Simple Lithium-Ion Battery Charger

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

 2017 Microchip Technology Inc.

DS20005771A-page 1

MIC79050

Features

• High-Accuracy Charge Voltage: ±0.75% over 

–5°C to + 60°C (Li-ion charging temperature 
range)

• Zero Off-Mode Current
• 10 µA Reverse Leakage
• Ultra-Low 380 mV Dropout at 500 mA
• Wide Input Voltage Range
• Logic-Controlled Enable Input (8-Lead Devices 

Only)

• Thermal Shutdown and Current-Limit Protection
• Power MSOP-8, Power SOIC-8, and SOT-223 

Packages

• Pulse Charging Capability

Applications

• Li-Ion Battery Charger
• Cellular Phones
• Palmtop Computers
• PDAs
• Self-Charging Battery Packs

General Description

The MIC79050 is a simple single-cell lithium-ion battery
charger. It includes an on-chip pass transistor for high
precision charging. Featuring ultra-high precision
(±0.75% over the Li-ion battery charging temperature
range) and “zero” off-mode current, the MIC79050
provides a very simple, cost effective solution for
charging lithium-ion battery.
Other features of the MIC79050 include current-limit
and thermal shutdown protection. In the event the input
voltage to the charger is disconnected, the MIC79050
also provides minimal reverse-current and
reversed-battery protection.
The MIC79050 is a fixed 4.2V device and comes in the
thermally-enhanced MSOP-8, SOIC-8, and SOT-223
packages. The 8-lead versions also come equipped
with enable and feedback inputs. All versions are
specified over the temperature range of –40°C to
+125°C.

Package Types

MIC79050

3-Lead SOT-223 (S)

IN

BAT

GND

1

3

2

TAB

GND

MIC79050

8-Lead SOIC/MSOP (M/MM)

1

2

3

4

8

7

6

5

GND

GND

GND

GND

EN

IN

BAT

FB

Simple Lithium-Ion Battery Charger

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

MIC79050

DS20005771A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuits

Functional Block Diagrams

Li-Ion
Cell

4.2V 0.75% over Temp

IN

BAT

GND

MIC79050-4.2YS

Regulated or

unregulated

wall adapter

4.2V 0.75%

Li-Ion
Cell

IN

BAT

FB

GND

EN

MIC79050-4.2YMM

External PWM*

*See Applications Information

Regulated or

unregulated

wall adapter

Simplest Battery Charging

Solution

Pulse-Charging

Application

Current Limit

Thermal Shutdown

IN

GND

Bandgap

Ref.

V

BAT

V

IN

MIC79050-4.2YS

3-Lead Version

IN

E N

F B

GND

V

R E F

Bandgap

Ref.

Current Limit

Thermal Shutdown

V

BAT

V

IN

MIC79050-4.2YM/YMM

8-Lead Version

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

 2017 Microchip Technology Inc.

DS20005771A-page 3

MIC79050

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage (V

IN

) .......................................................................................................................... –20V to +20V

Power Dissipation (P

D

) (

Note 1

) ............................................................................................................ Internally Limited

Operating Ratings ‡

Supply Input Voltage (V

IN

) ......................................................................................................................... +2.5V to +16V

Enable Input Voltage (V

EN

) .................................................................................................................................0V to V

IN

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice:

 The device is not guaranteed to function outside its operating ratings.

Note 1:

The maximum allowable power dissipation at any T

A

 (ambient temperature) is calculated using: P

D(max)

 =

(T

J(max)

 – T

A

) ÷ θ

JA

. Exceeding the maximum allowable power dissipation will result in excessive die tem-

perature, and the regulator will go into thermal shutdown.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS

Electrical Characteristics:

 V

IN

 = V

BAT

 + 1.0V; C

OUT

 = 4.7 μF, I

OUT

 = 100 μA; T

J

 = +25°C, bold values indicate 

–40°C ≤ T

J

 ≤ +125°C; unless noted.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Battery Voltage Accuracy

V

BAT

–0.75

0.75

%

Variation from nominal V

OUT

, –5°C 

to +60°C

Battery Voltage Temperature 
Coefficient

∆V

BAT

/

∆T

40

ppm/°C

Note 1

Line Regulation

∆V

BAT

/

V

BAT

0.009

0.05

%/V

V

IN

 = V

BAT

 + 1V to 16V

0.1

Load Regulation

∆V

BAT

/

V

BAT

0.05

0.5

%

I

OUT

 = 100 μA to 500 mA, 

Note 2

0.7

Dropout Voltage (

Note 3

)

V

IN

 – 

V

BAT

380

500

mV

I

OUT

 = 500 mA

600

Ground Pin Current (

Note 4

Note 5

)

I

GND

85

130

µA

V

EN

 ≥ 3.0V, I

OUT

 = 100 μA

170

11

20

mA

V

EN

 ≥ 3.0V, I

OUT

 = 500 mA

25

Ground Pin Quiescent 
Current (

Note 5

)

I

GND

0.05

3

µA

V

EN

 ≤ 0.4V (shutdown)

0.10

8

V

EN

 ≤ 0.18V (shutdown)

Ripple Rejection

PSRR

75

dB

f = 120 Hz

Current Limit

I

LIMIT

750

900

mA

V

BAT

 = 0V

1000

Thermal Regulation

∆V

BAT

/

∆P

D

0.05

%/W

Note 6

ENABLE Input

Enable Input Logic-Low 
Voltage

V

ENL

0.4

V

V

EN

 = logic-low (shutdown)

0.18

2.0

V

EN

 = logic-high (enabled)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

MIC79050

DS20005771A-page 4

 2017 Microchip Technology Inc.

Enable Input Current

I

ENL

0.01

–1

µA

V

ENL

 ≤ 0.4V (shutdown)

0.01

–2

V

ENL

 ≤ 0.18V (shutdown)

I

ENH

5

20

µA

V

ENH

 ≥ 2.0V (enabled)

25

Note 1:

Battery voltage temperature coefficient is the worst case voltage change divided by the total temperature 
range.

2:

Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are 
tested for load regulation in the load range from 100 μA to 500 mA. Changes in output voltage due to heat-
ing effects are covered by the thermal regulation specification.

3:

Dropout voltage is defined as the input to battery output differential at which the battery voltage drops 2% 
below its nominal value measured at 1V differential.

4:

Ground pin current is the charger quiescent current plus pass transistor base current. The total current 
drawn from the supply is the sum of the load current plus the ground pin current.

5:

V

EN

 is the voltage externally applied to devices with the EN (enable) input pin. MSOP-8 (MM) and SOIC-8 

(M) packages only.

6:

Thermal regulation is the change in battery voltage at a time “t” after a change in power dissipation is 
applied, excluding load or line regulation effects. Specifications are for a 500 mA load pulse at V

IN

 = 16V 

for t = 10 ms.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 V

IN

 = V

BAT

 + 1.0V; C

OUT

 = 4.7 μF, I

OUT

 = 100 μA; T

J

 = +25°C, bold values indicate 

–40°C ≤ T

J

 ≤ +125°C; unless noted.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

 2017 Microchip Technology Inc.

DS20005771A-page 5

MIC79050

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Junction Operating Temperature 
Range

T

J

–40

+125

°C

Storage Temperature Range

T

S

–65

+150

°C

Lead Temperature

+260

°C

Soldering, 5s

Package Thermal Resistances (

Note 2

)

Thermal Resistance MSOP-8

JA

80

°C/W

Thermal Resistance SOIC-8

JA

63

°C/W

Thermal Resistance SOT-223

JC

15

°C/W

JA

62

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2:

The maximum allowable power dissipation at any T

A

 (ambient temperature) is calculated using: P

D(max)

 = 

(T

J(max)

 – T

A

) ÷ θ

JA

. Exceeding the maximum allowable power dissipation will result in excessive die tem-

perature, and the regulator will go into thermal shutdown.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

MIC79050

DS20005771A-page 6

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Dropout Voltage vs. Output 

Current. 

FIGURE 2-2:

Dropout Voltage vs. 

Temperature.

FIGURE 2-3:

Dropout Characteristics.

FIGURE 2-4:

Dropout Characteristics.

FIGURE 2-5:

Output Current vs. Ground 

Current.

FIGURE 2-6:

Ground Current vs. Supply 

Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

100

200

300

400

0

100

200

300

400

500

DROPOUT VOLTAGE (mV)

OUTPUT CURRENT (mA)

0

100

200

300

400

500

600

-40

0

40

80

120

DROPOUT VOLTAGE (mV)

TEMPERATURE (°C)

0

1

2

3

4

5

0

2

4

6

8

10 12 14 16

OUTPUT VOLTAGE (V)

INPUT VOLTAGE (V)

50mA, 150mA

5mA

0

1

2

3

4

5

0

2

4

6

OUTPUT VOLTAGE (V)

INPUT VOLTAGE (V)

250mA

500mA

0

2

4

6

8

10

12

0

100

200

300

400

500

GROUND CURRENT (mA)

OUTPUT CURRENT (mA)

0

0.5

1

1.5

0

4

8

12

16

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

50mA

5mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

 2017 Microchip Technology Inc.

DS20005771A-page 7

MIC79050

FIGURE 2-7:

Ground Current vs. Supply 

Voltage.

FIGURE 2-8:

Ground Current vs. 

Temperature.

FIGURE 2-9:

Ground Current vs. 

Temperature.

FIGURE 2-10:

Ground Current vs. 

Temperature.

FIGURE 2-11:

Battery Voltage vs. 

Temperature.

FIGURE 2-12:

Short-Circuit Current vs. 

Temperature.

0

5

10

15

20

25

0

1

2

3

4

5

6

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

500mA

250mA

125mA

0

50

100

150

-40

0

40

80

120

GROUND CURRENT (μA)

TEMPERATURE (°C)

3.0

3.2

3.4

3.6

3.8

4.0

-40

0

40

80

120

GROUND CURRENT (mA)

TEMPERATURE (°C)

11.0

11.5

12.0

12.5

13.0

13.5

-40

0

40

80

120

GROUND CURRENT (mA)

TEMPERATURE (°C)

4.190

4.195

4.200

4.205

4.210

-40 -20 0 20 40 60 80 100120140

OUTPUT VOLTAGE (V)

TEMPERATURE (°C)

0

100

200

300

400

500

600

700

800

-40

0

40

80

120

SHORT CIRCUIT CURRENT (mA)

TEMPERATURE (°C)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

MIC79050

DS20005771A-page 8

 2017 Microchip Technology Inc.

FIGURE 2-13:

Typical Voltage Drift Limits 

vs. Time

.

FIGURE 2-14:

Reverse Leakage Current 

vs. Output Voltage

.

FIGURE 2-15:

Reverse Leakage Current 

vs. Output Voltage.

FIGURE 2-16:

Reverse Leakage Current 

vs. Temperature.

-0.75

-0.25

0.25

0.75

0

200

400

600

800

DRIFT FROM NOMINAL VOUT (%)

TIME (hrs)

Upper

Lower

0

5

10

15

20

0

1

2

3

4

5

REVERSE LEAKAGE CURRENT (μA)

OUTPUT VOLTAGE (V)

0

5

10

15

20

-5

5

15

25

35

45

55

REVERSE LEAKAGE CURRENT (μA)

TEMPERATURE (°C)

3.0V

3.6V

4.2V

V

IN

+V

E N

FLOATING

0

5

10

15

20

-5

5

15

25

35

45

55

REVERSE LEAKAGE CURRENT (μA)

TEMPERATURE (°C)

3.0V

3.6V

4.2V

V

IN

+V

E N

GROUNDED

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

 2017 Microchip Technology Inc.

DS20005771A-page 9

MIC79050

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

SOT-223

Pin Number

SOIC-8, 

MSOP-8

Pin Name

Description

1

2

IN

Supply input.

2, TAB

5, 6, 7, 8

GND

Ground: SOT-223 pin 2 and TAB are internally connected. SOIC-8 
pins 5 through 8 are internally connected.

3

3

BAT

Battery voltage output.

1

EN

Enable (Input): TTL/CMOS-compatible control input. Logic-high = 
enable; logic-low or open = shutdown.

4

FB

Feedback node.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005771A-html.html
background image

MIC79050

DS20005771A-page 10

 2017 Microchip Technology Inc.

4.0

FUNCTIONAL DESCRIPTION

The MIC79050 is a high-accuracy, linear battery
charging circuit designed for the simplest
implementation of a single lithium-ion (Li-ion) battery
charger. The part can operate from a regulated or
unregulated power source, making it ideal for various
applications. The MIC79050 can take an unregulated
voltage source and provide an extremely accurate
termination voltage. The output voltage varies only
0.75% from nominal over the standard temperature
range for Li-ion battery charging (–5°C to +60°C). With
a minimum of external components, an accurate
constant-current charger can be designed to provide
constant-current, constant-voltage charging for Li-ion
cells.

4.1

Input Voltage

The MIC79050 can operate with an input voltage up to
16V (20V absolute maximum), ideal for applications
where the input voltage can float high, such as an
unregulated wall adapter that obeys a load-line. Higher
voltages can be sustained without any performance
degradation to the output voltage. The line regulation of
the device is typically 0.009%/V; that is, a 10V change
on the input voltage corresponds to a 0.09% change in
output voltage.

4.2

Enable

The MIC79050 has an enable pin that allows the
charger to be disabled when the battery is fully charged
and the current drawn by the battery has approached a
minimum and/or the maximum charging time has timed
out. When disabled, the regulator output sinks a
minimum of current with the battery voltage applied
directly onto the output. This current is typically 12 μA
or less.

4.3

Feedback

The feedback pin allows for external manipulation of
the control loop. This node is connected to an external
resistive divider network, which is connected to the
internal error amplifier. This amplifier compares the
voltage at the feedback pin to an internal voltage
reference. The loop then corrects for changes in load
current or input voltage by monitoring the output
voltage and linearly controlling the drive to the large,
PNP pass element. By externally controlling the
voltage at the feedback pin the output can be disabled
or forced to the input voltage. Pulling and holding the
feedback pin low forces the output low. Holding the
feedback pin high forces the pass element into
saturation, where the output will be the input minus the
saturation (dropout) voltage.

4.4

Battery Output

The BAT pin is the output of the MIC79050 and
connects directly to the cell to provide charging current
and voltage. When the input is left floating or grounded,
the BAT pin limits reverse current to <12 μA to minimize
battery drain.

Maker
Microchip Technology Inc.
Datasheet PDF Download