP1415 Delay Time

t

D2

47

57

ns

V

DD

 =

  18V, V

IN

 =

  5V 

Figure

 

4-1

 (

Note

 

1

)

MCP1416 Delay Time

t

D2

54

64

ns

V

DD

 =

  18V, V

IN

 =

  5V 

Figure

 

4-2

 (

Note

 

1

)

Power Supply
Supply Voltage

V

DD

4.5

18

V

Power Supply Current

I

S

0.65

1.1

mA

V

IN

 =

  3V

I

S

0.1

0.15

mA

V

IN

 =

  0V

Note 1:

Tested during characterization, not production tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE) (

Note

 

1

Electrical Specifications:

 Unless otherwise indicated, over the operating range with 4.5V

 

 V

DD

 

 18V.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input
Logic ‘1’, High Input Voltage

V

IH

2.4

V

Logic ‘0’, Low Input Voltage

V

IL

0.8

V

Input Current

I

IN

-10

+10

μA

0V

 

 V

IN

 

 V

DD

Input Voltage

V

IN

-5

V

DD

 

+

  0.3

V

Output
High Output Voltage

V

OH

V

DD

 -  0.025

V

DC Test

Low Output Voltage

V

OL

0.025

V

DC Test

Output Resistance, High

R

OH

8.5

9.5

I

OUT

 =

  10

  mA, V

DD

 =

  18V

Output Resistance, Low

R

OL

6

7

I

OUT

 =

  10

  mA, V

DD

 =

  18V

Switching Time
Rise Time

t

R

26

37

ns

V

DD

 =

  18V, C

L

 =

  1000

 

pF 

Figure

 

4-1

Figure

 

4-2

Fall Time

t

F

29

40

ns

V

DD

 =

  18V, C

L

 =

  1000

 

pF 

Figure

 

4-1

Figure

 

4-2

Delay Time

t

D1

60

70

ns

V

DD

 =

  18V, V

IN

 =

  5V  

Figure

 

4-1

Figure

 

4-2

MCP1415 Delay Time

t

D2

62

72

ns

V

DD

 =

  18V, V

IN

 =

  5V  

Figure

 

4-1

MCP1416 Delay Time

t

D2

72

82

ns

V

DD

 =

  18V, V

IN

 =

  5V 

Figure

 

4-2

Power Supply
Supply Voltage

V

DD

4.5

18

V

Power Supply Current

I

S

0.75

1.5

mA

V

IN

 =

  3.0V

I

S

0.15

0.25

mA

V

IN

 =

  0V

Note 1:

Tested during characterization, not production tested.

TEMPERATURE CHARACTERISTICS

 

Electrical Specifications: 

Unless otherwise noted, all parameters apply with 4.5V

 

 V

DD

 

 18V

Parameter

Sym.

Min.

Typ.

Max.

Units

Comments

Temperature Ranges
Specified Temperature Range

T

A

-40

+125

°C

Maximum Junction Temperature

T

J

+150

°C

Storage Temperature Range

T

A

-65

+150

°C

Package Thermal Resistances
Thermal Resistance, 5LD SOT23

JA

220.7

°C/W

MCP1415/16

DS20002092G-page 

 

4

 2008-2016 Microchip Technology Inc.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

 2008-2016 Microchip Technology Inc.

DS20002092G-page 

 

5

MCP1415/16

2.0

TYPICAL PERFORMANCE CURVES

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein are 
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note:

 Unless otherwise indicated, T

A

 =

  +25°C with 4.5V

 

 V

DD

 =  18V.

FIGURE 2-1:

Rise Time vs. Supply 

Voltage.

FIGURE 2-2:

Rise Time vs. Capacitive 

Load.

12

14

16

18

20

22

24

26

28

30

32

-40 -25 -10

5

20

35

50

65

80

95 110 125

T

ime (ns)

 

Temperature (

°C) 

t

RISE 

 t

FALL 

FIGURE 2-3:

Rise and Fall Times vs. 

Temperature.

FIGURE 2-4:

Fall Time vs. Supply 

Voltage.

FIGURE 2-5:

Fall Time vs. Capacitive 

Load.

20

30

40

50

60

70

80

90

100

110

120

2

4

6

8

10

12

Propagation Delay

 (ns) 

Input Amplitude (V) 

t

D1 

MCP1415

 t

D2 

MCP1416

 t

D2 

V

DD

 = 18V

 

FIGURE 2-6:

Propagation Delay Time vs. 

Input Amplitude.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

MCP1415/16

DS20002092G-page 

 

6

 2008-2016 Microchip Technology Inc.

Note:

 Unless otherwise indicated, T

A

 =

  +25°C with 4.5V

 

 V

DD

 =  18V.

20

30

40

50

60

70

80

90

100

110

120

130

140

4

6

8

10

12

14

16

18

Propagation Delay

 (ns) 

Supply Voltage(V) 

t

D1 

MCP1415

 t

D2 

MCP1416 t

D2 

V

IN

 = 5V

 

FIGURE 2-7:

Propagation Delay Time vs. 

Supply Voltage.

20

30

40

50

60

70

80

-40 -25 -10

5

20

35

50

65

80

95 110 125

Propagation Delay

 (ns)

 

Temperature (

°C) 

t

D1 

MCP1415 t

D2 

MCP1416 t

D2 

V

IN

 = 5V 

V

DD

 = 18V

 

FIGURE 2-8:

Propagation Delay Time vs. 

Temperature.

FIGURE 2-9:

Quiescent Current vs. 

Supply Voltage.

FIGURE 2-10:

Quiescent Current vs. 

Temperature.

FIGURE 2-11:

Input Threshold vs. Supply 

Voltage.

FIGURE 2-12:

Input Threshold vs. 

Temperature.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

 2008-2016 Microchip Technology Inc.

DS20002092G-page 

 

7

MCP1415/16

Note:

 Unless otherwise indicated, T

A

 =

  +25°C with 4.5V

 

 V

DD

 =  18V.

FIGURE 2-13:

Supply Current vs. 

Capacitive Load.

FIGURE 2-14:

Supply Current vs. 

Capacitive Load.

FIGURE 2-15:

Supply Current vs. 

Capacitive Load.

FIGURE 2-16:

Supply Current vs. 

Frequency.

FIGURE 2-17:

Supply Current vs. 

Frequency.

FIGURE 2-18:

Supply Current vs. 

Frequency.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

MCP1415/16

DS20002092G-page 

 

8

 2008-2016 Microchip Technology Inc.

Note:

 Unless otherwise indicated, T

A

 =

  +25°C with 4.5V

 

 V

DD

 =  18V.

FIGURE 2-19:

Output Resistance (Output 

High) vs. Supply Voltage.

FIGURE 2-20:

Output Resistance (Output 

Low) vs. Supply Voltage.

FIGURE 2-21:

Crossover Energy vs. 

Supply Voltage.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

 2008-2016 Microchip Technology Inc.

DS20002092G-page 

 

9

MCP1415/16

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table

 

3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin No.

Symbol

Description

MCP1415/16

MCP1415R/16R

1

1

NC

No Connection

2

5

V

DD

Supply Input

3

3

IN

Control Input

4

2

GND

Ground

5

4

OUT/OUT

Output

3.1

Supply Input (V

DD

)

V

DD

 is the bias supply input for the MOSFET driver and 

has a voltage range of 4.5V to 18V. This input must be 
decoupled to ground with a local capacitor. This bypass 
capacitor provides a localized low-impedance path for 
the peak currents that are provided to the load.

3.2

Control Input (IN)

The MOSFET driver input is a high-impedance, 
TTL/CMOS compatible input. The input also has 
hysteresis between the high and low input levels, 
allowing them to be driven from slow rising and falling 
signals and to provide noise immunity.

3.3

Ground (GND)

Ground is the device return pin. The ground pin should 
have a low-impedance connection to the bias supply 
source return. When the capacitive load is being 
discharged, high peak currents will flow out of the 
ground pin.

3.4

Output (OUT, OUT)

The output is a CMOS push-pull output that is capable 
of sourcing and sinking 1.5A of peak current 
(V

DD

 =

  18V). The low output impedance ensures the 

gate of the external MOSFET stays in the intended 
state even during large transients. This output also has 
a reverse current latch-up rating of 500

 

mA.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002092G-html.html
background image

MCP1415/16

DS20002092G-page 

 10

 2008-2016 Microchip Technology Inc.

4.0

APPLICATION INFORMATION

4.1

General Information

MOSFET drivers are high-speed, high-current devices 
which are intended to source/sink high peak currents to 
charge/discharge the gate capacitance of external 
MOSFETs or Insulated-Gate Bipolar Transistors
(IGBTs). In high frequency switching power supplies, 
the Pulse-Width Modulation (PWM) controller may not 
have the drive capability to directly drive the power 
MOSFET. A MOSFET driver such as the MCP1415/16 
family can be used to provide additional source/sink 
current capability.

4.2

MOSFET Driver Timing 

The ability of a MOSFET driver to transition from a 
fully-off state to a fully-on state is characterized by the 
driver’s rise time (t

R

), fall time (t

F

) and propagation 

delays (t

D1

 and t

D2

). 

Figure

 

4-1

 and 

Figure

 

4-2

 show 

the test circuit and timing waveform used to verify the 
MCP1415/16 timing.

0.1 μF

+5V

10%

90%

10%

90%

10%

90%

18V

1 μF

0V

0V

 C

L

 = 1000 pF

Input

Input

Output

t

D1

t

F

t

D2

Output

t

R

V

DD

 = 18V

Ceramic

MCP1415

Note:

Input Signal: t

RISE

 =

  t

FALL

 ≤ 10

 ns 

100

 

Hz, 0-5V Square Wave

FIGURE 4-1:

Inverting Driver Timing 

Waveform.

90%

Input

t

D1

t

F

t

D2

Output

t

R

10%

10%

10%

+5V

18V

0V

0V

90%

90%

0.1 μF

1 μF

 C

L

 = 1000 pF

Input

Output

V

DD

 = 18V

Ceramic

MCP1416

Note:

Input Signal: t

RISE

 =

  t

FALL

 ≤ 10

 ns 

100

 

Hz, 0-5V Square Wave

FIGURE 4-2:

Non-Inverting Driver Timing 

Waveform.

4.3

Decoupling Capacitors

Careful layout and decoupling capacitors are required 
when using power MOSFET drivers. Large current is 
required to charge and discharge capacitive loads 
quickly. For example, approximately 720

 

mA are 

needed to charge a 1000

 

pF load with 18V in 25

 

ns.

To operate the MOSFET driver over a wide frequency 
range with low supply impedance, it is recommended to 
place a ceramic and a low ESR film capacitor in parallel 
between the driver V

DD

 and GND. A 1.0

 

μF low ESR 

film capacitor and a 0.1

 

μF ceramic capacitor placed 

between pins 2 and 4 are required for reliable 
operation. These capacitors should be placed close to 
the driver to minimize circuit board parasitics and 
provide a local source for the required current.

Maker
Microchip Technology Inc.
Datasheet PDF Download