PS810 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

© 2006 Microchip Technology Inc.

DS21904C-page 1

PS810

H

ardware Features

• Highly accurate fuel gauge for single cell Li Ion 

applications

• Algorithms are implemented using an embedded 

PIC18 low-power microcontroller with 16-bit 
instruction set

• Reports current, voltage and temperature utilizing a 

programmable 8 to15-bit + sign, sigma-delta ADC

• Host communication accomplished through an 

industry standard SMBus interface or an 
alternative single pin serial interface 

• I/O pins are available to provide functions such as 

digital GPIO, coin cell voltage measurement and 
thermistor input

• Integrated temperature sensor and regulator 

minimize external components

• Embedded fuel gauge algorithms and application 

specific parameters are stored in a 4K x 16 Flash 
memory

• 512 bytes of RAM are available for temporary 

storage of battery parameters 

Software Features

• Provides battery status, such as average time to empty, 

relative State-Of-Charge and battery State-Of-Health

• In-system offset calibration compensates for 

offset error in current measurement

Package Features

• 16-pin QFN package or 14-pin TSSOP package
• -20°C to +85°C operating temperature range

Pin Description

1.0

PRODUCT OVERVIEW

The PS810 is a fuel gauge for one-cell Li Ion or Li Poly-
mer applications. The device provides the host and the
system user with critical battery information, such as
voltage, current, temperature, run time, State-Of-Charge
and State-Of-Health. This information is available
through an industry standard SMBus or an alternative
Single Pin Serial interface. Advanced fuel gauge
algorithms are stored in on-board Flash memory and
executed by the industry recognized PIC18 micro-
controller. These algorithms include compensation
factors which optimize the performance of the battery for
a specific application and operating environment.
Compensation is included for the effects of temperature,
discharge rate, charge rate and battery aging.

To provide precise measurements of current, voltage and
temperature, the PS810 integrates a highly accurate
15-bit + sign, sigma-delta A/D converter. Based upon
operating conditions, this programmable converter can be
configured to measure specific battery parameters with a
resolution of 8 to 15 bits + sign. Precision measurements
combined with advanced algorithms provide accurate
indications of capacity, run time, State-Of-Health and
safety and charge/discharge conditions.

The ability to operate directly from a single Li Ion or Li
Polymer cell minimizes the need for external compo-
nents, such as a voltage regulator and voltage divider.
To further limit external circuitry and enhance accuracy,
the PS810 provides an integrated temperature sensor
and oscillator. 

IO4

GND

N/C

VC1

IO1

NTC/IO2

1

2

3

4

5

6

7

16 15 14 13

12

11

10

PS810

8

9

IO5

R

OSC

16-pin QFN (4 mm x 4 mm)

V

COIN

/IO3

V

FILTER

MCLR

N/C

S

C

L/IO

0

IO6

SDA/

SP

S

SR

2

NTC/IO2

SDA/SPS

GND

SR

MCLR

VC1

IO6

IO5

V

COIN

/IO3

V

FILTER

1

2

3

4

5

6

7

14

13

12

11

10

9

8

PS810

IO4

R

OSC

SCL/IO0

IO1

14-pin TSSOP

Li Ion Single Cell Fuel Gauge

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

PS810

DS21904C-page 2

© 2006 Microchip Technology Inc.

TABLE 1-1:

PS810 QFN PIN SUMMARY

TABLE 1-2:

PS810 TSSOP PIN SUMMARY

FIGURE 1-1:

PS810 INTERNAL BLOCK DIAGRAM

Pin#

Pin Name

Description

1

NTC/IO2

External NTC input or GPIO

2

V

COIN

/IO3

Coin cell monitor input or GPIO

3

V

FILTER

Power supply filter cap 

4

MCLR

Master Clear

5

VC1

Cell voltage input 

6

N/C

No connect

7

N/C

No connect

8

R

OSC

Oscillator bias resistor

9

SR

Sense resistor input

10

GND

Power supply ground

11

IO4

General purpose IO

12

IO5

General purpose IO

13

IO6

General purpose IO

14

SDA/SPS

SMBus data/one-wire serial line

15

SCL/IO0

SMBus clock or GPIO0

16

IO1

General purpose IO

Pin#

Pin Name

Description

1

SCL/IO0

SMBus clock or GPIO

2

IO1

General purpose IO

3

NTC/IO2

External NTC input or GPIO

4

V

COIN

/IO3

Coin cell monitor input or GPIO

5

V

FILTER

Power supply filter cap 

6

MCLR

Master Clear

7

VC1

Cell voltage input 

8

R

OSC

Oscillator bias resistor

9

SR

Sense resistor input

10

GND

Power supply ground

11

IO4

General purpose IO

12

IO5

General purpose IO

13

IO6

General purpose IO

14

SDA/SPS

SMBus data/one-wire serial line

4K x 16 Flash

4K x 16 Flash

512-byte RAM/

Registers

512-byte RAM/

Registers

Voltage

Reference and

Temp Sensor

Voltage

Reference and

Temp Sensor

Voltage

Regulator

Voltage

Regulator

Comm

Interface

Comm

Interface

PIC18F

Microcontroller

PIC18F

Microcontroller

15-bit + sign
Sigma-Delta

Integrating

A/D Converter

15-bit + sign
Sigma-Delta

Integrating

A/D Converter

Analog

Input Mux

Analog

Input Mux

Run

Oscillator

Run

Oscillator

VC1

R

OSC

GND

Digital Section

Analog Section

Control and Status

Control and Status

SCL

V

COIN

SDA/SPS

Sleep

Oscillator

Sleep

Oscillator

IO0

Input/Output

Input/Output

NTC

SR

 IO1

IO2

IO5

IO4

IO3

IO6

MCLR

V

FILTER

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

© 2006 Microchip Technology Inc.

DS21904C-page 3

PS810

1.1

Schematic

FIGURE 1-2:

PS810 APPLICATION SCHEMATIC – PS810-BASED BATTERY PACK

R3

1

1.

0K

R8

232K

R2

1

240

R2

0

240

PACK CONNECTI

ON

R9

0.

020

3

1

2

D1

CMSZDA5

V6

CONNECTI

ON

GROUND PLANE

C1

0

1.

0 nF

3

4

2

1

5

6

8

7

Q1

TPC

S8209

R5

20

C5 100 nF

R

4

20K

CEL

L CONNECTI

ONS

R1

5

20

R1

4

20

V1

VR

B+ C D B-

QFN PACKAGE

VC1

5

V

COIN

/IO3

2

NTC/IO2

1

SR

9

GND

10

SCL/IO0

15

SDA/SPS

14

R

OSC

8

IO1

16

IO4

11

IO6

13

V

FILTER

3

MCLR

4

IO5

12

NC

6

NC

7

U1

PS810Q

R3

2

470

C3

2

100 nF

V

DD

2

V

SS

3

VM

1

CO

5

DO

4

U

2

S8241A

SAFETY

IC

NTC NVR V

COIN

R2

240

C3 100 nF

C2 100 nF

EXT.

 THERMI

STOR I

N

PUT

COI

N CELL

 IN

PUT

* GROUND I

F NOT USED

*

*

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

PS810

DS21904C-page 4

© 2006 Microchip Technology Inc.

1.2

Bill of Materials

TABLE 1-3:

PS810 BILL OF MATERIALS

ID

Part Number

Symbol

Description

Mftr.

Mftr. PN

Supplier

Supplier PN

Qty

1

04-826197 Rev. 1.1

Raw PCB, PS8110

Microchip

04-826197 Rev. 1.1

Microchip

04-826197 Rev. 1.1

1

2

CC-0402-10X7R25-1.0NF-01

C10

Capacitor, Ceramic, 1.0 nF, 
25V, +/-10%, X7R dielectric, 
0402

Panasonic

ECJ-0EB1E102K

Digikey

PCC102BQCT-ND

1

3

CC-0603-10X7R16-100NF-01

C2, C3, 
C5, C32

Capacitor, Ceramic, 100 nF, 
16V, +/-10%, X7R dielectric, 
0603

Panasonic

ECJ-1VB1C104K

Digikey

PCC1762CT-ND

4

4

DZ-SOT323-10D-CMSZDA5V6-01 D1

Dual Zener Diode, 5.6V, 
+/-10%, 200 mW, 
common anode, SOT-323

Central Semi.
Diodes Inc.

CMSZDA5V6
AZ23C5V6W-7

Central Semi.
Diodes Inc.

CMSZDA5V6
AZ23C5V6W-7

1

5

QM-TSSOP844-DN-TPCS8209-01 Q1

MOSFET, dual N-channel 
Enhancement mode, 20V, 
5A, TSSOP-8/4.4 mm body 
width package

Toshiba

TPCS8209(TE12L)

Digikey

TPCS8209CT-ND

1

6

RF-0402-5-20-01 (Note 1)

R14, R15

Resistor, film, 0402, 5%, 
20 ohms

Panasonic

ERJ-2GEJ200X

Digikey

P20JCT-ND

2

7

RF-0402-5-20K-01 (Note 1)

R4

Resistor, film, 0402, 5%, 
20 kOhms

Panasonic

ERJ-2GEJ203X

Digikey

P20KJCT-ND

1

8

RF-0603-ITC25-221K-01 (Note 1)

R8

Resistor, film, 0603, 1%, 
232 kOhms, 25 ppm TC

Susumu Co. 
Ltd.

RR0816P-2213-D-34D

Digikey

RR08P221KDCT-ND

1

9

RF-0603-5-1.0K-01 (Note 1)

R31

Resistor, film, 0603, 5%, 
1.0 kOhms

Panasonic

ERJ-3GEYJ102V

Digikey

P1.0KGCT-ND

1

10 RF-0603-5-470-01 (Note 1)

R32

Resistor, film, 0603, 5%, 
470 ohms

Panasonic

ERJ-3GEYJ471V

Digikey

P470GCT-ND

1

11 RF-0805-5-20-01 (Note 1)

R5

Resistor, film, 0805, 5%, 
20 ohms

Panasonic

ERJ-6GEYJ200V

Digikey

P20ACT-ND

1

12 RF-0805-5-240-01 (Note 1)

R2, R20, 
R21

Resistor, film, 0805, 5%, 
240 ohms

Panasonic

ERJ-6GEYJ241V

Digikey

P240ACT-ND

3

13 RF-1206-1-0.029-01 (Note 1)

R9

Resistor, metal strip, 1206, 
1%, 0.020 ohms

Vishay

WSL1206-0.020-1%-R86 Vishay

WSL1206-0.020-1%-R86

1

14 UM-SOT235-4085-

S8241ABPMCGBPT2-01

U2

IC, Battery Protection Circuit, 
Li Ion, 1-cell, -40°C to +85°C, 
SOT23-5 package

Seiko 
Instruments

S-8241ABPMC-GBP-T2
(Note 2)

Seiko 
Instruments

S-8241ABPMC-GBP-T2
(Note 2)

1

15 UM-QFN164X4-2085-PS810-01

U1

IC, Low-Voltage Fuel Gauge, 
-20°C to +85°C, QFN-16/
4.0x4.0 mm package

Microchip

PS810

Microchip

PS810

1

Note

1:

Resistor sizes shown are minimum recommended sizes for the application.

2:

Other variants of the S-8241A series, with different trip points, are also available. Consult the S-8241A series data sheet.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

© 2006 Microchip Technology Inc.

DS21904C-page 5

PS810

2.0

ARCHITECTURAL OVERVIEW

The PS810 contains a complete analog “front-end” for
battery monitoring as well as an embedded micro-
controller, with supporting memory, for control,
measurement accumulation, calculation and
communications. Major functions within the PS810
include:

• Voltage Regulator
• Precision Time Base
• Temperature Sensor
• 4K x 16 Flash Memory
• 512-byte RAM Memory
• 15-bit plus sign Analog-to-Digital (A/D) Converter
• SMBus/I

2

C™ or Single Pin Serial 

Communications Interface

• PIC18 Microcontroller

Figure 1-1 is a block diagram of the internal circuitry of
the PS810. Figure 1-2 is a schematic diagram that
depicts the PS810 in a typical single cell lithium ion
application. The function of each of the blocks listed
above is summarized in the following sections.

2.1

Internal Voltage Regulator

The PS810 incorporates an internal voltage regulator
that supports 1-cell lithium pack configurations. The
internal regulator draws power directly from the VC1
input. No other external components are required to
regulate circuit voltage.

2.2

Precision Time Base

The integrated precision time base is a highly accurate
RC oscillator that provides precise timing for the sigma-
delta A/D and for the on-chip elapsed time counters
without the need for an external crystal. This time base
is trimmed during manufacturing to a nominal
frequency of 512 kHz.

2.3

Temperature Sensor 

An integrated temperature sensor is provided that can
eliminate the need for an external thermistor. As an
option, a connection is provided for an external
thermistor for applications where the battery cell is
physically separated from the PS810.

2.4

Flash Memory

4K x 16 of Flash memory is incorporated for storage of
nonvolatile parameters, such as PowerSmart

®

 3D cell

models, fuel gauge algorithms and application specific
data.

2.5

RAM Memory

512 bytes of general purpose RAM memory is provided
for storage of temporary parameters.

2.6

A/D Converter

The  PS810  incorporates  an integrating sigma-delta
A/D converter together with an analog that has inputs
for charge and discharge current, cell voltage, coin cell
voltage, the on-chip temperature sensor and an off-chip
thermistor. The converter can be programmed to per-
form a conversion with resolutions of 8 to 15 bits + sign,
while utilizing either a single-ended +300 mV or a
differential ±150 mV reference.

2.7

SMBus/I

2

C™ or Single Pin Serial 

Communications Interface

This communications port for the PS810 is selectable
as a 2-pin industry standard SMBus/I

2

C or a single pin

interface. All commands, status and data are read or
written from the host system via this interface.

2.7.1

SMBus/I

2

C

The two pin communication interface uses one clock
pin and one data pin and is compatible with the industry
standard System Management Bus (SMBus) and the
Inter IC Communication Bus (I

2

C).

2.7.2

SINGLE PIN SERIAL INTERFACE

The Single Pin Serial (SPS) interface consists of one pin
only: the SDA/SPS pin (pin 14). This communication is
an asynchronous return-to-one protocol. The timing of
the driven low pulses defines the communication.

2.8

PIC18 Microcontroller

The PIC18 is a high-performance, CMOS, fully static
8-bit microcontroller. The PIC18 employs an advanced
RISC architecture. This device has enhanced core
features, such as 31 level deep stack and multiple
internal and external interrupt sources. The separate
instruction and data buses of the Harvard architecture
allow a 16-bit wide instruction word with a separate 8-bit
wide data bus. The two-stage instruction pipeline allows
all instructions to execute in a single cycle, except for
program branches, which require two cycles. A total of
75 instructions are available. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

PS810

DS21904C-page 6

© 2006 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

© 2006 Microchip Technology Inc.

DS21904C-page 7

PS810

3.0

OPERATIONAL DESCRIPTION

3.1

A/D Operation

The PS810 A/D converter measures current, voltage
and temperature and integrates the current over time to
calculate State-Of-Charge. Cell voltage is measured
with a direct connection to the battery cell without
requiring an external voltage divider. Using an external
sense resistor, current is monitored during both charge
and discharge and is integrated over time using the on-
chip oscillator as the time base. Temperature is
measured from the on-chip temperature sensor or an
optional external thermistor. Voltage, current and
temperature can be calibrated for accuracy over the
operational range. The A/D converter performs
sampling using a 32 kHz clock.

3.1.1

CURRENT MEASUREMENT

The A/D input channels for current measurement are the
SR and GND pins. The voltage drop across the sense
resistor is measured and converted mathematically into
a current measurement. The current is also integrated
over time to get the amount of charge entering or leaving
the battery. 

A sense resistor is connected to SR and GND. The
maximum input voltage that can be measured at SR is
+/-150 mV. The sense resistor should be properly sized
to accommodate the lowest and highest expected
charge and discharge currents, including suspend and/
or standby currents.

The parameter NullCurr represents the zero-zone
current of the battery. This is provided as a calibration
guardband for reading zero current. Currents below
+/- NullCurr (in mA) limit are read as zero and not
included in the capacity algorithm calculations. A
typical value for NullCurr is 3 mA, therefore, currents
between -3 mA and +3 mA will be reported as zero and
not included in the capacity calculations. This feature is
provided so that electrical noise on the battery module
current path is not interpreted as actual charge entering
or leaving the battery.

3.1.1.1

Sense Resistor Selection and 
Current Measurement Range

The current resolution is based on the smallest amount
of voltage the A/D converter can measure across the
sense resistor. Since this measurement uses 13 bits
(plus sign) and the reference used is the internal
150 mV reference, the smallest voltage across the
sense resistor that can be measured is:

EQUATION 3-1:

3.1.1.2

Current Calibration

In-circuit calibration of the current is done using the
communication interface (SMBus/I

2

C or SPS) at time

of manufacture to obtain optimal accuracy. A correction
is calculated and stored for both offset and slope. 

COD is a constant that is measured at calibration time
and contains the offset due to external PCB
components. 

CFCurr is the “Correction Factor for Current” which
compensates the A/D gain and any variances in the
actual sense resistance over varying currents. It is
multiplied against the raw A/D measurement. 

COCurr is the “Correction Offset for Current” which is
updated in real time by the A/D shorting the inputs and
comparing any result to zero. This is added to COD and
compensates for any offset that varies over time, such
as temperature dependent offsets.

Figure 3-1 shows the relationship of the COCurr and
CFCurr values.

150 mV/(2 ^ 13

 

– 1) = 150 mV/32767 = 18.3 

μV

Thus, the smallest current that can be measured is:

18.3 

μV/R

SENSE

 (m

Ω)

The largest current that can be measured is:

150 mV/R

SENSE

 (m

Ω)

Example: a 20 milliohm sense resistor will measure
from:

18.3 

μV/20 mΩ = 0.915 mA

(though will be recorded as zero if < NullCurr)

up to:

150 mV/20 m

Ω = 7.5 Amps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

PS810

DS21904C-page 8

© 2006 Microchip Technology Inc.

FIGURE 3-1:

COCurr AND CFCurr 
VALUE RELATIONSHIP

3.1.2

AUTO-OFFSET COMPENSATION

Accuracy drift is prevented using an automatic auto-
zero self-calibration method which zeros the current
measurement circuit periodically at a programmable
rate. This feature can correct for drift in temperature
during operation. The Auto-Offset Compensation
circuit works internally by disconnecting the RS input
and internally shorting it to GND to measure the zero
input offset. Furthermore, the calibration factor, COD,
contains the offset factor external to the IC, offset due
to the circuit board, system, etc. COD is added to the
internal offset calculated by the auto-offset cycle to
determine the full offset, COCurr.

 

3.1.3

VOLTAGE MEASUREMENTS

The A/D input channel for cell voltage measurement is
the VC1 pin. Measurements are taken each measure-
ment period when the A/D is active. The maximum
voltage at the VC1 pin is 5.5V, but voltages above 4.5V
are not suggested since this will saturate the A/D. The
cell voltage is measured with an integration method to
reduce any sudden spikes or fluctuations. The A/D
uses a default of 11-bit plus sign resolution for these
measurements.

The VC1 input circuit contains an internal resistive
divider to reduce the external voltage input to a range
that the internal A/D circuit can accommodate (300 mV
maximum). The divider is 15 to 1 based on a maximum
cell voltage of 4.5 volts. The voltage divider is only
connected to ground when the actual voltage
measurement is occurring. 

CFVoltage is the “Correction Factor for Pack Voltage”
which compensates for any variance in the actual A/D
response versus an ideal A/D response over varying
voltage inputs. In-circuit calibration of the voltage is
done at the time of manufacture to obtain accuracy in
addition to high resolution. Cell voltage measurements
can be accurate to within ±20 mV.

3.1.4

TEMPERATURE MEASUREMENTS

The A/D can measure temperature from the internal
temperature sensor or an external thermistor
connected to the NTC pin. The A/D uses a default of
11-bit plus sign resolution for the temperature
measurements.

A standard 10 kOhms at 25°C Negative-Temperature-
Coefficient (NTC) device of the 103ETB type is
suggested for the optional external thermistor. One leg
of the NTC should be connected to the NTC pin and the
other to ground. 

A linearization algorithm is used to convert the voltage
measurement seen at the NTC pin to a temperature
value. The external thermistor should be placed as
close as possible to the battery cells and should be
isolated from any other sources of heat that may affect
its operation. 

Calibration of the temperature measurements involves
a correction factor and an offset exactly like the current
measurement. The internal temperature measurement
makes use of correction factor, CFTempI and offset,
COTempI, while the NTC pin for the optional external
thermistor makes use of correction factor, CFTempE.

Ideal A/D Response

Actual A/D
Response

CFCurr

COCurr

Raw Measurement

Actual Current

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

© 2006 Microchip Technology Inc.

DS21904C-page 9

PS810

TABLE 3-1:

A/D OPERATION PARAMETERS

Parameter

Name

# of 

Bytes

Units

Typical

Value

Operational Description

NullCurr

1

mA

3

Zero zone control is built into the PS810 so that electrical noise 
doesn’t actually drain the gas gauge, when in fact the current is 
zero. For this reason, current less than NullCurr mA in either 
direction will be measured as zero.

CFCurr

2

unsigned 

word

4200

Correction Factor for Current. Adjusts the scaling of the sense 
resistor current measurements.

COCurr

1

signed 

byte

0

Correction Offset for Current. This is the value the A/D reads 
when zero current is flowing through the sense resistor.

COD

1

signed 

byte

0

Correction Offset Deviation. Offset value for the auto-zero 
calibration of the current readings.

AOMInterval

1

op cycles

60

Interval of time between auto-offset calibrations.

AVGIScale

1

coded

b00100000 Time period over which current is averaged to calculate 

average current: I

AVG

 = I

AVG

 + (I – I

AVG

)/(AVGIScale * 2).

Note: Only Most Significant set bit is used, others are ignored.

CFVoltage

2

integer

2250

Correction Factor for Pack Voltage. Adjusts the scaling of the 
VC1 pin measurement. 

CFCoin

2

integer

2250

Correction Factor for Coin Cell Measurement. Adjusts the 
scaling of the V

COIN

 pin measurement.

CFTempE

2

integer

326

Correction Factor for Temperature. Adjusts the scaling of 
temperature measured across an external thermistor at the NTC 
input pin.

CFTempI

2

integer

2038

Correction Factor for Temperature. Adjusts the scaling of 
temperature measured from the internal temperature sensor. 

COTempI

2

signed 

word

21298

Correction Offset for Temperature. Used for temperature 
measurement using internal temperature sensor.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21904c-html.html
background image

PS810

DS21904C-page 10

© 2006 Microchip Technology Inc.

3.2

Operational Modes

The PS810 operates on a continuous cycle, measuring
current, voltage and temperature, then performing fuel
gauge calculations. There are four power modes: Run
mode, in which the measuring and calculating loop
constantly repeats; Bus Inactive Low-Power mode, in
which only self-discharge is calculated; Low-Voltage
Sleep mode, in which there are no measurements and
only wake-up circuitry is powered; and Shelf-Sleep
mode, in which only communication line sensors are
powered. 

3.2.1

RUN MODE

Run mode is the highest power consuming mode.
During Run mode, all measurements and calculations
occur. Current, voltage and temperature measure-
ments are each made sequentially. Run mode is active
until voltage drops below the Sleep voltage, the bus
goes inactive or the Shelf-Sleep command is executed. 

3.2.2

BUS INACTIVE LOW-POWER MODE

The PS810 enters Low-Power mode when all of the
following conditions are true:

• Current is zero (optional)
• The communication pins are low for at least 

8 periods of 512 ms each

• There is no communication attempt for at least 

8 periods of 512 ms each

To enter this mode, typically, there must be no load or
charger present and no communication host. The pack
is out of the system. In this mode, the PS810 will draw
less current from the battery, approximately 25 

μA and

will only track self-discharge. Alternatively, if self-
discharge tracking is not required, Ultra Low-Power
mode can be used and the PS810 will draw less than
1 microamp.

3.2.3

LOW-VOLTAGE SLEEP MODE

Entry to Low-Voltage Sleep mode can only occur when
the measured pack voltage at VC1 input is below a
preset limit set by the parameter SleepVoltage (in mV)
and the current is zero (less than NullCurr). Sleep
mode may be exited to Run mode when the voltage at
VC1 is greater than the wake-up voltage, which is
3.2 volts, 10%.

While in 10% Sleep mode, no measurements occur
and no calculations are made. The fuel gauge display
is not operational, no communications are recognized
and only a wake-up condition will permit an exit from
Sleep mode. Sleep mode is one of the lowest power
consuming modes and is used to conserve battery
energy following a complete discharge.

There are two power levels that can be chosen for Low-
Voltage Sleep mode. Low-Power mode draws
approximately 20 

μA and will wake-up automatically

when the voltage rises above the wake-up voltage,
which is a constant 3.2 volts above the wake-up volts,
+/-5%. Ultra Low-Power mode draws less than 1 

μA

and requires an external source to drive the communi-
cation line high to wake-up, since the voltage wake-up
comparator is powered down. 

3.2.4

SHELF-SLEEP MODE

Shelf-Sleep mode can be entered by a battery data
command on the communication bus for conserving
energy while shipping battery packs. It can be exited
only by an external source driving the communication
data line high. This mode uses the Ultra Low-Power
Sleep mode, resulting in current draw less than
1 microamp. This mode is entered by writing a pass-
word to SMBus command code, 0x43. A word write
protocol is used to write the password, 0x5A7A.

TABLE 3-2:

OPERATIONAL MODES

Mode

Entry

Exit

Notes

Run

Voltage > Wake-up voltage 
or data line driven high

Voltage less than SleepVoltage, bus Idle or 
Shelf-Sleep command issued

Highest power 
consumption and 
accuracy.

Bus Inactive 
Low-Power

Current < NullCurr
communication lines low 
and no communication 
attempts

Activity on communication lines

Only self-discharge 
calculated. 

Low-Voltage 
Sleep

VC(1) < SleepVoltage,
Current is not zero

Voltage > Wake-up voltage (Low-Power mode),
Data line driven high (Ultra Low-Power mode)

No  measurements 
made. 

Shelf-Sleep

Can be entered by SMBus 
command

Data line driven high

No measurements 
made. 

Maker
Microchip Technology Inc.
Datasheet PDF Download