Switched Capacitor Voltage Converters with Shutdown in SOT Packages

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

 2002 Microchip Technology Inc.

DS21366B-page 1

M

TC1219/TC1220

Features

• Charge Pumps in 6-Pin SOT-23A Package

• >95% Voltage Conversion Efficiency

• Voltage Inversion and/or Doubling

• Operates from +2.5V to +5.5V

• Up to 25mA Output Current

• Only Two External Capacitors Required 

• Low Power Consumption

• Power-Saving Shutdown Mode

• TC1220 Compatible with 1.8V Logic Systems

Applications

• LCD Panel Bias

• Cellular Phones

• Pagers

• PDAs, Portable Dataloggers

• Battery-Powered Devices

Device Selection Table

Package Type

General Description

The TC1219/TC1220 are CMOS “charge-pump”
voltage converters in ultra-small 6-Pin SOT-23A
packages. They invert and/or double an input voltage
which can range from +2.5V to +5.5V. Conversion
efficiency is typically >95%. Switching frequency is
12kHz for the TC1219, 35kHz for the TC1220. When
the shutdown pin is held at a logic low, the device goes
into a very low power mode of operation, consuming
less than 1

µ

A of supply current.

External component requirement is only two capacitors
for standard voltage inverter applications. With a few
additional components a positive doubler can also be
built. All other circuitry, including control, oscillator,
power MOSFETs are integrated on-chip. Typical supply
currents are 60

µ

A (TC1219), 115

µ

A (TC1220). 

All devices are available in 6-pin SOT-23A surface
mount packages.

Functional Block Diagram

Part

Number

Package

Osc.

Freq.
(kHz)

Operating

Temp.

Range

TC1219ECH 6-Pin SOT-23A

12

-40°C to +85°C

TC1220ECH 6-Pin SOT-23A

35

-40°C to +85°C

C+

C–

TC1219ECH
TC1220ECH

1

2

3

5

4

V

IN

SHDN

GND

6-Pin SOT-23A

NOTE:  6-Pin SOT-23A is equivalent to the EIAJ SC-74

OUT

6

TC1219
TC1220

V

IN

V– 

Output

C+

C–

C1

C2

Input

GND

OUT

SHDN

ON

OFF

+

+

Negative Voltage Inverter

Switched Capacitor Voltage Converters with Shutdown in SOT Packages

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

TC1219/TC1220

DS21366B-page 2

 2002 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage (V

IN

 to GND)....................... +6.0V, -0.3V

Output Voltage (OUT to GND).................. -6.0V, +0.3V

Current at OUT Pin..............................................50mA

Short-Circuit Duration – OUT to GND ............Indefinite

Power Dissipation (T

A

 

 70°C)

        6-Pin SOT-23A .........................................240mW

Operating Temperature Range............. -40°C to +85°C

Storage Temperature (Unbiased) .......-65°C to +150°C

Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

TC1219/TC1220 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: T

A

 = -40°C to +85°C, V

IN

 = +5V, C1 = C2 = 10

µ

F, (TC1219), C1 = C2 = 3.3

µ

F (TC1220), T

A

 = 25°C 

unless otherwise noted.

Symbol

Parameter

Min

Typ

Max

Units

Device

Test Conditions

I

DD

Supply Current


60

115

115

325

µ

A

TC1219
TC1220

I

SHDN

Shutdown Supply Current

0.1

1.0

µ

A

SHDN = GND, V

IN 

= 5V (Note 2)

V

MIN

Minimum Supply Voltage

2.5

V

R

LOAD

 = 1k

V

MAX

Maximum Supply Voltage

5.5

V

R

LOAD

 = 1k

F

OSC

Oscillator Frequency

6

19

12
35

20

56.3

kHz

TC1219
TC1220

V

IH

SHDN Input Logic High

1.5
1.8
1.5







V

TC1219

TC1220

R

LOAD

 = 

V

IN 

= V

MIN 

to 3V

V

IN 

= >3V to V

MAX

V

IN 

= V

MIN 

to V

MAX

V

IL

SHDN Input Logic Low

0.5

V

V

IN 

= V

MIN 

to V

MAX

P

EFF

Power Efficiency


96
95


%

R

LOAD

 = 1k

V

EFF

Voltage Conversion Efficiency

95

99.9

%

R

LOAD

 = 

R

OUT

Output Resistance

25

65

TC1219/TC1220

I

LOAD

 = 0.5mA to 25mA  (Note 1)

Note

1:

Capacitor contribution is approximately 20% of the output impedance [ESR = 1/ pump frequency x capacitance].

2:

V

IN

 is guaranteed to be disconnected from OUT when the converter is in shutdown..

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

 2002 Microchip Technology Inc.

DS21366B-page 3

TC1219/TC1220

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

Pin No.

(6-Pin SOT-23A)

Symbol

Description

1

OUT

Inverting charge pump output.

2

V

IN

Positive power supply input.

3

C

Commutation capacitor negative terminal.

4

GND

Ground.

5

SHDN

Shutdown input (active low).

6

C

+

Commutation capacitor positive terminal.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

TC1219/TC1220

DS21366B-page 4

 2002 Microchip Technology Inc.

3.0

DETAILED DESCRIPTION

The TC1219/TC1220 charge pump converters invert
the voltage applied to the V

IN

 pin. Conversion consists

of a two-phase operation (Figure 3-1). During the first
phase, switches S2 and S4 are opened and S1 and S3
are closed. During this time, C1 charges to the voltage
on V

IN

 and load current is supplied from C2. During the

second phase, S2 and S4 are closed, and S1 and S3
are opened. This action connects C1 across C2,
restoring charge to C2.

FIGURE 3-1:

IDEAL SWITCHED 
CAPACITOR CHARGE 
PUMP

V

OUT

  = – (V

IN

)

C1

C2

TC1219/1220

Phase 1

V

IN

S1

S3

S4

S2

OSC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

 2002 Microchip Technology Inc.

DS21366B-page 5

TC1219/TC1220

4.0

APPLICATIONS INFORMATION

4.1

Output Voltage Considerations

The TC1219/TC1220 perform voltage conversion but
do not provide regulation. The output voltage will droop
in a linear manner with respect to load current. The
value of this equivalent output resistance is approxi-
mately 25

 nominal at +25°C and V

IN

 = +5V. V

OUT 

is

approximately -5V at light loads, and droops according
to the equation below:

V

DROP

 = I

OUT

 x R

OUT

V

OUT

 = – (V

IN

 – V

DROP

)

4.2

Charge Pump Efficiency

The overall power efficiency of the charge pump is
affected by four factors:

1.

Losses from power consumed by the internal
oscillator, switch drive, etc. (which vary with
input voltage, temperature and oscillator
frequency).

2.

I

2

R losses due to the on-resistance of the

MOSFET switches on-board the charge pump.

3.

Charge pump capacitor losses due to effective
series resistance (ESR).

4.

Losses that occur during charge transfer (from
the commutation capacitor to the output
capacitor) when a voltage difference between
the two capacitors exists.

Most of the conversion losses are due to factors (2) and
(3) above. These losses are given by Equation 4-1(b).

EQUATION 4-1:

The 1/(f

OSC

)(C1) term in Equation 4-1(b) is the

effective output resistance of an ideal switched
capacitor circuit (Figure 4-1 and Figure 4-2). The value
of R

SWITCH

 can be approximated at 0.5

 for the

TC1219/TC1220.

The remaining losses in the circuit are due to factor (4)
above, and are shown in Equation 4-2. The output
voltage ripple is given by Equation 4-3.

EQUATION 4-2:

EQUATION 4-3:

FIGURE 4-1:

IDEAL SWITCHED 
CAPACITOR MODEL

FIGURE 4-2:

EQUIVALENT OUTPUT 
RESISTANCE

a) P

LOSS 

(2, 3)

 = I

OUT

2

 x R

OUT

b) where R

OUT 

=

[

 1 / [f

OSC

(C1) ] + 8R

SWITCH

 +

4ESR

C

1

 + ESR

C

2

]

P

LOSS

(4)

=

[

(0.5)(C1) (V

IN

2

– V

OUT

2

) + (0.5)

(C

2

) (V

RIPPLE

2

– 2V

OUT

V

RIPPLE

)

]

x f

OSC

V

RIPPLE

= [ I

OUT

/ 2 x ( f

OSC

) (C2) ] + 2 ( I

OUT

) (ESR

C2

)

V+

V

OUT

R

L

C2

C1

f

V+

V

OUT

R

EQUIV

R

EQUIV

=

R

L

C2

f x C1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

TC1219/TC1220

DS21366B-page 6

 2002 Microchip Technology Inc.

4.3

Capacitor Selection

In order to maintain the lowest output resistance and
output ripple voltage, it is recommended that low ESR
capacitors be used. Additionally, larger values of C1
will lower the output resistance and larger values of
C2 will reduce output ripple. (Equation 4-1(b) and
Equation 4-3). 

Table 4-1 shows various values of C1 and the
corresponding output resistance values @ +25°C. It
assumes a 0.1

 ESR

C1

 and 2

  R

SWITCH

. Table 4-2

shows the output voltage ripple for various values of
C2. The V

RIPPLE

 values assume 10mA output load

current and 0.1

 ESR

C2

.

TABLE 4-1:

OUTPUT RESISTANCE VS.
C1 (ESR = 0.1

)

TABLE 4-2:

OUTPUT VOLTAGE RIPPLE 
VS. C2 (ESR = 0.1

)

I

OUT 

10mA

4.4

Input Supply Bypassing

The V

IN

 input should be capacitively bypassed to

reduce AC impedance and minimize noise effects due
to the internal switching of the device The
recommended capacitor depends on the configuration
of the TC1219/TC1220.

4.5

Shutdown Input

The TC1219/TC1220 is enabled when SHDN is high,
and disabled when SHDN is low. This input cannot be
allowed to float. (If SHDN is not required, see the
TCM828/829 data sheet.) The SHDN input can be only
driven to 0.5V above V

IN

 to avoid significant current

flows.

4.6

Voltage Inverter

The most common application for charge pump
devices is the inverter (Figure 4-3). This application
uses two external capacitors: C1 and C2 (plus a power
supply bypass capacitor, if necessary). The output is
equal to -V

IN

 plus any voltage drops due to loading.

Refer to Table 4-1 and Table 4-2 for capacitor
selection.

FIGURE 4-3:

VOLTAGE INVERTER 
TEST CIRCUIT

C1 (

µ

F)

TC1219

R

OUT

(

)

TC1220

R

OUT

(

)

1

100

45

3.3

42

25

10

25

19.4

30

19.3

17.5

C2 (

µ

F)

TC1219

V

RIPPLE 

(mV)

TC1220

V

RIPPLE 

(mV)

1

419

145

3.3

128

45

10

44

16

30

16

7

3

2

4

5

1

C3

C1

C2

V

IN

V

OUT

R

L

TC1219
TC1220

C1–

IN

OUT

C1+

GND

Device 

 

C1 

C2 

 C3

TC1219                 10

µF        10µF         10µF

TC1220                 3.3

µF       3.3µF        3.3µF

SHDN

 

6

+

+

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

 2002 Microchip Technology Inc.

DS21366B-page 7

TC1219/TC1220

4.7

Cascading Devices

Two or more TC1219/TC1220 can be cascaded to
increase output voltage (Figure 4-4). If the output is
lightly loaded, it will be close to (-2 x V

IN

) but will droop

at least by R

OUT

 of the first device multiplied by the I

Q

of the second. It can be seen that the output resistance
rises rapidly for multiple cascaded devices.

4.8

Paralleling Devices

To reduce the value of R

OUT

, multiple TC1219/

TC1220’s can be connected in parallel (Figure 4-5).
The output resistance will be reduced by a factor of N
where N is the number of TC1219/TC1220. Each
device will require its own pump capacitor (C1), but all
devices may share one reservoir capacitor (C2).
However, to preserve ripple performance the value of
C2 should be scaled according to the number of
paralleled TC1219/TC1220.

FIGURE 4-4:

CASCADING MULTIPLE DEVICES TO INCREASE OUTPUT VOLTAGE

FIGURE 4-5:

PARALLELING MULTIPLE DEVICES TO REDUCE OUTPUT RESISTANCE

C1

C1

C2

6

6

4

3

4

1

2

2

1

3

C2

V

IN

V

OUT

V

OUT

 = -nV

IN

TC1219
TC1220

TC1219
TC1220

. . .

. . .

SHDN

SHDN

V

IN

5

5

"1"

"n"

+

+

+

+

C1

C1

6

5

4

3

4

1

2

2

1

3

C2

V

OUT

V

OUT

= -V

IN

R

OUT

= R

OUT

OF SINGLE DEVICE

V

IN

NUMBER OF DEVICES

TC1219
TC1220

TC1219
TC1220

. . .

. . .

SHDN

SHDN

Shutdown 

Control

5

6

V

IN

+

+

+

"1"

"n"

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

TC1219/TC1220

DS21366B-page 8

 2002 Microchip Technology Inc.

4.9

Voltage Doubler/Inverter

Another common application of the TC1219/TC1220 is
shown in Figure 4-6. This circuit performs two functions
in combination. C1 and C2 form the standard inverter
circuit described previously. C3 and C4 plus the two
diodes form the voltage doubler circuit. C1 and C3 are
the pump capacitors and C2 and C4 are the reservoir
capacitors. Because both sub-circuits rely on the same
switches if either output is loaded, both will droop
toward GND. Make sure that the total current drawn
from both the outputs does not total more than 40mA.

4.10

Diode Protection for Heavy Loads

When heavy loads require the OUT pin to sink large
currents being delivered by a positive source, diode
protection may be needed. The OUT pin should not be
allowed to be pulled above ground. This is
accomplished by connecting a Schottky diode
(1N5817) as shown in Figure 4-7.

4.11

Layout Considerations

As with any switching power supply circuit good layout
practice is recommended. Mount components as close
together as possible to minimize stray inductance and
capacitance. Noise leakage into other circuitry can be
minimized with the use of a large ground plane.

FIGURE 4-6:

COMBINED DOUBLER AND INVERTER

FIGURE 4-7:

HIGH V– LOAD CURRENT

C1

D1

D2

D1, D2 = 1N4148

6

4

1

2

3

C2

C4

C3

V

IN

V

OUT

 = -V

IN

 

V

OUT

 = (2V

IN

) –

(V

FD1

) – (V

FD2

TC1219
TC1220

Shutdown 

Control

5

+

+

+

+

TC1219
TC1220

GND

OUT

4

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

 2002 Microchip Technology Inc.

DS21366B-page 9

TC1219/TC1220

5.0

TYPICAL CHARACTERISTICS

Circuit of Figure 4-3, V

IN

 = +5V, C1 = C2 = C3, T

A

 = 25°C unless otherwise noted.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

60
55

50
45

40

0

30

25
20
15

35

10

5

2.5

3.5

4.5

5.5

SUPPLY VOLTAGE (V)

Output Resistance

vs. Supply Voltage

65

OUTPUT RESISTANCE (

)

TC1220

TC1219

CAPACITANCE (

µF)

TC1220

Output Current vs. Capacitance

60

55

50

45

40

25

20

15

35

30

-40

-20

0

20

40

60

80

TEMPERATURE (

°C)

TC1219 Output Resistance

vs. Temperature

65

OUTPUT RESISTANCE (

)

V

IN

 = 3.3V

V

IN

 = 5.0V

40

35

30

25

20

5

0

15

10

0

10

5

15

25

20

30

45

V

IN

 = 4.75V, V

OUT

 = -4.0V

V

IN

 = 3.15V, V

OUT

 = -2.5V

TC1219

Output Current vs. Capacitance

CAPACITANCE (

µF)

O

UTPUT CURRENT 

(mA

)

0

10

5

15

20

25

30

CAPACITANCE (

µF)

TC1220

Output Voltage Ripple vs. Capacitance

450

400

350

300

250

50

0

200

150

100

0

10

5

25

20

25

30

CAPACITANCE (

µF)

TC1219

Output Voltage Ripple vs. Capacitance

500

450

400

350

300

250

50

0

200

150

100

500

OUTPUT VOLTAGE RIPPLE (mVp-p)

O

UTPUT VOLTAGE RIPPLE 

(mVp-p

)

40

35

30

25

20

5

0

15

10

0

10

5

15

25

20

30 35 40 45 50

45

V

IN

 = 4.75V, V

OUT

 = -4.0V

V

IN

 = 3.15V, V

OUT

 = -2.5V

V

IN

 = 4.75V, V

OUT

 = -4.0V

V

IN

 = 3.15V, V

OUT

 = -2.5V

V

IN

 = 4.75V, V

OUT

 = -4.0V

V

IN

 = 3.15V, V

OUT

 = -2.5V

14

13

12

8

11

10

9

-40

0

-20

20

40

60

80

-40

0

-20

20

40

60

80

TEMPERATURE (

°C)

TC1219

Pump Frequency vs. Temperature

15

PUMP FREQUENCY (kHz)

140
130
120

100

90

80
70

50

110

60

20
10

0

40
30

2.5

3.5

4.5

5.5

SUPPLY VOLTAGE (V)

Supply Current

vs. Supply Voltage

150

SUPPLY CURRENT (

µ

A)

TC1220

TC1219

35

45

40

20

30

25

TEMPERATURE (

°C)

TC1220

Pump Frequency vs. Temperature

P

UMP FREQUENCY 

(kHz

)

V

IN

= 5.0V

V

IN

 = 5.0V

V

IN

= 3.3V

V

IN

 = 3.3V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21366b-html.html
background image

TC1219/TC1220

DS21366B-page 10

 2002 Microchip Technology Inc.

TYPICAL CHARACTERISTICS (CONTINUED)

Output Voltage vs. Output Current

-0.5

-5.5

-1.5

-2.5

-3.5

-4.5

0

5

10

15

20

25

30

35 40

OUTPUT CURRENT (mA)

0.5

OUTPUT VOLTAGE (V)

V

IN

 = 3.3V

V

IN

 = 5.0V

100

90

80

70

60

30

20

10

0

50

40

0

10

5

15

25

20

30 35 40 45 50

CURRENT (mA)

Efficiency vs. Output Current

110

EFFICIENCY (%)

V

IN

 = 3.3V

V

IN

 = 5.0V

Maker
Microchip Technology Inc.
Datasheet PDF Download