RE46C144 - CMOS Photoelectric Smoke Detector ASIC with Interconnect and Timer Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

 2009-2012 Microchip Technology Inc.

DS22180C-page 1

RE46C144

Features

• Internal Power-On Reset
• Low Quiescent Current Consumption
• ESD Protection on all Pins
• Interconnect up to 40 Detectors
• 10 Minute Timer for Sensitivity Control
• 75% Duty Cycle Horn Pattern
• Internal Low Battery and Chamber Test
• Compatible with Allegro A5358
• UL Recognized per File S24036

General Description

The RE46C144 is a low-power, CMOS photoelectric-
type smoke detector IC. With minimal external
components, this circuit will provide all the required
features for a photoelectric-type smoke detector.
The design incorporates a gain selectable photo
amplifier for use with an infrared emitter/detector pair.
An internal oscillator strobes power to the smoke
detection circuitry for 100 µs every 10 seconds to keep
standby current to a minimum. If smoke is sensed, the
detection rate is increased to verify an Alarm condition.
A High Gain mode is available for push-button chamber
testing.
A check for a low-battery condition and chamber
integrity is performed every 43 seconds, when in
Standby. The alarm horn pattern utilizes a 75% duty
cycle.
An interconnect pin allows multiple detectors to be
connected such that when one units alarms, all units
will sound. 
An internal 10 minute timer can be used for a reduced
sensitivity mode. 

The RE46C144 device is recognized by 
Underwriters Laboratories for use in smoke 
detectors that comply with specification UL217 and 
UL268. 

Package Types

RE46C144

 

PDIP, SOIC, SOICN

C1

1

2
3

4

5

6

7

8

16

15
14

13

12

11

10

9

C2

DETECT

STROBE

V

DD

IRED

IO

HORNB

TEST

VSEN
V

SS

ROSC

COSC

LED

FEED

HORNS

CMOS Photoelectric Smoke Detector ASIC with Interconnect 

and Timer Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

RE46C144

DS22180C-page 2

 2009-2012 Microchip Technology Inc.

Functional Block Diagram

Typical Application

Logic and

Timing

Bias and

Power Reset

Oscillator

+

-

+

-

VDD (5)

VSEN (15)

C1 (1)

DETECT (3)

C2 (2)

TEST (16)

IO (7)

FEED (10)

HS (9)

LED (11)

IRED (6)

ROSC (13)

COSC (12)

HB (8)

+

-

PHOTOAMP

STROBE (4)

VSS (14)

V

DD

-3.5V

V

DD

-5V

Low Battery

Smoke Comparator

Horn Driver

Push-to-Test

C3
1 µF

C5
1.5nF

R12
10M

R9

100k

R13

330

D3

C6

1.0nF

R10

1.5M

R11
220k

R8

330

R7

22

C4

100 µF

D5

D6

R4

560

C2

4700 pF

C1

.047 µF

R1
4.7k

R2

5k

R3
8.2k

R

ADJ2

R

ADJ1

R6    

1k

1

2

3

4

5

14

6

7

8

9

10

11

12

13

15

16

R5

250k

To Other Units

Q3

9v

Battery

Smoke Chamber

Note 1:

C3 should be located as close as possible to the device power pins.

2:

C3 is typical for an alkaline battery. This capacitance should be increased to 4.7 µF or greater for a carbon battery.

3:

R10, R11 and C6 are typical values and may be adjusted to maximize sound pressure.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

 2009-2012 Microchip Technology Inc.

DS22180C-page 3

RE46C144

1.0

ELECTRICAL 
CHARACTERISTICS

1.1

Absolute Maximum Ratings†

V

DD

....................................................................................15V

Input Voltage Range Except FEED, IO .......... V

IN 

= -.3V to V

DD

 +.3V

FEED Input Voltage Range .....................  V

INFD

 =-10 to +22V

IO Input Voltage Range................................. V

IO1

= -.3 to 15V

Input Current except FEED................................... I

IN 

= 10 mA

Operating Temperature ................................T

A = 

-25 to +75°C

Storage Temperature ............................T

STG

 = -55 to +125°C

Maximum Junction Temperature......................... T

J

 = +150°C

† Notice:

 Stresses above those listed under “Maximum

ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at these or any other conditions above those
indicated in the operation listings of this specification is
not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics:

 Unless otherwise indicated, all parameters apply at T

A

= -25°C to +75°C, V

DD

= 9V.

Parameter

Symbol

Test Pin

Min.

Typ.

Max.

Units

Conditions

Supply Voltage

V

DD

5

6

12

V

Operating

Supply Current

I

DD1

5

4

6

µA

Configured as in 

Typical 

Application

, COSC=V

SS

I

DD2

5

5.5

8

µA

Configured as in 

Typical 

Application

, V

DD

= 12V, 

COSC = V

SS

I

DD3

5

2

mA

Configured as in 

Typical 

Application

, STROBE on, 

IRED off, V

DD

= 12V

I

DD4

5

3

mA

Configured as in 

Typical 

Application

, STROBE on, 

IRED on, V

DD

= 12V, 

Note 1

Input Voltage High

V

IH1

10

6.2

V

FEED

V

IH2

7

3.2

V

No Local Alarm, IO as 
input

V

IH3

15

1.6

V

V

SEN

V

IH4

16

8.5

V

TEST

Input Voltage Low

V

IL1

10

2.7

V

FEED

V

IL2

7

1.5

V

No Local Alarm, IO as 
Input

V

IL3

15

.5

V

VSEN

V

IL4

16

V

TEST

Input Leakage Low

I

IL1

1, 2, 3

-100

nA

V

DD

= 12V,  COSC = 12V, 

STROBE active

I

IL2

10, 12

-100

nA

V

DD

= 12V,  V

IN

= V

SS

I

IL3

15, 16

-1

µA

V

DD

= 12V,  V

IN

= V

SS

I

IFD

10

-50

µA

FEED = -10V

Note 1:

Does not include Q3 emitter current.

2:

Not production tested. 

3:

Typical values are for design information and are not ensured.

4:

Limits over the specified temperature range are not production tested and are based on characterization 
data.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

RE46C144

DS22180C-page 4

 2009-2012 Microchip Technology Inc.

Input Leakage High

I

IH1

1, 2

100

nA

V

DD

= 12V,  V

IN

= V

DD

STROBE active

I

IH2

3, 10, 12

100

nA

V

DD

= 12V,  V

IN

= V

DD

I

HFD

10

50

µA

FEED = 22V

Input Pull Down 
Current 

I

PD1

16

.25

10

µA

V

IN

= V

DD

I

PD2

15

.1

.25

.5

µA

V

IN

= V

DD

I

PDIO1

7

20

80

µA

V

IN

= V

DD

I

PDIO2

7

140

µA

V

IN

= 15V,  V

DD

= 12V

Output Leakage 
Current Low

I

OZL1

11, 13

-1

µA

Output Off, Output = V

SS

Output Leakage 
Current High

I

OZH1

11, 13

1

µA

Output Off, Output = V

DD

Output Voltage Low

V

OL1

8, 9

1

V

Iol = 16 mA, V

DD

= 6.5V

V

OL2

13

.5

V

Iol = 5 mA, V

DD

= 6.5V

V

OL3

11

.6

V

Iol = 10 mA, V

DD

= 6.5V

Output Voltage High

V

OH1

8, 9

5.5

V

Iol = -16 mA, V

DD

= 6.5V

Output Current

I

IOH1

7

-4

-16

mA

Alarm, 
V

IO

= V

DD

- 2V  or  V

IO

= 0V

I

IODMP

7

5

mA

At Conclusion of Local 
Alarm or Test, V

IO

= 1V

Low Battery 
Alarm Voltage

V

LB

5

6.9

7.2

7.5

V

Output Voltage

V

STOF

4

V

DD

– .1

V

STROBE off, V

DD

=12V, 

I

OUT

= -1 µA

V

STON

4

V

DD

– 5.25 V

DD

– 5 V

DD

- 4.75

V

STROBE on, V

DD

= 9V, 

I

OUT

= 100 µA to 500 µA

V

IREDOF

6

.1

V

IRED off, V

DD

= 12V, 

I

OUT

= 1 µA

V

IREDON

6

2.85

3.1

3.35

V

IRED on, V

DD

= 9V

I

OUT

= 0 to -6 mA, 

T

A

= +25°C

Common Mode 
Voltage

V

CM1

1, 2, 3

.5

V

DD

– 2

V

Local smoke, 
Push-to-Test or Chamber 
Test, 

Note 2

Smoke Compare 
Reference

V

REF

V

DD

– 3.7

V

DD

– 3.3

V

Internal Reference

Temperature 
Coefficient

T

CST

4

.01

%/ºC V

DD

= 6V to 12V, 

STROBE Output Voltage

T

CIRED

6

.3

%/ºC V

DD

= 6V to 12V, 

IRED Output Voltage

Line Regulation

∆V

STON

4, 5

-50

dB

Active, V

DD

= 6V  to  12V

∆V

IREDON

6, 5

-30

dB

Active, V

DD

= 6V to 12V

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

DC Electrical Characteristics:

 Unless otherwise indicated, all parameters apply at T

A

= -25°C to +75°C, V

DD

= 9V.

Parameter

Symbol

Test Pin

Min.

Typ.

Max.

Units

Conditions

Note 1:

Does not include Q3 emitter current.

2:

Not production tested. 

3:

Typical values are for design information and are not ensured.

4:

Limits over the specified temperature range are not production tested and are based on characterization 
data.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

 2009-2012 Microchip Technology Inc.

DS22180C-page 5

RE46C144

TABLE 1-1:

AC ELECTRICAL CHARACTERISTICS

AC Electrical Characteristics:

 Unless otherwise indicated, all parameters apply at T

A

= -25°C to +75°C, V

DD

= 9V, 

V

SS

= 0V, Component Values from 

Typical Application

; R

9

= 100 K

, R

12

= 10 M

, C

5

= 1.5 nF.

Parameter

Symbol

Test 

Pin

Min

Typ

Max

Units

Conditions

Oscillator Period

T

POSC

12

9.4

10.5

11.5

ms

No alarm condition

LED and 
STROBE On Time

T

ON1

11, 4

9.4

10.5

11.5

ms

Operating

LED Period

T

PLED1

11

39

43

47

s

Standby, no alarm

T

PLED2

11

.6

.67

.74

s

Local alarm condition

T

PLED3

11

9.6

10.75

11.8

s

Timer mode, no local alarm

T

PLED4

11

LED IS NOT ON

s

Remote alarm only

STROBE and IRED 
Pulse Period

T

PER1

4, 6

9.6

10.75

11.8

s

Standby, no alarm

T

PER1A

4, 6

2.42

2.7

2.96

s

Standby, after one valid smoke 
sample

T

PER1B

4, 6

1.21

1.33

1.47

s

Standby, after two consecutive 
valid smoke samples

T

PER2

4, 6

1.21

1.33

1.47

s

In Local Alarm (three consecu-
tive valid smoke samples)

T

PER3

4, 6

9.7

10.5

11.8

s

In Remote Alarm

T

PER4

4, 6

300

336

370

ms

Push-button Test

T

PER5

4, 6

39

47

s

Chamber Test  or Low-battery 
Test, no alarms

IRED On Time

T

ON2

6

94

104

115

µs

Operating

Horn On Time

T

HON1

8, 9

227

252  

277

ms

Operating, alarm condition, 

Note 1

T

HON2

8, 9

9.5

10.5

11.5

ms

Low Battery or Failed Chamber 
Test, no alarm

Horn Off Time

T

HOF1

8, 9

76

84

92

ms

Operating, Alarm Condition, 

Note 1

T

HOF3

8, 9

39

43

47

s

Low Battery or Failed Chamber 
Test, no alarm

IO Charge Dump 
Duration

T

IODMP

7

.91

1.46

s

At conclusion of local alarm or 
test

IO Delay

T

IODLY1

7

0

s

From start of local alarm to IO 
Active

IO Filter

T

IOFILT

7

600

ms

IO pulse-width ensured to be 
filtered. IO as input, no local 
alarm

Remote Alarm Delay

T

IODLY2

7

.75

1.65

s

No local alarm, from IO Active 
to Horn Active

Timer Period

T

TPER

7

8.5

10

Min

No alarm condition, 

Note 2

Note 1:

See timing diagram for Horn Temporal Pattern

2:

During the Timer mode, the LED period is 10.5 seconds. The LED period will return to 43 seconds at the 
conclusion of the Timer mode.

3:

T

POSC

 and T

ON2

 are 100% production tested. All other timing is guaranteed by functional testing.

4:

Typical values are for design information and are not ensured.

5:

Limits over the specified temperature range are not production tested and are based on characterization 
data.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

RE46C144

DS22180C-page 6

 2009-2012 Microchip Technology Inc.

TEMPERATURE CHARACTERISTICS

Electrical Specifications:

 Unless otherwise indicated, V

DD

 = 9V, V

SS

 = 0V

Parameters

Symbol

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Temperature Range

T

A

-25

+75

°C

Storage Temperature Range

T

STG

-55

+125

°C

Thermal Package Resistances
Thermal Resistance, 16L-PDIP

θJ

A

70

°C/W

Thermal Resistance, 16L-SOIC (150 mil.)

θJ

A

86.1

°C/W

Thermal Resistance, 16L-SOIC (300 mil.)

θJ

A

80

°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

 2009-2012 Microchip Technology Inc.

DS22180C-page 7

RE46C144

2.0

PIN DESCRIPTION

The descriptions of the pins are listed in .

2.1

High/Normal Gain Capacitor Pins 
(C1, C2)

The capacitor connected to the C1 pin sets the photo
amplifier gain (high) for the push-to-test and chamber
sensitivity test. The size of this capacitor will depend on
the chamber background reflections. A = 1+(C1/10),
where C1 is expressed

 

in pF. The gain should be

<10000.
The capacitor connected to the C2 pin sets the photo
amplifier gain (normal) during Standby. The value of
this capacitor will depend on the smoke sensitivity
required. A = 1+(C2/10), where C2 is expressed

 

in pF.

2.2

Photo Diode Input (DETECT)

This input is normally connected to the cathode of an
external photo diode operated at zero bias. 

2.3

Strobed Detection 
Negative Supply (STROBE)

Regulated output voltage of V

DD

-5 which is active

during a test for smoke. This output is the negative side
of the photo amplifier reference circuitry.

2.4

Positive Power Supply (V

DD

)

The V

DD

 pin is the device’s positive power supply input.

2.5

Infrared Emitting Diode Pin (IRED)

Provides a regulated pulsed output voltage pre-driver
for the infrared emitter. This output usually drives the
base of an NPN transistor.

2.6

Interconnect Pin (I/O)

This bidirectional pin provides the capability to
interconnect many detectors in a single system. This
pin has an internal pull-down device.

2.7

Horn Brass, Inverted Output (HB)

The HB pin is connected to the metal electrode of a
piezoelectric transducer.

2.8

Horn Silver Output Pin (HS)

The HS pin is a complementary output to HB and
connects to the ceramic electrode of the piezoelectric
transducer. 

TABLE 2-1:

PIN FUNCTION TABLE

RE46C144

PDIP, SOIC, SOICN

Symbol

Function

1

C1

High Gain Capacitor Pin

2

C2

Normal Gain Capacitor Pin

3

DETECT

Photo Diode Input 

4

STROBE

Strobed Detection Negative Supply

5

V

DD

Positive Power Supply

6

IRED

Infrared Emitting Diode Pin

7

IO

Interconnect Pin

8

HB

Horn Brass, Inverted Output

9

HS

Horn Silver Output

10

FEED

Horn Feedback Pin

11

LED

LED Driver Pin

12

COSC

Oscillator Capacitor Input

13

ROSC

Oscillator Resistor Drive Low

14

V

SS

Negative Power Supply

15

VSEN

HushTimer Sensitivity Pin

16

TEST

Test Pin

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

RE46C144

DS22180C-page 8

 2009-2012 Microchip Technology Inc.

2.9

Horn Feedback Pin (FEED)

Usually this pin is connected to the feedback electrode
through a current limiting resistor. If not used, this pin
must be connected to V

DD

 or V

SS

2.10

LED Driver Pin (LED)

This pin is an open drain NMOS output used to drive a
visible LED. 

2.11

Oscillator Capacitor Input (COSC)

A capacitor connected to this pin, with a parallel
resistor, sets the internal clock low time, which is
approximately the clock period.

2.12

Oscillator Resistor Drive Low 
(ROSC)

A resistor between this pin and COSC pin sets the
internal clock high time. This also sets the IRED pulse
width (100 - 200 µs).

2.13

Hush Timer Sensitivity Pin (VSEN)

In Timer mode, this input pin can be used to set an
external smoke comparator reference.

2.14

TEST Pin

This input is used to invoke two test modes and the
timer mode. This input has an internal pull-down.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

 2009-2012 Microchip Technology Inc.

DS22180C-page 9

RE46C144

3.0

DEVICE DESCRIPTION

3.1

Standby Internal Timing 

With the external components specified in the
illustration 

Typical Application

 for ROSC and COSC,

the internal oscillator has a nominal period of 10 ms.
Normally the analog circuitry is powered down to
minimize standby current (typically 4 µA at 9V). Once
every 11 seconds, the detection circuitry (normal gain)
is powered up for 10 ms. Prior to completion of the
10 ms period, the IRED pulse is active for 100 µs. At
the conclusion of the 10 ms period, the photo amplifier
is compared to an internal reference to determine the
chamber status and latched. If a smoke condition is
present, the period to the next detection decreases and
additional checks are made. Three consecutive smoke
detections will cause the device to go into alarm, and
the horn circuit and interconnect will be active.
Once every 43 seconds, the status of the battery volt-
age is checked. This status is checked and latched at
the conclusion of the LED pulse. In addition, once
every 43 seconds the chamber is activated and, using
the high gain mode (capacitor C1), a check of the
chamber is made by amplifying background reflections.
If either the low battery or the photo chamber test fails,
the horn will chirp for 10 ms every 43 seconds.
The oscillator period is determined by the values of R9,
R12 and C5 (see 

Typical Application

). The oscillator

period is as follows:

EQUATION 3-1:

3.2

Smoke Detection Circuitry

A comparator compares the photo amp output to an
internal reference voltage. If the required number of
consecutive smoke conditions is met, the device will go
into local alarm and the horn will be active. In local
alarm, the C2 gain is internally increased by
approximately 10% to provide alarm hysteresis.

3.3

Push-to-Test Operation

If the Test input pin is activated (V

IH

), after one internal

clock cycle, the smoke detection rate increases to once
every 330 ms. In this mode, the high-gain capacitor C1
is selected, and background reflections are used to
simulate a smoke condition. After the required
consecutive detections, the device will go into a local
alarm condition. When the Test input is deactivated
(V

IL

) and after one clock cycle, the normal gain

capacitor C1 is selected. The detection rate continues
at once every 330 ms until three consecutive no smoke
conditions are detected. At this point, the device
returns to standby timing.

3.4

LED Operation

In Standby, the LED is pulsed on for 10 ms every
43 seconds. In a local alarm condition or the push-to-
test alarm, the LED pulse frequency is increased to
once every .5 seconds. In the case of a remote alarm
the LED not active. In the Timer mode of operation, the
LED is pulsed on for 10 ms every 10 seconds.

3.5

Interconnect Operation

The bidirectional I/O pin allows for interconnection of
multiple detectors. In a local alarm condition, this pin is
driven high immediately through a constant current
source. Shorting this output to ground will not cause
excessive current. The I/O is ignored as an input during
a local alarm.
The I/O pin also has an NMOS discharge device that is
active for 1 second after the conclusion of any type of
local alarm. This device helps to quickly discharge any
capacitance associated with the interconnect line.
If a remote active high signal is detected, the device
goes into remote alarm and the horn will be active.
Internal protection circuitry allows for the signaling unit
to have a higher supply voltage than the signaled unit,
without excessive current draw.
The interconnect input has a 670 ms nominal digital
filter. This allows for interconnection to other types of
alarms (carbon monoxide, for example) that may have
a pulsed interconnect signal.

Note:

All timing references are nominal. See
electrical characteristics for limits.

T = T

R

+ T

F

Where:

T

R

= .693 x R12 x C5

T

F

= .693 x R9 x C5

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22180C-html.html
background image

RE46C144

DS22180C-page 10

 2009-2012 Microchip Technology Inc.

3.6

Low Battery Detection

In Standby, an internal reference is compared to the
voltage divided V

DD

 supply. A low battery status is

latched at the conclusion of the LED pulse. The horn
will chirp for 10 ms every 43 seconds, until the low
battery condition no longer exists. The low battery test
is not performed in a local or remote alarm condition.
The low battery notification does not sound in a local or
remote alarm condition.

3.7

Chamber Fail Detection

In Standby, a chamber test is also performed every
43 seconds, by switching to the high gain capacitor C1
and sensing the photo chamber background
reflections. Two consecutive chamber test failures will
also cause the horn to chirp for 10 ms every
43 seconds. The low battery chirp occurs just before
the LED pulse (see 

Figure 3-1

). The chamber test and

chamber test failure chirp occurs approximately
21 seconds after the LED pulse. The chamber tests are
not performed in a local or remote alarm condition.
The chamber fail notification does not sound in a local
or remote alarm condition.

3.8

Timer Mode

If resistors R

ADJ1

 and R

ADJ2 

are in place and a high-to-

low transition occurs on the Test input, the device
enters a 10 minute timer mode. In this mode, the
smoke comparator reference is switched from the
internal V

DD

- 3.5V reference to the voltage that

appears on VSEN (pin 15). This allows the sensitivity to
be modified for the duration of the 10 minute timer
period. The chamber test is performed in Timer mode. 
If VSEN is left unconnected or tied to V

SS

, the Timer

mode of operation is inhibited.

3.9

Diagnostic Mode

In addition to the normal function of the Test input, a
special diagnostic mode is available to calibrate and
test the smoke detector. Taking the Test pin below V

SS

and sourcing ~300 µA out of the pin for one clock cycle
will enable the diagnostic mode. In diagnostic mode,
some of the pin functions are redefined. Refer to

Table 3-1

 for redefined pin functions in the diagnostic

mode. In addition, in this mode Strobe is always
enabled, and the IRED is pulsed at the clock rate of
10 ms nominal.

TABLE 3-1:

DIAGNOSTIC MODE PIN FUNCTION

Pin Name

Pin 

Number

Function

IO

7

Disabled as an output. A high on this pin directs the photo amplifier output to pin C1 (1) 
or C2 (2), determined by the level on VSEN (15). Amplification occurs during the IRED 
active time.

VSEN

15

If IO is high, then this pin controls the gain capacitor that is used. If VSEN is low, the 
normal gain is selected and the photo amplifier output appears on C1 (1). If VSEN is 
high, high gain is selected and the photo amplifier output is on C2 (2).

FEED

10

If VSEN (15) is low, then taking this input high will enable hysteresis, which is a nominal 
10% gain increase in normal gain mode.

COSC

12

If desired, this pin can be driven by an external clock.

HORNB

8

This pin becomes the smoke integrator output.  A high level indicates that an alarm 
condition has been detected.

LED

11

The LED pin is used as a low battery indicator. For V

DD 

above the low battery thresh-

old, the open drain NMOS is off. If V

DD

 falls below the threshold, the NMOS turns on.

Maker
Microchip Technology Inc.
Datasheet PDF Download