RE46C311/RE46C312 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

 2013 Microchip Technology Inc.

DS25163A-page 1

RE46C311/2

Features

• Low Quiescent Current: 600 nA/Amplifier (typical)

• Rail-to-Rail Input/Output

• Gain Bandwidth Product: 10 kHz (typical)

• Wide Supply Voltage Range: 1.8V to 5.5V

• Unity Gain Stable

• Available in Single and Dual Configurations

• Temperature Ranges: -10°C to +60°C

Applications

• Ionization Smoke Detectors

• Low Leakage High-Impedance Input Circuits

• Battery-Powered Circuits

Design Aids

• MAPS (Microchip Advanced Part Selector)

• Analog Demonstration and Evaluation Boards

• Application Notes

Typical Application

Description

The RE46C311/2 family of operational amplifiers (op
amps) from Microchip Technology Inc. operate with a
single-supply voltage as low as 1.8V, while drawing
less than 1 µA (maximum) of quiescent current per
amplifier. These devices are also designed to support
rail-to-rail input and output operation. This combination
of features supports battery-powered and portable
applications.

The RE46C311/2 amplifiers have a gain-bandwidth
product of 10 kHz (typical) and are unity gain stable.
These specifications make these op amps appropriate
for low-frequency applications, such as ionization
smoke detectors and sensor conditioning.

The RE46C311/2 family operational amplifiers are
offered in single (RE46C311), and dual (RE46C312)
configurations. 

Package Types

+

-

VDD

VSS

Ionization

Chamber

RE46C31X

V

IN

+

V

IN

V

SS

V

DD

V

OUT

1

2

3

4

8

7

6

5 NC

NC

NC

V

INA

+

V

INA

V

SS

V

OUTB

V

INB

1

2

3

4

8

7

6

5 V

INB

+

V

DD

V

OUTA

RE46C311

PDIP, SOIC

RE46C312

PDIP, SOIC

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

RE46C311/2

DS25163A-page 2

 2013 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

– V

SS

........................................................................6.0V

Current at Input Pins .....................................................±2 mA
All Inputs and Outputs .................... V

SS

– 0.3V to V

DD

+ 0.3V

Difference Input voltage  ...................................... |V

DD

– V

SS

|

Output Short Circuit Current ..................................continuous
Current at Output and Supply Pins  ............................±30 mA
Storage Temperature.................................... –65°C to +150°C
Junction Temperature.................................................. +150°C
ESD protection on all pins (HBM; MM)

 4 kV; 400V

† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at those or any other conditions
above those indicated in the operational listings of this
specification is not implied. Exposure to maximum rat-
ing conditions for extended periods may affect device
reliability.

†† See 

Section 4.1, Rail-to-Rail Input

.

DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V

DD

= +1.8V to +5.5V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2, V

OUT

 V

DD

/2, V

L

= V

DD

/2, and R

= 1 M

 to V

L

 (refer to 

Figure 1-1

 and 

Figure 1-2

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Offset

Input Offset Voltage 

V

OS

-3

+3

mV

Drift with Temperature

V

OS

/

T

A

±2

µV/°C

T

A

= -10°C to +60°C

Power Supply Rejection

PSRR

70

76

dB

V

CM

 = V

SS

Input Leakage Current and Impedance

Input Leakage Current

I

L1

-0.75

0.75

pA

Non Inverting Input only, 
V

IN

= V

DD

 or V

SS

3.5

6

T

A

 = +60°C

Input Leakage Current

I

L2

-100

100

nA

Inverting input only

Common Mode 
Input Impedance

Z

CM

10

13

||6

||pF

Differential Input Impedance

Z

DIFF

10

13

||6

||pF

Common Mode

Common-Mode Input Range

V

CMR

V

SS

V

DD

V

Common-Mode 
Rejection Ratio

CMRR

62

86

dB

V

DD

 = 5V, V

CM

 = 0V to 5.0V 

Open-Loop Gain

DC Open-Loop Gain 
(large signal)

A

OL

85

115

dB

R

L

 = 50 k

 to V

L

,

V

OUT

 = 0.1V to V

DD

-0.1V

Output

Maximum Output 
Voltage Swing

V

OL

, V

OH

V

SS

+ 10

V

DD

- 10

mV

R

L

 = 50 k

 to V

L

0.5V input overdrive

Output Short Circuit Current

I

SC

5

mA

V

DD

 = 1.8V

27

mA

V

DD

 = 5.5V

Power Supply

Supply Voltage

V

DD

1.8

5.5

V

Quiescent Current 
per Amplifier

I

Q

0.3

0.6

1.0

µA

I

O

 = 0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

 2013 Microchip Technology Inc.

DS25163A-page 3

RE46C311/2

1.1

Test Circuits

The test circuits used for the DC and AC tests are
shown in 

Figure 1-1

 and 

Figure 1-2

. The bypass

capacitors are laid out according to the rules discussed
in 

Section 4.5, Supply Bypass

.

FIGURE 1-1:

AC and DC Test Circuit for 

Most Non-Inverting Gain Conditions.

FIGURE 1-2:

AC and DC Test Circuit for 

Most Inverting Gain Conditions.

AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V

DD

= +1.8V to +5.5V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2, V

OUT

 V

DD

/2, V

L

= V

DD

/2, R

= 1 M

 to V

L

, and C

L

= 60 pF (refer to 

Figure 1-1

 and 

Figure 1-2

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

AC Response

Gain Bandwidth Product

GBWP

10

kHz

Slew Rate

SR

3.0

V/ms

Phase Margin

PM

65

°

G = +1 V/V

Noise

Input Voltage Noise

E

ni

5.0

µV

P-P

f = 0.1 Hz to 10 Hz

Input Voltage Noise Density

e

ni

170

nV/

Hz f = 1 kHz

Input Current Noise Density

i

ni

0.6

fA/

Hz

f = 1 kHz

TEMPERATURE CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V

DD

= +1.8V to +5.5V, V

SS

= GND.

Parameters

Sym.

Min.

Typ.

Max. Units

Conditions

Temperature Ranges

Operating Temperature Range

T

A

-10

+60

°C

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances

Thermal Resistance, 8L-PDIP

JA

89.3

°C/W

Thermal Resistance, 8L-SOIC

JA

149.5

°C/W

V

DD

R

G

R

F

R

N

V

OUT

V

IN

V

DD

/2

1 µF

C

L

R

L

V

L

0.1 µF

RE46C31X

V

DD

R

G

R

F

R

N

V

OUT

V

DD

/2

V

IN

1 µF

C

L

R

L

V

L

0.1 µF

RE46C31X

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

RE46C311/2

DS25163A-page 4

 2013 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +1.8V to +5.5V, V

SS

= GND, V

CM

= V

DD

/2, V

OUT

 V

DD

/2, 

V

L

= V

DD

/2, R

L

= 1 M

 to V

L

, and C

L

= 60 pF.

FIGURE 2-1:

Input Offset Voltage vs. 

Common Mode Input Voltage with V

DD

= 1.8V.

FIGURE 2-2:

Input Offset Voltage vs. 

Common Mode Input Voltage with V

DD

= 5.5V.

FIGURE 2-3:

CMRR, PSRR vs. 

Frequency.

FIGURE 2-4:

The RE46C311/2 Family 

Shows No Phase Reversal.

FIGURE 2-5:

CMRR, PSRR vs. Ambient 

Temperature.

FIGURE 2-6:

Open-Loop Gain, Phase vs. 

Frequency.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

-2000

-1500

-1000

-500

500

1000

1500

2000

-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Input Offset V

o

ltage (μV)

Common Mode Input Voltage (V)

T

A

= +60°C 

T

A

= +25°C 

T

A

= -10°C 

V

DD

=

V

Representative Part

-2000

-1500

-1000

-500

0

500

1000

1500

2000

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Input Offset V

o

ltage 

(μV)

Common Mode Input Voltage (V)

V

DD

= 5.5V

Representative Part

T

A

= +60°C

T

A

= +25°C

T

A

= -10°C

20

30

40

50

60

70

80

90

1

10

100

1000

CMRR, PSRR 

(dB)

Frequency (Hz)

   CMRR
PSRR-/+

-1

0

1

2

3

4

5

6

Input, Output V

o

ltages 

(V)

Time (5 ms/div)

G = 2 V/V
V

DD

= 5V

Input

Output

70

75

80

85

90

95

100

-10

0

10

20

30

40

50

60

PSRR, CMRR (dB)

Ambient Temperature (°C) 

PSRR

CMRR

(V

DD

=5.5V, V

CM 

= -0.3V to +5.8V) 

-210

-180

-150

-120

-90

-60

-30

0

-20

0

20

40

60

80

100

120

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

Open-Loop Phase 

(°)

Open-Loop Gain (dB)

Frequency (Hz)

Open-Loop Gain

Open-Loop Phase

0.001  0.01   0.1     1      10    100    1k    10k  100k

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

 2013 Microchip Technology Inc.

DS25163A-page 5

RE46C311/2

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +1.8V to +5.5V, V

SS

= GND, V

CM

= V

DD

/2, V

OUT

 V

DD

/2, 

V

L

= V

DD

/2, R

L

= 1 M

 to V

L

, and C

L

= 60 pF.

FIGURE 2-7:

DC Open-Loop Gain vs. 

Power Supply Voltage.

FIGURE 2-8:

Gain Bandwidth Product, 

Phase Margin vs. Common Mode Input Voltage.

FIGURE 2-9:

Gain Bandwidth Product, 

Phase Margin vs. Ambient Temperature with 
V

DD

= 5.5V.

FIGURE 2-10:

Small Signal Non-inverting 

Pulse Response.

FIGURE 2-11:

Small Signal Inverting Pulse 

Response.

FIGURE 2-12:

Large Signal Non-inverting 

Pulse Response.

80

90

100

110

120

130

140

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

DC Open-Loop Gain (dB)

Power Supply Voltage (V)

R

L

= 50 k

Ÿ

V

OUT 

= 0.1V to V

DD

– 0.1V

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

18

20

-0.500.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Phase Mar

g

in (°)

GBWP

 (kHz)

Common Mode Voltage (V)

PM

GBWP

V

DD

= 5.5V

Gain = 100

20

30

40

50

60

70

80

90

0

2

4

6

8

10

12

14

-10

0

10

20

30

40

50

60

Phase Mar

g

in (°)

Gain Bandw

idth Product 

(KHz)

Ambient Temperature (°C)

GBWP

PM

V

DD

= 5.5V

Output V

o

ltage 

(5 mV/div)

Time (100 μs/div)

G = 1 V/V
R

L

= 50 k

Ω

Ω 

Output V

o

ltage 

(5 mV/div)

Time (100 μs/div)

G = -1 V/V
R

L

= 50 k

Ω

Ω 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Output V

o

ltage 

(V)

Time (1 ms/div)

G = -1 V/V
R

L

= 50 k

Ω 

V

DD

= 5.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

RE46C311/2

DS25163A-page 6

 2013 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +1.8V to +5.5V, V

SS

= GND, V

CM

= V

DD

/2, V

OUT

 V

DD

/2, 

V

L

= V

DD

/2, R

L

= 1 M

 to V

L

, and C

L

= 60 pF.

FIGURE 2-13:

Large Signal Inverting Pulse 

Response.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Output V

o

ltage 

(V)

Time (1 ms/div)

G = 1 V/V
R

L

= 50 k

Ω 

V

DD

= 5.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

 2013 Microchip Technology Inc.

DS25163A-page 7

RE46C311/2

3.0

PIN DESCRIPTIONS

Descriptions of the pins are listed in 

Table 3-1

.

3.1

Analog Outputs

The output pins are low-impedance voltage sources.

3.2

Analog Inputs

The non-inverting and inverting inputs are high-imped-
ance CMOS inputs with low bias and leakage currents.

3.3

Power Supply Pins

The positive power supply pin (V

DD

) is 1.8V to 5.5V

higher than the negative power supply pin (V

SS

). For

normal operation, the other pins are at voltages
between V

SS

 and V

DD

.

Typically, these parts are used in a single (positive)
supply configuration. In this case, V

SS

 is connected to

ground and V

DD

 is connected to the supply. V

DD

 will

need bypass capacitors.

TABLE 3-1:

PIN FUNCTION TABLE

RE46C311

RE46C312

Symbol

Description

PDIP, SOIC

PDIP, SOIC,

6

1

V

OUT

, V

OUTA

Analog Output (op amp A)

2

2

V

IN

–, V

INA

Inverting Input (op amp A)

3

3

V

IN

+, V

INA

+

Non-inverting Input (op amp A)

7

8

V

DD

Positive Power Supply

5

V

INB

+

Non-inverting Input (op amp B)

6

V

INB

Inverting Input (op amp B)

7

V

OUTB

Analog Output (op amp B)

4

4

V

SS

Negative Power Supply

1, 5, 8

NC

No Internal Connection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

RE46C311/2

DS25163A-page 8

 2013 Microchip Technology Inc.

4.0

APPLICATIONS INFORMATION

The RE46C311/2 family of op amps is manufactured
using a state of the art CMOS process. These op amps
are unity gain stable and suitable for a wide range of
general purpose, low-power applications.

4.1

Rail-to-Rail Input

4.1.1

PHASE REVERSAL

The RE46C311/2 op amps are designed to not exhibit
phase inversion when the input pins exceed the supply
voltages. 

Figure 2-4

 shows an input voltage exceeding

both supplies with no phase inversion.

4.1.2

INPUT VOLTAGE AND CURRENT 
LIMITS

The ESD protection on the inputs can be depicted as
shown in 

Figure 4-1

. This structure was chosen to

protect the input transistors and to minimize input bias
current (I

B

). The input ESD diodes clamp the inputs

when they try to go more than one diode drop below
V

SS

 or one diode drop above V

DD

.

FIGURE 4-1:

Simplified Analog Input ESD 

Structures.

In order to prevent damage and/or improper operation
of these amplifiers, the circuit must limit the currents
(and voltages) at the input pins (see 

Absolute

Maximum Ratings †

). 

A significant amount of current can flow out of the
inputs (through the ESD diodes) when the common
mode voltage (V

CM

) is below V

SS

 or above V

DD

.

Applications that are high-impedance may need to limit
the usable voltage range.

4.1.3

NORMAL OPERATION

The input stage of the RE46C311/2 op amps uses two
differential input stages in parallel. One operates at a
low common mode input voltage (V

CM

), while the other

operates at a high V

CM

. With this topology, the device

operates with a V

CM

 up to V

DD

 and down to V

SS

. The

input offset voltage is measured at V

CM

= V

SS

 and V

DD

to ensure proper operation.

There are two transitions in input behavior as V

CM

 is

changed. The first occurs when V

CM

 is near

V

SS

+ 0.4V, and the second occurs when V

CM

 is near

V

DD

– 0.5V  (see 

Figure 2-1

 and 

Figure 2-2

). For the

best distortion performance with non-inverting gains,
avoid these regions of operation.

4.2

Rail-to-Rail Output

There are two specifications that describe the output
swing capability of the RE46C311/2 family of op amps.
The first specification (Maximum Output Voltage
Swing) defines the absolute maximum swing that can
be achieved under the specified load condition. Thus,
the output voltage swings to within 10 mV of either
supply rail with a 50 k

 load to V

DD

/2. 

Figure 2-4

shows how the output voltage is limited when the input
goes beyond the linear region of operation.

The second specification that describes the output
swing capability of these amplifiers is the Linear Output
Voltage Range. This specification defines the maxi-
mum output swing that can be achieved while the
amplifier still operates in its linear region. To verify
linear operation in this range, the large signal DC
Open-Loop Gain (A

OL

) is measured at points inside the

supply rails. The measurement must meet the specified
A

OL

 condition in the specification table.

4.3

Output Loads and Battery Life

The RE46C311/2 op amp family has outstanding
quiescent current, which supports battery-powered
applications. 

Heavy resistive loads at the output can cause
excessive battery drain. Driving a DC voltage of 2.5V
across a 100 k

 load resistor will cause the supply

current to increase by 25 µA, depleting the battery
43 times as fast as I

Q

 (0.6 µA, typical) alone.

High frequency signals (fast edge rate) across
capacitive loads will also significantly increase supply
current. For instance, a 0.1 µF capacitor at the output
presents an AC impedance of 15.9 k

 (1/2fC) to a

100 Hz sine wave. It can be shown that the average
power drawn from the battery by a 5.0 V

p-p

 sine wave

(1.77 V

rms

), under these conditions, is:

EQUATION 4-1:

This will drain the battery 17 times as fast as I

Q

 alone.

Bond

Pad

Bond

Pad

Bond

Pad

V

DD

V

IN

+

V

SS

Input

Stage

Bond

Pad

V

IN

P

Supply

 = (V

DD

 - V

SS

) (I

Q

 + V

L(p-p) 

f

 

C

= (5V)(0.6 µA + 5.0V

p-p 

·

 

100Hz

 

·

 

0.1µF)

= 3.0 µW + 50 µW

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

 2013 Microchip Technology Inc.

DS25163A-page 9

RE46C311/2

4.4

Capacitive Loads

Driving large capacitive loads can cause stability
problems for voltage feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produces gain peaking in the frequency
response, with overshoot and ringing in the step
response. A unity gain buffer (G = +1) is the most
sensitive to capacitive loads, although all gains show
the same general behavior.

When driving large capacitive loads with these op
amps (e.g., > 60 pF when G = +1), a small series
resistor at the output (R

ISO

 in 

Figure 4-2

) improves the

feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitive load.

FIGURE 4-2:

Output Resistor, R

ISO

,

 

Stabilizes Large Capacitive Loads.

Figure 4-3

 gives recommended R

ISO

 values for

different capacitive loads and gains. The x-axis is the
normalized load capacitance (C

L

/G

N

), where G

N

 is the

circuit’s noise gain. For non-inverting gains, G

N

 and the

Signal Gain are equal. For inverting gains, G

N

 is

1+|Signal Gain| (e.g., -1 V/V gives G

N

= +2 V/V).

FIGURE 4-3:

Recommended R

ISO

 Values 

for Capacitive Loads.

After selecting R

ISO

 for your circuit, double check the

resulting frequency response peaking and step
response overshoot. Modify R

ISO

’s value until the

response is reasonable.

4.5

Supply Bypass

With this family of operational amplifiers, the power
supply pin (V

DD

 for single supply) should have a local

bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm
for good high-frequency performance. It can use a bulk
capacitor (i.e., 1 µF or larger) within 100 mm to provide
large, slow currents. This bulk capacitor is not required
for most applications and can be shared with nearby
analog parts.

4.6

Unused Op Amps

An unused op amp in a dual package (RE46C312)
should be configured as shown in 

Figure 4-4

. These

circuits prevent the output from toggling and causing
crosstalk. Circuit A sets the op amp at its minimum
noise gain. The resistor divider produces any desired
reference voltage within the output voltage range of the
op amp; the op amp buffers that reference voltage.
Circuit B uses the minimum number of components
and operates as a comparator, but it may draw more
current.

FIGURE 4-4:

Unused Op Amps.

V

IN

R

ISO

V

OUT

C

L

RE46C31X

1,000

10,000

100,000

1.E+01

1.E+02

1.E+03

1.E+04

Recommended R

ISO

)

Normalized Load Capacitance; C

L

/G

N

(F)

10p

1k

100k

100p

G

N

= +1

G

N

= +2

G

N

≥ +5

10k

10n

1n

V

DD

V

DD

R

1

R

2

V

DD

V

REF

V

R EF

V

DD

R

2

R

1

R

2

+

-------------------

=

½ RE46C312 (A)

½ RE46C312 (B)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25163A-html.html
background image

RE46C311/2

DS25163A-page 10

 2013 Microchip Technology Inc.

4.7

PCB Surface Leakage

In applications where low input bias current is critical,
printed circuit board (PCB) surface leakage effects
need to be considered. Surface leakage is caused by
humidity, dust or other contamination on the board.
Under low humidity conditions, a typical resistance
between nearby traces is 10

12

. A 5V difference would

cause 5 pA of current to flow, which is greater than the
RE46C311/2 family’s leakage current at +25°C.

The easiest way to reduce surface leakage is to use a
guard ring around sensitive pins (or traces). The guard
ring is biased at the same voltage as the sensitive pin.

Figure 4-5

 shows an example of this type of layout.

FIGURE 4-5:

Example Guard Ring Layout 

for Inverting Gain.

1.

Non-inverting Gain and Unity Gain Buffer:

a)

Connect the non-inverting pin (V

IN

+) to the

input with a wire that does not touch the
PCB surface.

b)

Connect the guard ring to the inverting input
pin (V

IN

–). This biases the guard ring to the

Common mode input voltage.

2.

Inverting Gain and Transimpedance Gain
(convert current to voltage, such as photo
detectors) amplifiers:

a)

Connect the guard ring to the non-inverting
input pin (V

IN

+). This biases the guard ring

to the same reference voltage as the op
amp (e.g., V

DD

/2 or ground).

b)

Connect the inverting pin (V

IN

–) to the input

with a wire that does not touch the PCB
surface.

4.8

Application Circuits

4.8.1

INSTRUMENTATION AMPLIFIER

The RE46C311/2 op amp is well suited for conditioning
sensor signals in battery-powered applications.

Figure 4-6

 shows a two op amp instrumentation

amplifier, using the RE46C312, that works well for
applications requiring rejection of Common mode noise
at higher gains. The reference voltage (V

REF

) is

supplied by a low impedance source. In single supply
applications, V

REF

 is typically V

DD

/2.

.

FIGURE 4-6:

Two Op Amp 

Instrumentation Amplifier.

Guard Ring

V

IN

– V

IN

+

V

OUT

V

1

V

2

 1

R

1

R

2

------

2R

1

R

G

---------

+

+

V

REF

+

=

V

REF

R

1

R

2

R

2

R

1

V

OUT

R

G

V

2

V

1

½

RE46C312

½

RE46C312

Maker
Microchip Technology Inc.
Datasheet PDF Download