TC1121 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

 2006-2014 Microchip Technology Inc.

DS20001358D-page 1

TC1121

Features:

• Optional High-Frequency Operation Allows Use of 

Small Capacitors

• Low Operating Current (FC = Open):

- 50 

A

• High Output Current (100 mA)

• Converts a 2.4V to 5.5V Input Voltage to a 

Corresponding Negative Output Voltage
(Inverter mode)

• Uses Only 2 Capacitors; No Inductors Required

• Selectable Oscillator Frequency:

- 10 kHz to 200 kHz

• Power-Saving Shutdown Input

• Available in 8-Pin MSOP, 8-Pin PDIP and 8-Pin 

Small Outline (SOIC) Packages

Applications:

• Laptop Computers

• Medical Instruments

• Disk  Drives

P-Based Controllers

• Process Instrumentation

Device Selection Table

Package Type

General Description:

The TC1121 is a charge pump converter with 100 mA
output current capability. It converts a 2.4V to 5.5V
input to a corresponding negative output voltage. As
with all charge pump converters, the TC1121 uses no
inductors saving cost, size and EMI. 

An on-board oscillator operates at a typical frequency
of 10 kHz (at V

+

 = 5V) when the frequency control input

(FC) is left open. The oscillator frequency increases to
200 kHz when FC is connected to V

+

, allowing the use

of smaller capacitors. Operation at sub-10 kHz
frequencies results in lower quiescent current and is
accomplished with the addition of an external capacitor
from OSC (pin 7) to ground. The TC1121 also can be
driven from an external clock connected OSC. Typical
supply current at 10 kHz is 50 

A, and falls to less than

A when the shutdown input is brought low, whether

the internal or an external clock is used. The TC1121 is
available in 8-pin SOIC, MSOP and PDIP packages.

Part

Number

Package

Operating

Temp.

Range

TC1121COA

8-Pin SOIC

0°C to +70°C

TC1121CPA

8-Pin PDIP

0°C to +70°C

TC1121CUA

8-Pin MSOP

0°C to +70°C

TC1121EOA

8-Pin SOIC

-40°C to +85°C

TC1121EPA

8-Pin PDIP

-40°C to +85°C

TC1121EUA

8-Pin MSOP

-40°C to +85°C

TC1121COA

TC1121EOA
TC1121CUA

TC1121EUA

SHDN

FC

CAP

+

CAP

1

2

3

4

8

7

6

5

GND

OSC

V+

8-Pin SOIC

8-Pin MSOP

V

OUT

TC1121CPA

TC1121EPA

SHDN

FC

CAP

+

CAP

1

2

3

4

8

7

6

5

GND

OSC

V+

8-Pin PDIP

V

OUT

100mA Charge Pump Voltage Converter with Shutdown

Obsolete Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

TC1121

DS20001358D-page 2

 2006-2014 Microchip Technology Inc.

Functional Block Diagram

SHDN

TC1121

OSC

Control

FC

OSC

GND

V+

V

OUT

Switch

Matrix

RC

Oscillator

Logic

Circuits

C2

CAP+

C1

CAP–

+

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

 2006-2014 Microchip Technology Inc.

DS20001358D-page 3

TC1121

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage (V

DD

) ............................................... 6V

OSC, FC, SHDN Input Voltage ..... -0.3V to (V

+

 + 0.3V)

Output Short Circuit Duration ........................... 10 Sec.

Package Power Dissipation (T

 70°C)

        8-Pin PDIP .............................................. 730 mW
        8-Pin SOIC .............................................. 470 mW
        8-Pin MSOP ............................................ 333 mW

Operating Temperature Range
        C Suffix............................................ 0°C to +70°C
        E Suffix......................................... -40°C to +85°C

Storage Temperature Range .............. -65°C to +150°C

*Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

TC1121 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: T

A

 = 0°C to 70°C (C suffix), -40°C to +85°C (E suffix), V

+

= 5V ±10% C

OSC

 = Open, C1, C2 = 10 

F,

FC = V

+

, SHDN = V

IH

, typical values are at T

A

 = 25°C unless otherwise noted.

Symbol

Parameter

Min.

Typ.

Max.

Units

Test Conditions

I

DD

Active Supply Current


50

0.6

100

1

A

mA

R

L

 = Open, FC = Open or GND

R

L

 = Open, FC = V

+

I

SHUTDOWN

Shutdown Supply Current

0.2

1.0

A

SHDN = 0V

V

+

Supply Voltage

2.4

5.5

V

V

IH

SHDN Input Logic High

V

DD

 x 0.8

V

V

IL

SHDN Input Logic Low

0.4

V

I

IN

Input Leakage Current

-1
-4


1
4

A

SHDN, OSC
FC pin

R

OUT

Output Source Resistance

12

20

I

OUT

 = 60 mA

I

OUT

Output Current

60

100

mA

V

OUT

 = more negative than -3.75V

F

OSC

Oscillator Frequency

5

100

10

200


kHz

Pin 7 Open, Pin 1 Open or GND
SHDN = V

IH

, Pin 1 = V

+

P

EFF

Power Efficiency

93
94

97
97
92



%

FC = GND for all
R

L

 = 2k between V

+

 and V

OUT

R

L

 = 1k

 between V

OUT

 and GND

I

L

 = 60 mA to GND

V

EFF

Voltage Conversion Efficiency

99

99.9

%

R

L

 = Open

Note

1:

Connecting any input terminal to voltages greater than V

+

 or less than GND may cause destructive latch-up. It is recommended that no 

inputs from sources operating from external supplies be applied prior to “power up” of the TC1121.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

TC1121

DS20001358D-page 4

 2006-2014 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

Pin No.

(8-Pin MSOP, 

PDIP, SOIC)

Symbol

Description

1

FC

Frequency control for internal oscillator, FC = open, F

OSC

 = 10 kHz typ; FC = V

+

, F

OSC

 

= 200 kHz typ; FC has no effect when OSC pin is driven externally.

2

CAP

+

Charge-pump capacitor, positive terminal.

3

GND

Power-supply ground input.

4

CAP

Charge-pump capacitor, negative terminal.

5

OUT

Output, negative voltage.

6

SHDN

Shutdown.

7

OSC

Oscillator control input. An external capacitor can be added to slow the oscillator. Take 
care to minimize stray capacitance. An external oscillator also may be connected to 
overdrive OSC.

8

V

+

Power-supply positive voltage input.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

 2006-2014 Microchip Technology Inc.

DS20001358D-page 5

TC1121

3.0

APPLICATIONS

3.1

Negative Voltage Converter

The TC1121 is typically used as a charge-pump voltage
inverter. C1 and C2 are the only two external capacitors
used in the operating circuit (Figure 3-1).

FIGURE 3-1:

Charge Pump Inverter

The TC1121 is not sensitive to load current changes,
although its output is not actively regulated. A typical
output source resistance of 11.8

 means that an input

of +5V results in -5V output voltage under light load,
and only decreases to -3.8V typ with a 100 mA load.

The supplied output current is from capacitor C2 during
one-half the charge-pump cycle. This results in a
peak-to-peak ripple of:

V

RIPPLE

 = I

OUT

/2(f

PUMP

) (C2) + I

OUT

 (ESR

C2

)

Where f

PUMP

 is 5 kHz (one half the nominal 10 kHz

oscillator frequency), and C2 = 150 

F with an ESR of

0.2

, ripple is about 90 mV with a 100 mA load current.

If C2 is raised to 390 

F, the ripple drops to 45 mV.

3.2

Changing Oscillator Frequency

The TC1121’s clock frequency is controlled by four
modes:

TABLE 3-1:

OSCILLATOR FREQUENCY 
MODES

The oscillator runs at 10 kHz (typical) when FC and
OSC are not connected. The oscillator frequency is
lowered by connecting a capacitor between OSC and
GND, but FC can still multiply the frequency by 20
times in this mode.

An external clock source that swings within 100 mV of
V

+

 and GND may overdrive OSC in the Inverter mode.

OSC can be driven by any CMOS logic output. When
OSC is overdriven, FC has no effect.

Note that the frequency of the signal appearing at
CAP

+

 and CAP

 is half that of the oscillator. In addition,

by lowering the oscillator frequency, the effective
output resistance of the charge-pump increases. To
compensate for this, the value of the charge-pump
capacitors may be increased.

Because the 5 kHz output ripple frequency may be low
enough to interfere with other circuitry, the oscillator
frequency can be increased with the use of the FC pin
or an external oscillator. The output ripple frequency is
half the selected oscillator frequency. Although the
TC1121’s quiescent current will increase if the clock
frequency is increased, it allows smaller capacitance
values to be used for C1 and C2.

3.3

Capacitor Selection

In addition to load current, the following factors affect
the TC1121 output voltage drop from its ideal value 1)
output resistance, 2) pump (C1) and reservoir (C2)
capacitor ESRs and 3) C1 and C2 capacitance.

The voltage drop is the load current times the output
resistance. The loss in C2 is the load current times C2’s
ESR; C1’s loss is larger because it handles currents
greater than the load current during charge-pump
operation. Therefore, the voltage drop due to C1 is
about four times C1’s ESR multiplied by the load
current, and a low (or high) ESR capacitor has a
greater impact on performance for C1 than for C2.

In general, as the TC1121’s pump frequency increases,
capacitance values needed to maintain comparable
ripple and output resistance diminish proportionately. 

4

3

6

7

8

5

2

1

C1

C2

2.4V to 5.5V

V

OUT

TC1121

GND

OSC

CAP

+

CAP

FC

V

OUT

V

IN

SHDN

*SHDN should be tied to V

IN

 if not used.

     SHDN*

+

+

FC

OSC

Oscillator Frequency

Open

Open

10 kHz

FC = V

+

Open

200 kHz

Open or
FC = V

+

External Capacitor

See Typical Operating
Characteristics

Open

External Clock

External Clock Frequency

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

TC1121

DS20001358D-page 6

 2006-2014 Microchip Technology Inc.

3.4

Cascading Devices

To produce greater negative magnitudes of the initial
supply voltage, the TC1121 may be cascaded (see
Figure 3-2). Resulting output resistance is approxi-
mately equal to the sum of individual TC1121 R

OUT

values. The output voltage (where n is an integer
representing the number of devices cascaded) is
defined by V

OUT

 = -n (V

IN

).

3.5

Paralleling Devices

To reduce output resistance, multiple TC1121s may be
paralleled (see Figure 3-3). Each device needs a pump
capacitor C1, but the reservoir capacitor C2 serves all
devices. The value of C2 should be increased by a
factor of n (the number of devices).

FIGURE 3-2:

Cascading TC1121s to Increase Output Voltage

FIGURE 3-3:

Paralleling TC1121s to Reduce Output Resistance

C1

C1n

4

4

3

2

3

5

8

8

7

5

2

C2

V

IN

+

C2n

TC1121

TC1121

GND

GND

OSC

OSC

CAP

+

CAP

+

CAP

CAP

FC

FC

SHDN

V

OUT

V

OUT

V

IN

V

OUT

V

IN

SHDN

SHDN*

SHDN*

“1”

“n”

+

+

+

+

*SHDN should be tied to V

IN if 

not used.

C1

C1n

4

4

3

2

3

5

8

8

7

5

2

C2

V+

IN

TC1121

TC1121

GND

GND

OSC

OSC

CAP

+

CAP

+

CAP

CAP

FC

FC

SHDN

V

OUT

V

OUT

V

IN

V

IN

SHDN

SHDN*

SHDN*

*SHDN should be tied to V

IN if 

not used.

“1”

“n”

+

+

+

7

OSC

R

OUT

 = R

OUT 

(of TC1121)/n(number of devices)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

 2006-2014 Microchip Technology Inc.

DS20001358D-page 7

TC1121

3.6

Combined Positive Supply 
Multiplication and Negative 
Voltage Conversion

Figure 3-4 shows this dual function circuit, in which
capacitors C1 and C2 perform pump and reservoir
functions to generate negative voltage. Capacitors C3
and C4 are the respective capacitors for multiplied
positive voltage. This particular configuration leads to
higher source impedances of the generated supplies
due to the finite impedance of the common
charge-pump driver.

FIGURE 3-4:

Combined Positive Multiplier and Negative Converter

C1

D1

D2

D1, D2 = 1N4148

4

3

6

8

5

2

C2

C4

C3

V

IN

+

V

OUT

 = (

2V

IN

)

 

(V

FD1

)

 

 

(V

FD2

)

 

TC1121

GND

OSC

CAP

+

CAP

FC

SHDN

V

OUT

V

IN

SHDN*

V

OUT

 

=

 

V

IN

*SHDN should be tied to V

IN

 if 

not used.

+

+

+

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

TC1121

DS20001358D-page 8

 2006-2014 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Package marking data not available at this time.

4.2

Taping Form

Component Taping Orientation for 8-Pin MSOP Devices 

 

Package 

Carrier Width (W) 

Pitch (P) 

Part Per Full Reel 

Reel Size

8-Pin MSOP 

12 mm 

8 mm 

2500 

13 in

Carrier Tape, Number of Components Per Reel and Reel Size

Pin 1

User Direction of Feed

Standard Reel Component Orientation
for 713 Suffix Device

P

Component Taping Orientation for 8-Pin SOIC (Narrow) Devices 

 

Package 

Carrier Width (W) 

Pitch (P) 

Part Per Full Reel 

Reel Size

 8-Pin SOIC (N) 

12 mm 

8 mm 

2500 

13 in

Carrier Tape, Number of Components Per Reel and Reel Size 

Standard Reel Component Orientation
for 713 Suffix Device

Pin 1

User Direction of Feed

P

W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

 2006-2014 Microchip Technology Inc.

DS20001358D-page 9

TC1121

4.3

Package Dimensions

8-Pin MSOP

.122 (3.10)

.114 (2.90)

.122 (3.10)

.114 (2.90)

.043 (1.10) 

Max.

   .006 

(0.15)

   .002 (0.05)

.016 (0.40)
.010 (0.25)

.197 (5.00)
.189 (4.80)

.008 (0.20)
.005 (0.13)

.028 (0.70)
.016 (0.40)

6° Max.

.026 (0.65) Typ. 

Pin 1

Dimensions: inches (mm)

3° Min.

Pin 1

.260 (6.60)
.240 (6.10)

.045 (1.14)
.030 (0.76)

.070 (1.78)
.040 (1.02)

.400 (10.16)

.348 (8.84)

.200 (5.08)
.140 (3.56)

.150 (3.81)

.115 (2.92)

.110 (2.79)

.090 (2.29)

.022 (0.56)
.015 (0.38)

.040 (1.02)
.020 (0.51)

.015 (0.38)
.008 (0.20)

.310 (7.87)
.290 (7.37)

.400 (10.16)

.310 (7.87)

8-Pin Plastic DIP

Dimensions: inches (mm)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001358D-html.html
background image

TC1121

DS20001358D-page 10

 2006-2014 Microchip Technology Inc.

Package Dimensions (Continued)

.050 (1.27) Typ.

8

°

 Max.

Pin 1 

.244 (6.20)
.228 (5.79)

.157 (3.99)
.150 (3.81)

.197 (5.00)
.189 (4.80)

.020 (0.51)
.013 (0.33)

.010 (0.25)
.004 (0.10)

.069 (1.75)
.053 (1.35)

.010 (0.25)
.007 (0.18)

.050 (1.27)
.016 (0.40)

8-Pin SOIC

Dimensions: inches (mm)

Maker
Microchip Technology Inc.
Datasheet PDF Download