rfHCS362G/362F- KeeLoq® Code Hopping Encoder with UHF ASK/FSK Transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

© 2011 Microchip Technology Inc.

DS41189B-page 1

rfHCS362G/362F

General

• Combination K

EE

L

OQ®

 encoder and synthesized 

UHF ASK/FSK transmitter in a single package

• Operates on a single lithium coin cell

- <200 nA typical standby current
- 4.8 to 11.5 mA transmit current
- 2.2 to 5.5V operation

• Integrated solution with minimum external parts
• Separate pin-outs for K

EE

L

OQ

 encoder and RF 

transmitter provides for design flexibility

Code Hopping Encoder

• Programmable minimum code word completion
• Battery low signal transmitted to receiver with pro-

grammable threshold

• Non-volatile EEPROM storage of synchronization 

data

• Easy to use EEPROM programming interface
• PWM or Manchester modulation
• Selectable encoder data rate 417 to 3334 bps
• On-chip tunable encoder oscillator
• RF Enable output for transmitter control
• Button inputs have internal pull-down resistors
• Elapsed time and button queuing options
• Current limiting on LED output
• 2-bit CRC for error detection

UHF ASK/FSK Transmitter

• Conforms to US FCC Part 15.231 regulations and 

European ERC 70-03E and EN 300 220-1 
requirements

• VCO phase locked to quartz crystal reference; 

allows narrow receiver bandwidth to maximize 
range and interference immunity

• Crystal frequency divide by 4 output (CLKOUT)
• Transmit frequency range (310 – 440 MHz) set by 

Crystal frequency

• ASK Modulation
• FSK Modulation through crystal pulling 

(rfHCS362F)

• Adjustable output power: -12 dBm to +2 dBm
• Differential output configurable for single or 

double ended loop antenna

• Automatic power amplifier inhibit until PLL lock

Pin Diagrams

Security

• Programmable 28/32-bit serial number
• Two programmable 64-bit encryption keys
• Programmable 60-bit seed
• Each 69-bit transmission is unique with 32 bits of 

hopping code

• Encryption keys are read protected

Applications

• Automotive Remote Keyless Entry (RKE) systems
• Automotive alarm systems
• Automotive immobilizers
• Community gate and garage door openers
• Identity tokens with usage counters
• Burglar alarm systems
• Building access

Device

Features

Encrypt 

Keys

Encoding

Transmitter

rfHCS362AG

2 x 64

PWM/MAN

ASK

rfHCS362AF

2 x 64

PWM/MAN

ASK/FSK

SOIC

V

SS

S2

XTAL

S3/RFEN

OUT

 V

DD

LED/SHIFT

S1

RFEN

IN

CLKOUT

PS/DATA

ASK

V

DDRF

S0

LF

 2

 3

 4

 5

 6

 7

 8

 9

•1

17

16

14

13

12

11

10

15

18

 r

fHCS36

2G

DATA

ANT2

NC

V

SSRF

ANT1

SSOP

V

SS

S2

DATA

FSK

S3/RFEN

OUT

V

DD

LED/SHIFT

S1

RFEN

IN

CLKOUT

PS/DATA

ASK

V

DDRF

S0

LF

 2

 3

 4

 5

 6

 7

 8

 9

•1

19

18

16

15

14

13

12

17

20

  

   

rf

HCS

36

2

F

DATA

NC

V

SSRF

ANT2

ANT1

10

11

FSK

OUT

XTAL

K

EE

L

OQ®

 Code Hopping Encoder with 

UHF ASK/FSK Transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

rfHCS362G/362F

DS41189B-page 2

© 2011 Microchip Technology Inc.

1.0

GENERAL DESCRIPTION

The rfHCS362G/362F is a code hopping encoder plus
UHF transmitter designed for secure wireless com-
mand and control systems. The rfHCS362G/362F uti-
lizes the K

EE

L

OQ

®

 code hopping technology which

incorporates high security in a small package outline at
a low cost to make this device well suited for unidirec-
tional remote keyless entry systems and access control
systems.
The rfHCS362G/362F combines a 32-bit hopping code
generated by a nonlinear encryption algorithm with a
28/32-bit serial number and 9/5 status bits to create a
69-bit transmission stream. The length of the transmis-
sion strongly resists the threat of code scanning. The
code hopping mechanism makes each transmission
unique, thus rendering code capture and resend (code
grabbing) schemes virtually useless.
The encryption key, serial number and configuration
data are stored in an EEPROM array which is not
accessible via any external connection. The EEPROM
data is programmable but read protected. The data can
be verified only after an automatic erase and program-
ming operation. This protects against attempts to gain
access to keys or manipulate synchronization values.
The rfHCS362G/362F provides an easy to use serial
interface for programming the necessary keys, system
parameters and configuration data.
The transmitter is a fully integrated UHF ASK/FSK
transmitter consisting of crystal oscillator, Phase-
Locked Loop (PLL), open-collector differential-output
Power Amplifier (PA), and mode control logic. External
components consist of bypass capacitors, crystal, and
PLL loop filter. There are no internal electrical connec-
tions between the encoder and the transmitter. The
encoder oscillator is independent from the transmitter
crystal oscillator.
The rfHCS362G is capable of Amplitude Shift Keying
(ASK) modulation by turning the PA on and off. The
rfHCS362F is capable of ASK or Frequency Shift Key-
ing (FSK) modulation by employing an internal FSK
switch to pull the transmitter crystal via a second load
capacitor.
The rfHCS362G/362F is a single channel device. The
transmit frequency is fixed and set by an external refer-
ence crystal. Transmit frequencies in the range of 310
to 440 MHz can be selected. Output drive is an open-
collector differential amplifier. The differential output is
well suited for loop antennas. Output power is adjust-
able from +2 dBm to -12 dBm in six discrete steps.
The rfHCS362G/362F are radio frequency (RF) emit-
ting devices. Wireless RF devices are governed by a
country’s regulating agency. For example, in the United
States it is the Federal Communications Committee
(FCC) and in Europe it is the European Conference of
Postal and Telecommunications Administrations

(CEPT). It is the responsibility of the designer to ensure
that their end product conforms to rules and regulations
of the country of use and/or sale.
RF devices require correct board level implementation
in order to meet regulatory requirements. Layout con-
siderations are given in Section 6.0 UHF ASK/FSK
Transmitter.

1.1

Important Terms

The following is a list of key terms used throughout this
data sheet. For additional information on K

EE

L

OQ

 and

Code Hopping refer to Technical Brief 3 (TB003).
• RKE - Remote Keyless Entry
• Button Status - Indicates what button input(s) 

activated the transmission. Encompasses the 4 
button status bits S3, S2, S1 and S0 (Figure 3-6).

• Code Hopping - A method by which a code, 

viewed externally to the system, appears to 
change unpredictably each time it is transmitted.

• Code word - A block of data that is repeatedly 

transmitted upon button activation (Figure 3-6).

• Transmission - A data stream consisting of 

repeating code words (Figure 10-1).

• Encryption key - A unique and secret 64-bit 

number used to encrypt and decrypt data. In a 
symmetrical block cipher such as the K

EE

L

OQ

 

algorithm, the encryption and decryption keys are 
equal and will be referred to generally as the 
encryption key.

• Encoder - A device that generates and encodes 

data.

• Encryption Algorithm - A recipe whereby data is 

scrambled using a encryption key. The data can 
only be interpreted by the respective decryption 
algorithm using the same encryption key.

• Decoder - A device that decodes data received 

from an encoder.

• Decryption algorithm - A recipe whereby data 

scrambled by an encryption algorithm can be 
unscrambled using the same encryption key.

• Learn – Learning involves the receiver calculating 

the transmitter’s appropriate encryption key, 
decrypting the received hopping code and storing 
the serial number, synchronization counter value 
and encryption key in EEPROM. The K

EE

L

OQ

 

product family facilitates several learning strate-
gies to be implemented on the decoder. The fol-
lowing are examples of what can be done. 
Simple Learning

The receiver uses a fixed encryption key, 
common to all components of all systems by 
the same manufacturer, to decrypt the 
received code word’s encrypted portion.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

© 2011 Microchip Technology Inc.

DS41189B-page 3

rfHCS362G/362F

Normal Learning

The receiver uses information transmitted 
during normal operation to derive the encryp-
tion key and decrypt the received code 
word’s encrypted portion.

Secure Learn

The transmitter is activated through a special 
button combination to transmit a stored 60-bit 
seed value used to generate the transmitter’s 
encryption key. The receiver uses this seed 
value to derive the same encryption key and 
decrypt the received code word’s encrypted 
portion. 

• Manufacturer’s code – A unique and secret 64-

bit number used to generate unique encoder 
encryption keys. Each encoder is programmed 
with a encryption key that is a function of the man-
ufacturer’s code. Each decoder is programmed 
with the manufacturer code itself.

1.2

Applications

The rfHCS362G/362F is suited for secure wireless
remote control applications. The EEPROM technology
makes customizing application programs (transmitter
codes, appliance settings, etc.) extremely fast and con-
venient. The small footprint packages are suitable for
applications with space limitations. Low-cost, low-
power, high performance, ease of use and I/O flexibility
make the rfHCS362G/362F very versatile. Typical
application circuits are shown in Figure 1-5 and
Figure 1-6.
Most low-end keyless entry transmitters are given a
fixed identification code that is transmitted every time a
button is pushed. The number of unique identification
codes in a low-end system is usually a relatively small
number. These shortcomings provide an opportunity
for a sophisticated thief to create a device that ‘grabs’
a transmission and retransmits it later, or a device that
quickly ‘scans’ all possible identification codes until the
correct one is found.
The rfHCS362G/362F, on the other hand, employs the
K

EE

L

OQ

 code hopping technology coupled with a trans-

mission length of 66 bits to virtually eliminate the use of
code ‘grabbing’ or code ‘scanning’. The high security
level of the rfHCS362G/362F is based on patented

technology. A block cipher based on a block length of

32 bits and a key length of 64 bits is used. The algo-
rithm obscures the information in such a way that even
if the transmission information (before coding) differs
by only one bit from that of the previous transmission,
the next coded transmission will be completely differ-
ent. Statistically, if only one bit in the 32-bit string of
information changes, approximately 50 percent of the
coded transmission bits will change.

FIGURE 1-1: ADDITIONAL BUTTON INPUTS

Up to 7 button inputs can be implemented making them
look like a binary value to the 3 Sx inputs. This is done
with switching diodes as shown in Figure 1-1. The dis-
advantage is that simultaneously pressed buttons now
appear as if a single button is pressed.
The rfHCS362G/362F has a small EEPROM array
which must be loaded with several parameters before
use. These are most often programmed by the manu-
facturer at the time of production. The most important
of these are:
• A 28-bit serial number, typically unique for every 

encoder

• An encryption key
• An initial 16-bit synchronization value
• A 16-bit configuration value
The encryption key generation typically inputs the
transmitter serial number and 64-bit manufacturer’s
code into the key generation algorithm (Figure 1-2).
The manufacturer’s code is chosen by the system
manufacturer and must be carefully controlled as it is a
pivotal part of the overall system security. 
The 16-bit synchronization counter is the basis behind
the transmitted code word changing for each transmis-
sion; it increments each time a button is pressed. Due
to the code hopping algorithm’s complexity, each incre-
ment of the synchronization value results in about 50%
of the bits changing in the transmitted code word.

V

DD

S0

S1

S2

RFEN

    B4  B3  B2   B1   B0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

rfHCS362G/362F

DS41189B-page 4

© 2011 Microchip Technology Inc.

Figure 1-3 shows how the key values in EEPROM are
used in the encoder. Once the encoder detects a button
press, it reads the button inputs and updates the syn-
chronization counter. The synchronization counter and
encryption key are input to the encryption algorithm
and the output is 32 bits of encrypted information. This
data will change with every button press, its value
appearing externally to ‘randomly hop around’, hence it
is referred to as the hopping portion of the code word.
The 32-bit hopping code is combined with the button
information and serial number to form the code word
transmitted to the receiver. The code word format is
explained in greater detail in Section 3.1. 
A receiver may use any type of controller as a decoder,
but it is typically a microcontroller with compatible firm-
ware that allows the decoder to operate in conjunction
with an rfHCS362G/362F based transmitter.
Section 7.0 provides detail on integrating the
rfHCS362G/362F into a system.

A transmitter must first be ‘learned’ by the receiver
before its use is allowed in the system. Learning
includes calculating the transmitter’s appropriate
encryption key, decrypting the received hopping code
and storing the serial number, synchronization counter
value and encryption key in EEPROM.
In normal operation, each received message of valid
format is evaluated. The serial number is used to deter-
mine if it is from a learned transmitter. If from a learned
transmitter, the message is decrypted and the synchro-
nization counter is verified. Finally, the button status is
checked to see what operation is requested. Figure 1-4
shows the relationship between some of the values
stored by the receiver and the values received from
the transmitter. 

FIGURE 1-2:

CREATION AND STORAGE OF ENCRYPTION KEY DURING PRODUCTION

Transmitter 

Manufacturer’s 

Serial Number

Code

Encryption

 Key

Key

Generation

Algorithm

Serial Number

Encryption Key

Sync Counter

.

.

.

rfHCS362

Production

Programmer

EEPROM Array

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

© 2011 Microchip Technology Inc.

DS41189B-page 5

rfHCS362G/362F

FIGURE 1-3:

BUILDING THE TRANSMITTED CODE WORD (ENCODER)

FIGURE 1-4:

BASIC OPERATION OF RECEIVER (DECODER) 

NOTE: Circled numbers indicate the order of execution.

Button Press

Information

EEPROM Array

32 Bits  

Encrypted Data

Serial Number

Transmitted Information

Encryption Key

Sync Counter

Serial Number

K

EE

L

OQ®

Encryption

Algorithm

Button Press

 Information

EEPROM Array

Manufacturer Code 

32 Bits of 

Encrypted Data

Serial Number

Received Information

 

  Decrypted

Synchronization

        

Counter

     Check for

     Match

Sync Counter

Serial Number

K

EE

L

OQ®

Decryption

Algorithm

1

3

4

     Check for

    Match

2

    Perform Function

        Indicated by

        button press 

5

Encryption Key

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

rfHCS362G/362F

DS41189B-page 6

© 2011 Microchip Technology Inc.

FIGURE 1-5:

ASK EXAMPLE APPLICATIONS CIRCUIT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

© 2011 Microchip Technology Inc.

DS41189B-page 7

rfHCS362G/362F

FIGURE 1-6:

FSK EXAMPLE APPLICATIONS CIRCUIT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

rfHCS362G/362F

DS41189B-page 8

© 2011 Microchip Technology Inc.

2.0

DEVICE DESCRIPTION

The block diagram in Figure 2-1 shows the internal
configuration with the top half representing the encoder
and the bottom half the UHF transmitter. Note that con-
nections between the encoder and transmitter are
made external to the device for more versability.
Typical application circuits are shown in Figure 1-5 and
Figure 1-6. The rfHCS362G/362F requires only the
addition of push button switches and few external com-
ponents  for use as a transmitter in your security appli-
cation. See Table 2-1 for pinout description. Figure 2-2
shows the device I/O circuits.

FIGURE 2-1:

rfHCS362 BLOCK DIAGRAM

V

SS

V

DD

Oscillator

RESET Circuit

LED Driver

Controller

Power

Latching

and

Switching

Button Input Port

32-bit Shift Register

Encoder

EEPROM

DATA 

LED

S3 S2 S1 S0

SHIFT

PLL Driver

RFEN

RFEN

IN

Divide

by 4

Mode

Control

Logic

CLKOUT

Power

Amplifier

(PA)

Crystal

Oscillator

ANT2

ANT1

XTAL

Phase 

Detector

and

Charge Pump

Voltage 

Controlled 

Oscillator

(VCO)

Fixed 

Divide

by 32

LF

PS/DATA

ASK

 

DATA

FSK (1)

FSK

OUT

 

(1)

FSK Switch

 

V

DDRF

V

SSRF

Note 1:  rfHCS362F only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

© 2011 Microchip Technology Inc.

DS41189B-page 9

rfHCS362G/362F

TABLE 2-1:

 rfHCS362G/362F PINOUT DESCRIPTION

Name

SOIC

Pin #

SSOP 

Pin #

I/O/P 
Type

Description

ANT1

10

11

O

Antenna connection to differential power amplifier output, open 
collector.

ANT2

9

10

O

Antenna connection to differential power amplifier output, open 
collector.

CLKOUT

6

7

O

Clock output.

DATA

17

19

I/O

Encoder data output pin or serial programming.

DATA

FSK

15

I

FSK data input.

FSK

OUT

16

O

FSK crystal pulling output.

LED/SHIFT

2

2

I/O

Current limited LED driver. Input sampled before LED driven.

LF

13

14

External loop filter connection. Common node of charge pump 
output and VCO tuning input.

PS/DATA

ASK

7

8

I

Power select and ASK data input.

RFEN

IN

5

6

I

Transmitter and CLKOUT enable. Internal pull-down.

S0

3

3

I

Switch input 0 with internal pull-down.

S1

4

4

I

Switch input 1 with internal pull-down.

S2

15

17

I

Switch input 2 with internal pull-down or Schmitt Trigger clock 
input during serial programming.

S3/RFEN

16

18

I/O

Switch input 3 with internal pull-down or RF enable output as 
selected by RFEN option in configuration word SEED_3.

V

DD

1

1

P

Positive supply for encoder

V

DDRF

8

9

P

Positive supply for transmitter.

V

SS

18

20

P

Ground reference for encoder

V

SSRF

11

12

P

Ground reference for transmitter.

XTAL

14

5

I

Transmitter crystal connection to Colpitts type crystal oscillator.

Legend: I = input, O = output, I/O = input/output, P = power

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/41189B-html.html
background image

rfHCS362G/362F

DS41189B-page 10

© 2011 Microchip Technology Inc.

FIGURE 2-2:

I/O CIRCUITS

2.1

Encoder Architectural Overview

2.1.1

ONBOARD EEPROM

The rfHCS362G/362F has an onboard nonvolatile
EEPROM which is used to store user programmable
data. The data can be programmed at the time of pro-
duction and includes the security-related information
such as encoder keys, serial numbers, discrimination
and seed values.   All   the   security   related   options
are read protected. The rfHCS362G/362F has built-in
protection against counter corruption. Before every
EEPROM write, the internal circuitry also ensures that
the high voltage required to write to the EEPROM is at
an acceptable level.

2.1.2

INTERNAL RC OSCILLATOR

The rfHCS362G/362F has an onboard RC oscillator
that controls all the logic output timing characteristics.
The oscillator frequency varies within ±10% of the
nominal value (once calibrated over a voltage range of
2V – 3.5V or 3.5V – 6.3V). All the timing values
specified in this document are subject to the oscillator
variation.

FIGURE 2-3:

TYPICAL rfHCS362G/362F 

NORMALIZED OSCILLATOR 
PERIOD VS. TEMPERATURE

S0, S1, S2,

 

RS

Inputs

V

DD

RFEN

S3 Input/

RS

RDATA

DATA I/O

LED output

RL

RH

V

DD

DATA

LEDH

LEDL

RFEN Output

PFET

NFET

PFET

NFET

NFET

SHIFT input

SHIFT

RFEN

IN

NFET

FSK

OUT

 

OUTPUT

ANT1, ANT2 outputs

CLKOUT

V

DDRF

PFET

NFET

PS/DATA

ASK

V

DDRF

V

P

LL

Lock

20 

μA

V

DDRF

V

VCO

5 pF

200

Ω

200

Ω

Change

Pump

LF

RFEN

IN

 input

XTAL

output

PS

DATA

FSK

 input

0.94

1.10
1.08
1.06
1.04
1.02
1.00
0.98
0.96

0.92
0.90

V

DD

 Legend

= 2.0V

= 3.0V

= 6.0V

Temperature °C

-50-40-30-20-10 0 10 20 30 40 50 6070 80 90

Note: Values are for calibrated oscillator

Maker
Microchip Technology Inc.