PS501 Single Chip Field Reprogrammable Battery Manager

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

 2004 Microchip Technology Inc.

DS21818C-page 1

PS501

Features

• Single chip solution for rechargeable battery 

management 

• Footprint compatible with PS401

• SMBus 1.1 and SBData 1.1 compatible
• Precise capacity reporting for Lithium Ion and 

Lithium Polymer battery chemistries

• Embedded PowerSmart

®

 patented algorithms 

contained in customizable on-chip 16-Kbyte Flash 
memory

• User configurable and “learned” parameters 

stored in on-chip 256 x 8 EEPROM

• Algorithms and parameters fully field 

reprogrammable via SMBus interface

• Integrating sigma-delta A/D converter with 9 to 

16-bit programmable resolution which accurately 
measures:

- Current through sense resistor
- High-voltage (18V) battery cells directly 

connected to V

CELL

 inputs

- Temperature measurement from on-chip 

sensor or optional external thermistor

• Integrated precision silicon time base
• Twelve individually programmable input/output 

pins that can be assigned as charge control I/O, 
secondary safety function I/O, SOC LED output or 
general purpose I/O
- Two of the twelve I/Os are high voltage, 

capable for direct drive of Charge and Safety 
FETs

• On-chip regulator generates precision digital and 

analog supply voltages directly from pack voltage

• Supports direct connection to 2 to 4-cell Lithium 

packs

• Flexible power operating modes:

- Run: Continuous operation
- Sample: Periodic measurements at 

programmable intervals

- Sleep: Shutdown mode due to low voltage. 

Power consumption less than 25 

µ

A.

- Shelf-Sleep: Shuts off PS501 power consumption 

for pack storage with automatic wake-up on pack 
insertion. Power consumption is less than 1 

µ

A. 

• Integrated Reset Control

- Power-on Reset
- Watchdog Timer Reset
- Brown-out Detection Reset

Pin Description

Pin Summary

Pin Name

Type

Description

V

DDD

, V

SSD

Supply

Digital supply voltage input, 
ground

GPIO(0..9)

I/O

Programmable digital I/O

GPIOHV1,2

I/O

Open-drain programmable 
digital I/O for direct drive of 
FETs

MCLR

I

Master Clear. Pull-up in 
normal operation

SMB-CLK,
SMB-DTA

I/O

SMBus interface

VC(1..4)

I

Cell voltage inputs

V

DDA

, V

SSA

Supply

Voltage regulator output 
(internally connected to 
analog supply input), 
ground

RSHP, RSHN

I

Current sense resistor input

V

NTC

I

External thermistor input

V

REFT

O

Thermistor reference 
voltage

R

OSC

I

Internal oscillator bias 
resistor

V

DDD

GPIO(4)

GPIO(5)

GPIO(6)

GPIO(7)

SMB-CLK

SMB-DTA

VC(4)

VC(3)

VC(2)

VC(1)

V

DDA

V

SSA

RSHP

V

SSD

GPIO(3)

GPIO(2)

GPIO(1)

GPIO(0)

GPIOHV2

MCLR

GPIOHV1

GPIO(9)

GPIO(8)

R

OSC

V

REFT

V

NTC

RSHN

PS50

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

28-pin SSOP Package - 209 mil

Single Chip Field Reprogrammable Battery Manager

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

PS501

DS21818C-page 2

 2004 Microchip Technology Inc.

1.0

PRODUCT OVERVIEW

The PS501 combines a high-performance, low-power
Microchip PIC18 microcontroller core together with
PowerSmart proprietary monitoring/control algorithms
and 3D cell models stored in 16 Kbytes of on-chip
reprogrammable Flash memory. 

Analog resources include a 16-bit sigma-delta integrat-
ing A/D and mixed signal circuitry for precision
measurement of battery current, temperature and volt-
age and for direct connection to 4-cell series Lithium
Ion packs. On-chip EEPROM is provided for storage of
user customizable and “learned” battery parameters.

An industry standard 2-wire SMBus interface supports
host communication using standard SBData
commands and status.

Additional integrated features include a high accuracy
on-chip oscillator and temperature sensor. Twelve gen-
eral purpose pins support charge or safety control or
user programmable digital I/O. Eight of them can be
used as LED drivers and two are open drain for direct
FET drive.

The PS501 can be configured to accommodate all
Lithium rechargeable battery chemistries, including
Li Ion graphite, Li Ion hard carbon and Li Ion polymer,
with direct connection to 2 to 4 series cell configurations. 

FIGURE 1-1:

PS501 INTERNAL BLOCK DIAGRAM

256-byte

EEPR O M

256-byte

EEPRO M

16-Kbyte

FLASH

16-Kbyte

FLASH

De

c

o

d

e

r

R egulator

Regulator

Voltage

Reference

and

Tem perature

Sensor

Voltage

Reference

and

Temperature

Sensor

SMBus

Interface

SMBus

Interface

PIC18

M icrocontroller

 Core

PIC18

M icrocontroller

  C ore

16-Bit

Sigm a-D elta

Integrating

A/D Converter

16-Bit

Sigm a-Delta

Integrating

A/D  Converter

Analog

Input Mux

Analog

Input Mux

Programmable

Digital

 Input/Output

Programmable

Digital

 Input/Output

Silicon O scillator

Silicon O scillator

R

OSC

SMB-CLK

R SH N

V

NTC

V

DDA

1 2

V

REFT

3

V

DDD

SMB-D TA

V

SSD

G PIO (11-0)

Digital Section

Analog

Section

V

SSA

R SH P

VC(2-4)

VC(1)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

 2004 Microchip Technology Inc.

DS21818C-page 3

PS501

1.1

Architectural Description 

The PS501 is a a fully field reprogrammable single chip
solution for rechargeable battery management.
Figure 1-1 is an internal block diagram highlighting the
major architectural elements described below.

1.2

Microcontroller/Memory

The PS501 incorporates an advanced, low-power
Microchip PIC18 8-bit RISC microcontroller core. Mem-
ory resources include 16 Kbytes of reprogrammable
Flash memory for program/data storage and 256 bytes
of EEPROM for parameter storage. Both memory
arrays may be reprogrammed through the SMBus
interface.

1.3

A/D Converter

The PS501 performs precise measurements of current,
voltage and temperature, using a highly accurate 16-bit
integrating sigma-delta A/D converter. The A/D can be
calibrated to eliminate gain and offset errors and incor-
porates an auto-zero offset correction feature that can
be performed while in the end system application. 

1.4

PowerSmart

®

 Firmware/Battery 

Models

Contained within the 16-Kbyte Flash memory is the
PowerSmart developed battery management firmware
that incorporates proprietary algorithms and sophisti-
cated 3-dimensional cell models. Developed by battery
chemists, the patented, self-learning 3D cell models
contain over 250 parameters and compensate for self-
discharge, temperature and other factors. In addition,
multiple capacity correction and error reducing func-
tions are performed during charge/discharge cycles to
enhance accuracy and improve fuel gauge and charge
control performance. As a result, accurate battery
capacity reporting and run-time predictions with less
than 1% error are achievable.

The reprogrammability of the Flash allows firmware
upgrades and customized versions to be rapidly
created without the need for silicon revisions.

The PS501 can be easily customized for a particular
application’s battery cell chemistry. Standard configura-
tion files are provided by PowerSmart for a wide variety
of popular rechargeable cells and battery pack
configurations.

1.5

SMBus Interface/SBData 
Commands

Communication with the host is fully compliant with the
industry standard Smart Battery System (SBS)
specification. Included is an advanced SMBus commu-
nications engine that is compliant with the SMBus v1.1
protocols. The integrated firmware processes all the
revised Smart Battery Data (SBData) v1.1 values. 

1.6

Accurate Integrated Time Base

The PS501 integrates a highly accurate silicon oscilla-
tor that provides accurate timing for self-discharge and
capacity calculations and eliminates the need for an
external crystal. 

1.7

Temperature Sensing

An integrated temperature sensor is provided to
minimize component count when the PS501 IC is
located in close physical proximity to the battery cells
being monitored. As an option, a connection is
provided for an external thermistor that can also be
monitored.

1.8

General Purpose I/O

Twelve programmable digital input/output pins are
provided by the PS501. Eight of these pins can be used
as LED outputs to display State-Of-Charge (SOC),
used for direct control of external charge circuitry or to
provide additional levels of safety in Li Ion packs.
Alternatively, they can be used as general purpose
input/outputs. Two of the I/Os are open-drain outputs
and can thus be used to directly drive FETs or other
high-voltage applications. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

PS501

DS21818C-page 4

 2004 Microchip Technology Inc.

TABLE 1-1:

PIN DESCRIPTIONS

Pin

Name

Description

1

V

DDD

(Input) Filter capacitor input for digital supply voltage.

2

GPIO(4)

(Bidirectional) Programmable general purpose digital input/output pin (4) or LED driver.

3

GPIO(5)

(Bidirectional) Programmable general purpose digital input/output pin (5) or LED driver.

4

GPIO(6)

(Bidirectional) Programmable general purpose digital input/output pin (6) or LED driver.

5

GPIO(7)

(Bidirectional) Programmable general purpose digital input/output pin (7) or LED driver.

6

SMB-CLK

SMBus clock pin connection.

7

SMB-DTA

SMBus data pin connection.

8

VC(4)

(Input) Cell voltage input for the fourth highest voltage cell in a series string.

9

VC(3)

(Input) Cell voltage input for the third highest voltage cell in a series string.

10

VC(2)

(Input) Cell voltage input for the second highest voltage cell in a series string.

11

VC(1)

(Input) Cell voltage input for the first or highest voltage cell in a series string.

12

V

DDA

(Input) Analog supply voltage input.

13

V

SSA

Analog ground reference point.

14

RSHP

(Input) Current measurement A/D input from positive side of the current sense resistor.

15

RSHN

(Input) Current measurement A/D input from negative side of the current sense resistor.

16

V

NTC

(Input) A/D input for use with an external temperature circuit. This is the midpoint 
connection of a voltage divider, where the upper leg is a thermistor (103ETB type) and the 
lower leg is a 3.65 KOhm resistor. This input should not go above 150 mV.

17

V

REFT

 

(Output) Reference voltage output for use with temperature measuring A/D circuit. This 
150 mV output is the top leg of the voltage divider and connects to an external thermistor.

18

R

OSC

External bias resistor.

19

GPIO(8)

(Bidirectional) Programmable general purpose digital input/output pin (8).

20

GPIO(9)

(Bidirectional) Programmable general purpose digital input/output pin (9).

21

GPIOHV1

(Bidirectional) Programmable general purpose digital input/output pin (10). Open-drain, 
high-voltage tolerant.

22

MCLR

(Input) Master Clear. Must be pulled up for normal operation.

23

GPIOHV2

(Bidirectional) Programmable general purpose digital input/output pin (12). Open-drain, 
high-voltage tolerant.

24

GPIO(0)

(Bidirectional) Programmable general purpose digital input/output pin (0) or LED driver.

25

GPIO(1)

(Bidirectional) Programmable general purpose digital input/output pin (1) or LED driver.

26

GPIO(2)

(Bidirectional) Programmable general purpose digital input/output pin (2) or LED driver.

27

GPIO(3)

(Bidirectional) Programmable general purpose digital input/output pin (3) or LED driver.

28

V

SSD

Digital ground reference point.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

 2004 Microchip Technology Inc.

DS21818C-page 5

PS501

2.0

A/D OPERATION

The PS501 A/D converter measures current, voltage
and temperature and integrates the current over time to
predict State-Of-Charge. Pack voltage and individual
cell voltages are monitored and can be individually cal-
ibrated for the best accuracy. Using an external sense
resistor, current is monitored during both charge and
discharge and is integrated over time using the on-chip
oscillator as the time base. Temperature is measured
from the on-chip temperature sensor or an optional
external thermistor. Current and temperature are also
calibrated for accuracy.

2.1

A/D Converter List

The A/D converter alternately measures pack voltage,
cell voltages, current, temperature and auto-offset as
explained below. The schedule for the sequence and
frequency of these measurements is programmable, as
is the number of bits used. The default scheduling uses
three lists. At near full (above the voltage point
ADLNearFull) and near empty (below the voltage point
ADLNearEmpty), voltage intensive lists are used to
accurately end charge or discharge. In between
ADLNearFull and ADLNearEmpty, a current intensive
schedule is used to more accurately calculate capacity.

2.2

Current Measurement

The A/D input channels for current measurement are
the RSHP and RSHN pins. The current is measured
using an integrating method, which averages over time
to get the current measurement and integrates over
time to get a precise measurement value. 

A 5 to 600 milli-Ohm sense resistor is connected to
RSHP and RSHN as shown in the example schematic.
The maximum input voltage at either RSHP or RSHN is
+/-150 mV. The sense resistor should be properly sized
to accommodate the lowest and highest expected
charge and discharge currents, including suspend
and/or standby currents.

Circuit traces from the sense resistor should be as
short as practical without significant crossovers or
feedthroughs. Failure to use a single ground reference
point at the negative side of the sense resistor can
significantly degrade current measurement accuracy.

The EEPROM value, NullCurr, represents the zero
zone current of the battery. This is provided as a
calibration guardband for reading zero current. Cur-
rents below the +/- NullCurr (in mA) limit are read as
zero and are not included in the capacity algorithm
calculations. A typical value for NullCurr is 3 mA, so
currents between -3 mA and +3 mA will be reported as
zero and not included in the capacity calculations.

The equation for current measurement resolution and
sense resistor selection is shown in the following
equation.

EQUATION 2-1:

In-circuit calibration of the current is done using the
SMBus interface at time of manufacture to obtain
absolute accuracy. The current measurement equation
is:

EQUATION 2-2:

COCurr is the “Correction Offset for Current” which
compensates for any offset error in current
measurement stored in EEPROM.

CFCurr is the “Correction Factor for Current” which
compensates for any variances in the actual sense
resistance over varying currents stored in EEPROM.

Figure 2-1 shows the relationship of the COCurr and
CFCurr values.

FIGURE 2-1:

COCurr AND CFCurr 
VALUE RELATIONSHIP

2.3

Auto-Offset Compensation

Accuracy drift is prevented using an automatic auto-
zero self-calibration method, which ‘re-zeroes’ the
current measurement circuit every AOMInt * 0.5 sec-
onds when enabled. This feature can correct for drift in
temperature during operation. The auto-offset compen-
sation circuit works internally by disconnecting the
RSHP and RSHN inputs and internally shorting these
inputs to measure the zero input offset. The EEPROM
and calibration value COD is the true zero offset value
of the particular module. 

9.15 mV/R

SENSE

 (milli-Ohms) = Current LSB

(Minimum current measurement if > NullCurr)

Current LSB x 16384 = Maximum current 

measurement possible

I(ma) = (I_A/D – COCurr* CFCurr/16384

where:

I_A/D

 is the internal measurement

Ideal A/D Response

Actual A/D

Response

CFCurr

COCurr

Actual Current

Raw Measurement

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

PS501

DS21818C-page 6

 2004 Microchip Technology Inc.

2.4

Voltage Measurements

The A/D input channels for cell and pack voltage mea-
surements are the VC(1) to VC(4) pins. Measurements
are taken each measurement period when the A/D is
active. The maximum voltage at any V

CELL

x input pin is

19V absolute, but voltages above 18V are not sug-
gested. The individual cell voltages are measured with
an integration method to reduce any sudden spikes or
fluctuations. The A/D uses an 11-bit resolution mode
for these measurements.

Cell voltage inputs are read every measurement
period, which is approximately every 500 milliseconds.
This could be further extended by the use of Sample
mode, where A/D measurements are not activated
every measurement period, depending on the configu-
ration of SampleLimit and NSample values. (See
Section 3.0 “Operational Modes” for additional
information.) For Li Ion, Li-based, or even Lead-Acid
applications, up to four (4) series cell voltages may be
monitored individually. The highest voltage cell of the
stack must be connected to VC(1).

For some applications, the actual cell stack arrange-
ment can be altered accordingly. The PS501 voltage
input pins (V

CELL

x pins) are capable of measuring up to

18V each. Therefore, cell arrangements can be com-
bined and the corresponding cell voltage thresholds
can be adjusted. For example, a 2-cell Li Ion pack could
actually be connected as a single 7.2V cell instead of
two 3.6V cells. The values for the cell voltages would all
be doubled, for example V

CELL

1 would equal the sum

of two cells and only the VC(1) input pin would be used. 

Each V

CELL

x input circuit contains an internal resistive

divider to reduce the external voltage input to a range
that the internal A/D circuit can accommodate (150 mV
maximum). These dividers are set based on a
maximum cell voltage of 4.5 volts. A range of 340 mV
with dividers, based on a maximum voltage of 20 volts,
is used for pack voltage.

The impedance at each V

CELL

x input is roughly

100 kOhms, but is only connected to ground (via the
V

SSA

 pins) when the actual voltage measurement is

occurring. This corresponds to an insignificant amount
of capacity drained through this circuit during the brief
voltage measurement period, typically 45 ms every
500 ms.

2.4.1

IMPEDANCE COMPENSATION

Since accurate measurement of pack voltage and cell
voltages are critical to performance, the voltage
measurements can be compensated for any imped-
ance in the power path that might affect the voltage
measurements.

The EEPROM value PackResistance is used to
compensate for additional resistance that should be
removed. 

The equation for the compensation value (in ohms) is:

EQUATION 2-3:

This requires modification of overall voltage SBData
function to compensate for pack resistance and shunt
resistance of the current sense resistor. Thus, the
previous voltage equation is modified to:

EQUATION 2-4:

The voltage measurement equation is:

EQUATION 2-5:

COVPack is the “Correction Offset for Pack Voltage”
which compensates for any offset error in voltage mea-
surement (since the offset of the A/D is less than the
voltage measurement resolution of +/- 16.5 mV, the
COVPack value is typically zero).

CFVPack is the “Correction Factor for Pack Voltage”
which compensates for any variance in the actual A/D
response versus an ideal A/D response over varying
voltage inputs.

The COVPack and CFVPack are calibration constants
that are stored in EEPROM.

V

CELL

1 and V

CELL

4 can also be compensated for

impedance in the lines connecting to the PS501.
VC1Res is the resistance between the PS501 and the
highest series cell. VC4Res is the resistance between
the PS501 and the lowest cell. This allows the PS501
to subtract any voltage drop due to current between the
cell and the PS501.

PackResistance = Trace Resistance * 65535

(This is a 2-byte value so the largest value is
1 ohm.)

SBData Voltage Value = VC(1) + Measured 

Current (mA) * PackResistance/65535

V (mV) = (V_A/D – COVPack) x CFVPack/16384

where:

V_A/D

 is the internal measurement output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

 2004 Microchip Technology Inc.

DS21818C-page 7

PS501

Figure 2-2 shows the relationship of the COVPack and
CFVPack values.

FIGURE 2-2:

COVPack AND CFVPack 
VALUE RELATIONSHIP

In-circuit calibration of the voltage is done at the time of
manufacture to obtain absolute accuracy in addition to
high resolution. Individual cell voltage measurements
can be accurate to within ±20 mV.

The individual cell voltage inputs are also calibrated the
same way the pack voltage is. There is one offset value,
COVCell, for all individual cells and up to four different
correction factors, CFVCell1 through CFVCell4, one for
each cell input.

2.5

Temperature Measurements

The A/D receives input from the internal temperature
sensor to measure the temperature. Optionally, an
external thermistor can be connected to the V

NTC

 pin

which is also monitored by the A/D converter. An output
reference voltage for use with an external thermistor is
provided on the V

REFT

 pin. The A/D uses an 11-bit

resolution mode for the temperature measurements.

A standard 10 kOhms at 25°C Negative-Temperature-
Coefficient (NTC) device of the 103ETB type is
suggested for the optional external thermistor. One leg
of the NTC should be connected to the V

REFT

 pin and

the other to both the V

NTC

 pin and a 3.65 kOhms resis-

tor to analog ground (V

SSA

). The resistor forms the

lower leg of a voltage divider circuit. To maintain high
accuracy in temperature measurements, a 1% resistor
should be used.

A look-up table is used to convert the voltage measure-
ment seen at the V

NTC

 pin to a temperature value. The

external thermistor should be placed as close as possi-
ble to the battery cells and should be isolated from any
other sources of heat that may affect its operation.

Calibration of the temperature measurements involves
a correction factor and an offset exactly like the current
and voltage measurements. The internal temperature
measurement makes use of correction factor CFTempI
and offset COTempI, while the V

NTC

 and V

REFT

 pins for

the optional external thermistor make use of correction
factor CFTempE and offset COTempE.

Ideal A/D Response

Actual A/D

Response

CFVPack

COVPack

Raw Measurement

Actual Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

PS501

DS21818C-page 8

 2004 Microchip Technology Inc.

3.0

OPERATIONAL MODES

The PS501 operates on a continuous cycle. The
frequency of the cycles depends on the power mode
selected. There are four power modes: Run, Sample,
Sleep and Shelf-Sleep. Each mode has specific entry
and exit conditions as listed below. 

3.1

Run Mode

Whether the PS501 is in Run mode or Sample mode
depends on the magnitude of the current. The Run and
Sample mode entry-exit threshold is calculated using
the EEPROM parameter, SampleLimit.

SampleLimit is a programmable EEPROM value and
CFCurr is an EEPROM value set by calibration.

Entry to Run mode occurs when the current is more
than +/- SampleLimit  mA for two consecutive mea-
surements. Run mode may only be exited to Sample
mode, not to Sleep mode, when Sample mode is
enabled. Exit from Run mode to Sample mode occurs
when the converted measured current is less than the
+/-  SampleLimit  mA threshold for two consecutive
measurements.

Run mode is the highest power consuming mode.
During Run mode, all measurements and calculations
occur once per measurement period. Current, voltage
and temperature measurements are each typically
made sequentially during every measurement period.

3.2

Sample Mode

Entry to Sample mode occurs when the measured
current is less than +/- SampleLimit  (EE parameter)
two consecutive measurements. Sample mode may be
exited to either Run mode or Sleep mode. 

While in Sample mode, measurements of voltage, cur-
rent and temperature occur only once per NSample
counts of measurement periods, where NSample is a
programmable EEPROM value. Calculations of State-
Of-Charge, SMBus requests, etc. still continue at the
normal Run mode rate, but measurements only occur
once every measurement period x NSample. The
minimum value for NSample is two.

The purpose of Sample mode is to reduce power con-
sumption during periods of inactivity (low rate charge or
discharge). Since the analog-to-digital converter is not
active, except every NSample counts of measurement
periods, the overall power consumption is significantly
reduced. 

EXAMPLE 3-1:

CONFIGURATION 

3.3

Low-Voltage Sleep Mode

Entry to Sleep mode can only occur when the
measured pack voltage at the VC(1) input is below a
preset limit, set by the EEPROM value SleepVPack (in
mV). Sleep mode may be exited to Run mode, but only
when one of the wake-up conditions is satisfied.

While in Sleep mode, no measurements occur and no
calculations are made. The fuel gauge display is not
operational, no SMBus communications are recog-
nized and only a wake-up condition will permit an exit
from Sleep mode. Sleep mode is one of the lowest
power consuming modes and is used to conserve
battery energy following a complete discharge.

There are two levels of Low-Voltage Sleep mode that
can be used, each with a different wake-up criteria.
Default Low-Power mode will use 25 

µ

A typical and will

wake-up when the voltage exceeds the WakeUp voltage
level. By setting bit 1 of the WakeUp register to ‘

1

’, the

Ultra Low-Power mode can be used. This will be entered
by low voltage, but wake-up occurs by pulling the
SMBus lines high. Ultra Low-Power mode uses less
than 1 

µ

A. 

3.4

Shelf-Sleep Mode

Shelf-Sleep mode is used to put the PS501 into Low-
Power mode, regardless of voltage level, for long term
storage of battery packs. It is entered by an SMBus
command. It is exited by the conditions selected in the
WakeUp register. These can be voltage, GPIO or
SMBus activity. If any of these four are selected for
wake-up, the Shelf-Sleep mode will be Low-Power
mode and will draw 25

µ

A typical. If none of these

options are selected and bit 3 of the WakeUp register
is set, the Shelf-Sleep mode will be Ultra Low-Power
mode, which will draw less than 1 

µ

A and wake-up will

be by pulling SMBus high. 

Measurement period is 500 ms
SampleLimit is set to 20
NSample is set to 16

Result:

Run/Sample mode entry-exit threshold = 20 mA

During Sample mode, measurements will occur
every:

16 measurement periods of 500 mS = every 8 seconds

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

 2004 Microchip Technology Inc.

DS21818C-page 9

PS501

TABLE 3-1:

WakeUp EEPROM VALUE

TABLE 3-2:

WakeLevels EEPROM VALUE

TABLE 3-3:

POWER MODE SUMMARY

Bit

Name

Function

7

WakeIO

Wake-up from I/O Activity

6

WakeBus

Wake-up from SMBus Activity

5

Unused

4

WakeVolt

Wake-up from Voltage

3

Enable Shelf-Sleep

Use Ultra Low-Power mode for Shelf-Sleep mode. All other bits 
must be zero.

1

LV Sleep Mode

Use Ultra Low-Power mode as Low-Voltage Sleep mode

0

Zero Remcap

Set remap to zero when entering Low-Voltage Sleep mode

WakeUp Voltage (2:0)

Voltage

Purpose

000

6.4V

2 cells Li Ion

001

6.66V

2 cells Li Ion

010

8.88V

2 cells Li Ion

011

9.6V

3 cells Li Ion

100

9.99V

3 cells Li Ion

101

11.1V

3 cells Li Ion

110

12.8V

4 cells Li Ion

111

13.3V

4 cells Li Ion

Mode

Entry

Exit

Notes

Run

Measured current > preset threshold 
(set by SampleLimit)

Measured current < preset 
threshold (set by SampleLimit)

Highest power consumption 
and accuracy for rapidly 
changing current.

Sample

Measured current < preset threshold 
(set by SampleLimit)

Measured current > preset 
threshold (set by SampleLimit)

Saves power for low, steady 
current consumption. Not as 
many measurements needed. 
Measurements made every 
NSample periods.

Sleep

V

PACK

 < SleepVPack and in 

Sample mode

WakeUp voltage level 
exceeded (Low-Power mode) 
or SMBus pulled high (Ultra 
Low-Power mode)

No measurements made. 

Shelf-Sleep

SMBus command

WakeUp register conditions 
met (Low-Power mode) or 
SMBus pins pulled high (Ultra 
Low-Power mode)

No measurements made.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21818c-html.html
background image

PS501

DS21818C-page 10

 2004 Microchip Technology Inc.

4.0

CAPACITY MONITORING 

The PS501 internal CPU uses the voltage, current and
temperature data from the A/D converter, along with
parameters and cell models, to determine the state of the
battery and to process the SBData function instruction
set.

By integrating measured current, monitoring voltages
and temperature, adjusting for self-discharge and
checking for End-Of-Charge and End-Of-Discharge
conditions, the PS501 creates an accurate fuel gauge
under all battery conditions.

4.1

Capacity Calculations

The PS501 calculates State-Of-Charge and fuel gaug-
ing functions using a ‘coulomb counting’ method, with
additional inputs from battery voltage and temperature
measurements. By continuously and accurately mea-
suring all the current into and out of the battery cells,
along with accurate three-dimensional cell models, the
PS501 is able to provide accurate predictions of SOC
and run-time.

The capacity calculations consider two separate states:
charge acceptance or Capacity Increasing (CI) and dis-
charge or Capacity Decreasing (CD). The CI state only
occurs when a charge current larger than the EEPROM
NullCurr value is measured. Otherwise, while at rest
and/or while being discharged, the state is CD.
Conditions must persist for at least NChangeState
measurement periods for a valid state change between
CD and CI. A minimum value of 2 is suggested for
NChangeState.

Regardless of the CI or CD state, self-discharge is also
calculated and subtracted from the integrated capacity
values. Even when charging, there is still a self-discharge
occurring in the battery.

To compensate for known system errors in the capacity
calculations, a separate error term is also continuously
calculated. This term is the basis for the SBData value
of MaxError. Two error values are located in EEPROM.
The  CurrError value is the inherent error in current
measurements and should be set based on the selec-
tion of a sense resistor and calibration results. The
SelfDischrgErr value is the error in the parameter
tables for self-discharge and depends on the accuracy
of the cell chemistry model for self-discharge.

Since the PS501 electronics also drain current from the
battery system, another EEPROM value allows even
this minor drain to be included in the capacity calcula-
tions. The PwrConsumption value represents the
drain of the IC and associated circuitry, including
additional safety monitoring electronics if present. A
typical value of 77 represents the module’s nominal
power consumption, including the PS501 typical
consumption.

The total capacity added or subtracted from the battery
(change in charge) per measurement period is
expressed by the following formula:

EQUATION 4-1:

The error terms are always subtracted, even though
they are +/- errors, so that the fuel gauge value will
never be overestimated. Current draw of the PS501
and the self-discharge terms are also always
subtracted. The SBData value, MaxError, is the total
accumulated error as the gas gauge is running.

The battery current will be precisely measured and
integrated in order to calculate total charge removed
from or added to the battery. Based on look-up table
values, the capacity is adjusted for self-discharge
relative to current, temperature and SOC. 

4.2

Discharge Termination

Discharge termination is determined based on the
End-Of-Discharge (EOD) voltage point. The voltage
level at which this point occurs can be chosen to be
constant, or to change depending on the temperature
and discharge rate, since these factors affect the volt-
age curve and total capacity of the battery. The EOD
voltage parameter table predicts the voltage point at
which this EOD will be reached, based on discharge
rate and temperature.

The PS501 will monitor temperature and discharge rate
continuously and update the Veodx in real-time. When
the voltage measured on the cell is below EOD voltage
for the duration of EODRecheck x periods (500 ms), a
valid EOD has occurred.

When a valid EOD has been reached, the
TERMINATE_DISCHARGE_ALARM bit (bit 11) in
BatteryStatus will be set. This will cause an
AlarmWarning condition with this bit set.

Additionally, the REMAINING_TIME_ALARM and/or
REMAINING_CAPACITY_ALARM bits can be set first to
give a user defined early warning prior to the
TERMINATE_DISCHARGE_ALARM. The remaining
time alarm will trigger in battery status when the remain-
ing time calculation falls below a threshold set by the
SMBus command. The remaining capacity alarm will be
set in battery status when the capacity falls below a
threshold set by the SMBus command. Use an SMBus
Write command to Remaining TimeAlarm (command
code 0x02) or RemainingCapacityAlarm (command
code 0x01) to set these values.

∆Charge = Σi∆t (the current integrated over time)

CurrError (Current Measurement Error)

PwrConsumption * 

t (PS501 I

DD

)

- % of Self-Discharge * FCC

SelfDischrgErr (Self-Discharge Error)

Maker
Microchip Technology Inc.
Datasheet PDF Download