TC7660 Charge Pump DC-to-DC Voltage Converter Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

 2002-2011 Microchip Technology Inc.

DS21465C-page 1

TC7660

Features

• Wide Input Voltage Range: +1.5V to +10V
• Efficient Voltage Conversion (99.9%, typ)
• Excellent Power Efficiency (98%, typ)
• Low Power Consumption: 80 µA (typ) @ V

IN

 = 5V

• Low Cost and Easy to Use

- Only Two External Capacitors Required

• Available in 8-Pin Small Outline (SOIC), 8-Pin 

PDIP and 8-Pin CERDIP Packages

• Improved ESD Protection (3 kV HBM)
• No External Diode Required for High-Voltage 

Operation

Applications

• RS-232 Negative Power Supply
• Simple Conversion of +5V to ±5V Supplies
• Voltage Multiplication V

OUT

 = ± n V

+

• Negative Supplies for Data Acquisition Systems 

and Instrumentation

Package Types

General Description

The TC7660 device is a pin-compatible replacement
for the industry standard 7660 charge pump voltage
converter. It converts a +1.5V to +10V input to a corre-
sponding -1.5V to -10V output using only two low-cost
capacitors, eliminating inductors and their associated
cost, size and electromagnetic interference (EMI).
The on-board oscillator operates at a nominal fre-
quency of 10 kHz. Operation below 10 kHz (for lower
supply current applications) is possible by connecting
an external capacitor from OSC to ground.
The TC7660 is available in 8-Pin PDIP, 8-Pin Small
Outline (SOIC) and 8-Pin CERDIP packages in
commercial and extended temperature ranges.

Functional Block Diagram

1

2

3

4

8

7

6

5

TC7660

NC

CAP

+

GND

CAP

-

V

OUT

LOW 
VOLTAGE (LV)

OSC

PDIP/CERDIP/SOIC 

V

+

TC7660

GND

Internal

Voltage

Regulator

RC

Oscillator

Voltage

Level

Translator

V

+

CAP

+

8

2

7

6

OSC

LV

3

Logic

Network

V

OUT

5

CAP-

4

2

Internal

Voltage

Regulator

Charge Pump DC-to-DC Voltage Converter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

TC7660

DS21465C-page 2

 2002-2011 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage .............................................................+10.5V
LV and OSC Inputs Voltage: (

Note 1

)

         .............................................. -0.3V to V

SS

 for V

+

 < 5.5V

         ..................................... (V

+

 – 5.5V) to (V

+

) for V

+

 > 5.5V

Current into LV ......................................... 20 µA for V

+

 > 3.5V

Output Short Duration (V

SUPPLY

 

 5.5V)...............Continuous

Package Power Dissipation: (T

 70°C) 

        8-Pin CERDIP ....................................................800 mW
        8-Pin PDIP .........................................................730 mW
        8-Pin SOIC .........................................................470 mW
Operating Temperature Range: 
        C Suffix.......................................................0°C to +70°C
        I Suffix .....................................................-25°C to +85°C
        E Suffix....................................................-40°C to +85°C
        M Suffix .................................................-55°C to +125°C
Storage Temperature Range .........................-65°C to +160°C
ESD protection on all pins (HBM) .................................

  3 kV

Maximum Junction Temperature ........... ....................... 150°C

Notice: Stresses above those listed under “Maximum Rat-
ings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational sections of this specification is not intended. Expo-
sure to maximum rating conditions for extended periods may
affect device reliability.

FIGURE 1-1:

TC7660 Test Circuit.

ELECTRICAL SPECIFICATIONS

1

2

3

4

8

7

6

5

TC7660

+

V

+

(+5V)

V

OUT

C

1

10 µF

C

OSC

+

C

2

10 µF

I

L

R

L

I

S

Electrical Characteristics: Unless otherwise noted, specifications measured over operating temperature range with V

+

 = 5V,

C

OSC

 = 0, refer to test circuit in 

Figure 1-1

.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Supply Current

I

+

80

180

µA

R

L

 = 

Supply Voltage Range, High

V

+

H

3.0

10

V

Min 

T

A

Max, R

L

 = 10 k

, LV Open

Supply Voltage Range, Low

V

+

L

1.5

3.5

V

Min 

T

A

Max, R

L

 = 10 k

, LV to GND

Output Source Resistance

R

OUT

70

100

I

OUT

=20 mA, T

A

 = +25°C

120

I

OUT

=20 mA, T

A

 

 +70°C (C Device)

130

I

OUT

=20 mA, T

A

 

 +85°C (E and I Device)

104

150

I

OUT

=20 mA, T

A

 

 +125°C (M Device)

150

300

V

+

 = 2V, I

OUT

 = 3 mA, LV to GND

0°C 

 T

A

 

 +70°C

160

600

V

+

 = 2V, I

OUT

 = 3 mA, LV to GND

-55°C 

 T

A

 

 +125°C (M Device)

Oscillator Frequency

f

OSC

10

kHz

Pin 7 open

Power Efficiency

P

EFF

95

98

%

R

L

 = 5 k

Voltage Conversion Efficiency

V

OUTEFF

97

99.9

%

R

L

 = 

Oscillator Impedance

Z

OSC

1.0

M

V

+

 = 2V

100

k

V

+

 = 5V

Note 1: Destructive latch-up may occur if voltages greater than V

+

 or less than GND are supplied to any input pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

 2002-2011 Microchip Technology Inc.

DS21465C-page 3

TC7660

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, C

1

 = C

2

 = 10  µF, ESR

C1

 = ESR

C2

 = 1

, T

A

 = 25°C. See 

Figure 1-1

.

FIGURE 2-1:

Operating Voltage vs. 

Temperature.

FIGURE 2-2:

Output Source Resistance 

vs. Supply Voltage.

FIGURE 2-3:

Frequency of Oscillation vs. 

Oscillator Capacitance.

FIGURE 2-4:

Power Conversion 

Efficiency vs. Oscillator Frequency.

FIGURE 2-5:

Output Source Resistance 

vs. Temperature.

FIGURE 2-6:

Unloaded Oscillator 

Frequency vs. Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

-25

0

+25

+75 +100 +125

12

10

8

6

4

2

+50

-55

SUPPLY VOLTAGE (V)

TEMPERATURE (

°C)

0

SUPPLY VOLTAGE RANGE

7

8

10k

1k

100

Ω

OUTPUT SOURCE RESISTANCE (

Ω

)

6

5

4

3

2

1

0

SUPPLY VOLTAGE (V)

10

Ω

OSCILLATOR CAPACITANCE (pF)

10k

OSCILLATOR FREQUENCY (Hz)

1

1k

100

10

10

100

1000

10k

V+ = +5V

OSCILLATOR FREQUENCY (Hz)

100

POWER CONVERSION EFFICIENCY (%)

98

96

92

90

88

86

84

82

80

94

100

1k

10k

V+ = +5V

I

OUT

 = 1 mA

I

OUT

 = 15 mA

500

450

400

200

150

100

50

0

-55

-25

0

+25

+50

+75 +100 +125 

TEMPERATURE (

°C)

OUTPUT SOURCE RESISTANCE (

Ω

)

V + = +2V

V + = +5V

I

OUT

 = 1 mA

TEMPERATURE (

°C)

OSCILLATOR FREQUENCY (kHz)

20

-55

18

16

14

12

10

8

6

-25

0

+25 +50

+75 +100 +125

V+ = +5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

TC7660

DS21465C-page 4

 2002-2011 Microchip Technology Inc.

Note: Unless otherwise indicated, C

1

 = C

2

 = 10  µF, ESR

C1

 = ESR

C2

 = 1

, T

A

 = 25°C. See 

Figure 1-1

.

FIGURE 2-7:

Output Voltage vs. Output 

Current.

FIGURE 2-8:

Supply Current and Power 

Conversion Efficiency vs. Load Current.

FIGURE 2-9:

Output Voltage vs. Load 

Current.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Supply Current and Power 

Conversion Efficiency vs. Load Current.

OUTPUT CURRENT (mA)

OUTPUT VOLTAGE (V)

0

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

10

20 30 40 50

60 70 80

90 100

LV OPEN

POWER CONVERSION EFFICIENCY (%)

LOAD CURRENT (mA)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1.5

3.0

4.5

6.0

7.5

9.0

2

4

6

10

12 

14 

16 

18

20

SUPPLY CURRENT (mA)

V+ = 2V

2

0

OUTPUT VOLTAGE (V)

1

0

-1

-2 

1

2

3

4

5

6

7

8

LOAD CURRENT (mA)

SLOPE 150

Ω

V+ = +2V

LOAD CURRENT (mA)

OUTPUT VOLTAGE (V) 

1

0

5

4

3

2

0

-1

-2

-3

-4

-5

10

20

30

40

50

60

70

80

V+ = +5V

SLOPE 55

Ω   

LOAD CURRENT (mA)

POWER CONVERSION EFFICIENCY (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

SUPPLY CURRENT (mA)

10

20

30

40

50

60

V+ = +5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

 2002-2011 Microchip Technology Inc.

DS21465C-page 5

TC7660

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Charge Pump Capacitor (CAP

+

)

Positive connection for the charge pump capacitor, or
flying capacitor, used to transfer charge from the input
source to the output. In the voltage-inverting configura-
tion, the charge pump capacitor is charged to the input
voltage during the first half of the switching cycle. Dur-
ing the second half of the switching cycle, the charge
pump capacitor is inverted and charge is transferred to
the output capacitor and load.
It is recommended that a low ESR (equivalent series
resistance) capacitor be used. Additionally, larger
values will lower the output resistance.

3.2

Ground (GND)

Input and output zero volt reference.

3.3

Charge Pump Capacitor (CAP

-

)

Negative connection for the charge pump capacitor, or
flying capacitor, used to transfer charge from the input
to the output. Proper orientation is imperative when
using a polarized capacitor.

3.4

Output Voltage (V

OUT

)

Negative connection for the charge pump output
capacitor. In the voltage-inverting configuration, the
charge pump output capacitor supplies the output load
during the first half of the switching cycle. During the
second half of the switching cycle, charge is restored to
the charge pump output capacitor.
It is recommended that a low ESR (equivalent series
resistance) capacitor be used. Additionally, larger
values will lower the output ripple.

3.5

Low Voltage Pin (LV)

The low voltage pin ensures proper operation of the
internal oscillator for input voltages below 3.5V. The low
voltage pin should be connected to ground (GND) for
input voltages below 3.5V. Otherwise, the low voltage
pin should be allowed to float.

3.6

Oscillator Control Input (OSC)

The oscillator control input can be utilized to slow down
or speed up the operation of the TC7660. Refer to

Section 5.4 “Changing the TC7660 Oscillator Fre-
quency”

, for details on altering the oscillator

frequency.

3.7

Power Supply (V

+

)

Positive power supply input voltage connection. It is
recommended that a low ESR (equivalent series resis-
tance) capacitor be used to bypass the power supply
input to ground (GND).

Pin No.

Symbol

Description

1

NC

No connection

2

CAP

+

Charge pump capacitor positive terminal

3

GND

Ground terminal

4

CAP

-

Charge pump capacitor negative terminal

5

V

OUT

Output voltage

6

LV

Low voltage pin. Connect to GND for V+ < 3.5V

7

OSC

Oscillator control input. Bypass with an external capacitor to slow the oscillator

8

V

+

Power supply positive voltage input

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

TC7660

DS21465C-page 6

 2002-2011 Microchip Technology Inc.

4.0

DETAILED DESCRIPTION

4.1

Theory of Operation

The TC7660 charge pump converter inverts the voltage
applied to the V

+

 pin. The conversion consists of a two-

phase operation (

Figure 4-1

). During the first phase,

switches S

2

 and S

4

 are open and switches S

1

 and S

3

are closed. C

1

 charges to the voltage applied to the V

+

pin, with the load current being supplied from C

2

. Dur-

ing the second phase, switches S

2

 and S

4

 are closed

and switches S

1

 and S

3

 are open. Charge is trans-

ferred from C

1

 to C

2

, with the load current being

supplied from C

1

.

FIGURE 4-1:

Ideal Switched Capacitor 

Inverter.

In this manner, the TC7660 performs a voltage inver-
sion, but does not provide regulation. The average out-
put voltage will drop in a linear manner with respect to
load current. The equivalent circuit of the charge pump
inverter can be modeled as an ideal voltage source in
series with a resistor, as shown in 

Figure 4-2

.

FIGURE 4-2:

Switched Capacitor Inverter 

Equivalent Circuit Model.

The value of the series resistor (R

OUT

) is a function of

the switching frequency, capacitance and equivalent
series resistance (ESR) of C

1

 and C

2

 and the on-resis-

tance of switches S

1

, S

2

, S

3

 and S

4

. A close

approximation for R

OUT

 is given in the following

equation:

EQUATION

4.2

Switched Capacitor Inverter 
Power Losses

The overall power loss of a switched capacitor inverter
is affected by four factors:
1.

Losses from power consumed by the internal
oscillator, switch drive, etc. These losses will
vary with input voltage, temperature and
oscillator frequency.

2.

Conduction losses in the non-ideal switches.

3.

Losses due to the non-ideal nature of the
external capacitors.

4.

Losses that occur during charge transfer from
C

1

 to C

2

 when a voltage difference between the

capacitors exists.

Figure 4-3

 depicts the non-ideal elements associated

with the switched capacitor inverter power loss.

FIGURE 4-3:

Non-Ideal Switched 

Capacitor Inverter.

The power loss is calculated using the following
equation:

EQUATION

V

+

GND S

3

S

1

S

2

S

4

C

2

V

OUT

 = -V

IN

C

1

+

+

-

+

R

OUT

V

OUT

 V

+

R

OUT

1

f

PUMP

C1

----------------------------- 8R

SW

4ESR

C1

ESR

C2

+

+

+

=

R

SW

on-resistance of the switches

=

ESR

C1

equivalent series resistance of C1

=

ESR

C2

equivalent series resistance of C2

=

f

PUMP

f

OSC

2

-----------

=

Where:

LOAD

C

1

C

2

R

SW

S

1

I

DD

ESR

C1

V

+

+

-

R

SW

S

2

R

SW

S

3

R

SW

S

4

ESR

C2

I

OUT

+

+

P

LOSS

I

OUT

2

R

OUT

I

DD

V

+

+

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

 2002-2011 Microchip Technology Inc.

DS21465C-page 7

TC7660

5.0

APPLICATIONS INFORMATION

5.1

Simple Negative Voltage 
Converter

Figure 5-1

 shows typical connections to provide a

negative supply where a positive supply is available. A
similar scheme may be employed for supply voltages
anywhere in the operating range of +1.5V to +10V,
keeping in mind that pin 6 (LV) is tied to the supply
negative (GND) only for supply voltages below 3.5V.

FIGURE 5-1:

Simple Negative Converter.

The output characteristics of the circuit in 

Figure 5-1

are those of a nearly ideal voltage source in series with
a 70

resistor. Thus, for a load current of -10 mA and

a supply voltage of +5V, the output voltage would be
-4.3V.

5.2

Paralleling Devices

To reduce the value of R

OUT

, multiple TC7660 voltage

converters can be connected in parallel (

Figure 5-2

).

The output resistance will be reduced by approximately
a factor of n, where n is the number of devices
connected in parallel.

EQUATION

While each device requires its own pump capacitor
(C

1

), all devices may share one reservoir capacitor

(C

2

). To preserve ripple performance, the value of C

2

should be scaled according to the number of devices
connected in parallel.

5.3

Cascading Devices

A larger negative multiplication of the initial supply volt-
age can be obtained by cascading multiple TC7660
devices. The output voltage and the output resistance
will both increase by approximately a factor of n, where
n is the number of devices cascaded.

EQUATION

FIGURE 5-2:

Paralleling Devices Lowers Output Impedance.

FIGURE 5-3:

Increased Output Voltage By Cascading Devices.

+

V

+

+

1

2

3

4

8

7

6

5

TC7660

V

OUT

*

C

1

10 µF

* V

OUT

 = -V

+

 for 1.5V 

 V+  10V

C

2

10 µF

R

OUT

R

OUT

of TC7660

number of devices

---------------------------------------------------------

=

V

OUT

n

V

+

=

R

OUT

n R

OUT

of TC7660

=

“n”

“1”

R

L

+

V

+

+

1
2
3
4

8
7
6
5

TC7660

C

1

C

2

+

1
2
3
4

8
7
6
5

TC7660

C

1

V

OUT

 *

“1”

+

V

+

+

1
2
3
4

8
7
6
5

TC7660

10 µF

* V

OUT

 = -n V

+

 for 1.5V 

 V+  10V

“n”

+

1
2
3
4

8
7
6
5

TC7660

10 µF

10 µF

+

10 µF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

TC7660

DS21465C-page 8

 2002-2011 Microchip Technology Inc.

5.4

Changing the TC7660 Oscillator 
Frequency

The operating frequency of the TC7660 can be
changed in order to optimize the system performance.
The frequency can be increased by over-driving the
OSC input (

Figure 5-4

). Any CMOS logic gate can be

utilized in conjunction with a 1 k

 series resistor. The

resistor is required to prevent device latch-up. While
TTL level signals can be utilized, an additional 10 k

pull-up resistor to V

+

 is required. Transitions occur on

the rising edge of the clock input. The resultant output
voltage ripple frequency is one half the clock input.
Higher clock frequencies allow for the use of smaller
pump and reservoir capacitors for a given output volt-
age ripple and droop. Additionally, this allows the
TC7660 to be synchronized to an external clock,
eliminating undesirable beat frequencies.
At light loads, lowering the oscillator frequency can
increase the efficiency of the TC7660 (

Figure 5-5

). By

lowering the oscillator frequency, the switching losses
are reduced. Refer to 

Figure 2-3

 to determine the typi-

cal operating frequency based on the value of the
external capacitor. At lower operating frequencies, it
may be necessary to increase the values of the pump
and reservoir capacitors in order to maintain the
desired output voltage ripple and output impedance.

FIGURE 5-4:

External Clocking.

FIGURE 5-5:

Lowering Oscillator 

Frequency.

5.5

Positive Voltage Multiplication

Positive voltage multiplication can be obtained by
employing two external diodes (

Figure 5-6

). Refer to

the theory of operation of the TC7660 (

Section 4.1

“Theory of Operation”

). During the half cycle when

switch S

2

 is closed, capacitor C

1

 of 

Figure 5-6

 is

charged up to a voltage of V

+

 - V

F1

, where V

F1

 is the

forward voltage drop of diode D

1

. During the next half

cycle, switch S

1

 is closed, shifting the reference of

capacitor C

1

 from GND to V

+

. The energy in capacitor

C

1

 is transferred to capacitor C

2

 through diode D

2

, pro-

ducing an output voltage of approximately:

EQUATION

FIGURE 5-6:

Positive Voltage Multiplier.

5.6

Combined Negative Voltage 
Conversion and Positive Supply 
Multiplication 

Simultaneous voltage inversion and positive voltage
multiplication can be obtained (

Figure 5-7

). Capacitors

C

1

 and C

3

 perform the voltage inversion, while capaci-

tors C

2

 and C

4

, plus the two diodes, perform the posi-

tive voltage multiplication. Capacitors C

1

 and C

2

 are

the pump capacitors, while capacitors C

3

 and C

4

 are

the reservoir capacitors for their respective functions.
Both functions utilize the same switches of the TC7660.
As a result, if either output is loaded, both outputs will
drop towards GND.

CMOS

GATE

1 k

V

OUT

“1”

+

V

+

+

1
2
3
4

8
7
6
5

TC7660

10 µF

10 µF

V

+

V

OUT

+

+

1

2

3

4

8

7

6

5

TC7660

C

1

C

2

V

+

C

OSC

V

OUT

V

+

V

F1

V

F2

+

=

where: 

V

F1

 is the forward voltage drop of diode D

1

 

and 
V

F2

 is the forward voltage drop of diode D

2

.

 

+

C

2

D

1

D

2

+

C

1

V

OUT

 =

1

2

3

4

8

7

6

5

TC7660

V

+

(2 V

+

) - (2 V

F

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

 2002-2011 Microchip Technology Inc.

DS21465C-page 9

TC7660

FIGURE 5-7:

Combined Negative 

Converter 

and Positive Multiplier.

5.7

Efficient Positive Voltage 
Multiplication/Conversion

Since the switches that allow the charge pumping
operation are bidirectional, the charge transfer can be
performed backwards as easily as forwards.

Figure 5-8

 shows a TC7660 transforming -5V to +5V

(or +5V to +10V, etc.). The only problem here is that the
internal clock and switch-drive section will not operate
until some positive voltage has been generated. An ini-
tial inefficient pump, as shown in 

Figure 5-7

, could be

used to start this circuit up, after which it will bypass the
other (D

1

 and D

2

 in 

Figure 5-7

 would never turn on), or

else the diode and resistor shown dotted in 

Figure 5-8

can be used to “force” the internal regulator on.

FIGURE 5-8:

Positive Voltage 

Conversion.

+

C

1

D

1

+

+

C

3

C

4

C

2

D

2

+

V

OUT

 =

1

2

3

4

8

7

6

5

TC7660

V

+

(2 V

+

) - (2 V

F

)

V

OUT

= -V

+

V

OUT

 = -V

-

+

1 M

V

-

 input

 

+

1

2

3

4

8

7

6

5

TC7660

10 µF

10 µF

C

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21465C-html.html
background image

TC7660

DS21465C-page 10

 2002-2011 Microchip Technology Inc.

6.0

PACKAGING INFORMATION

6.1

Package Marking Information

Note:

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line thus limiting the number of available characters
for customer specific information.

Legend: XX...X

Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )
can be found on the outer packaging for this package.

3

e

3

e

TC7660C

OA   1208

3

e

8-Lead SOIC (3.90 mm)

Example

NNN

Example

TC7660C

  OA1208

256

 256

8-Lead CERDIP (.300”)

Example

XXXXXNNN

XXXXXXXX

YYWW

Example

TC7660

MJA   256

TC7660

MJA256

3

e

1208

1208

8-Lead PDIP (300 mil)

Example

XXXXXXXX

XXXXXNNN

YYWW

Example

TC7660

CPA   256

3

e

TC7660

CPA256

1208

1208

Maker
Microchip Technology Inc.