Precision Analog Front Ends with Dual Slope ADC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

© 2008 Microchip Technology Inc.

DS21428E-page 1

TC500/A/510/514

Features:

• Precision (up to 17 bits) A/D Converter “Front 

End”

• 3-Pin Control Interface to Microprocessor
• Flexible: User Can Trade-off Conversion Speed 

for Resolution

• Single-Supply Operation (TC510/TC514)
• 4 Input, Differential Analog MUX (TC514)
• Automatic Input Voltage Polarity Detection
• Low Power Dissipation:

- (TC500/TC500A): 10 mW
- (TC510/TC514): 18 mW

• Wide Analog Input Range:

- ±4.2V (TC500A/TC510)

• Directly Accepts Bipolar and Differential 

Input Signals

Applications:

• Precision Analog Signal Processor
• Precision Sensor Interface
• High Accuracy DC Measurements

General Description:

TheTC500/A/510/514 family are precision analog front
ends that implement dual slope A/D converters having
a maximum resolution of 17 bits plus sign. As a
minimum, each device contains the integrator, zero
crossing comparator and processor interface logic. The
TC500 is the base (16-bit max) device and requires
both positive and negative power supplies. The
TC500A is identical to the TC500 with the exception
that it has improved linearity, allowing it to operate to a
maximum resolution of 17 bits. The TC510 adds an on-
board negative power supply converter for single-
supply operation. The TC514 adds both a negative
power supply converter and a 4-input differential
analog multiplexer.
Each device has the same processor control interface
consisting of 3 wires: control inputs (A and B) and zero-
crossing comparator output (CMPTR). The processor
manipulates A, B to sequence the TC5XX through four
phases of conversion: auto-zero, integrate, de-
integrate and integrator zero. During the auto-zero
phase, offset voltages in the TC5XX are corrected by a
closed loop feedback mechanism. The input voltage is
applied to the integrator during the integrate phase.
This causes an integrator output dv/dt directly
proportional to the magnitude of the input voltage. The
higher the input voltage, the greater the magnitude of
the voltage stored on the integrator during this phase.
At the start of the de-integrate phase, an external
voltage reference is applied to the integrator and, at the
same time, the external host processor starts its on-
board timer. The processor maintains this state until a
transition occurs on the CMPTR output, at which time
the processor halts its timer. The resulting timer count
is the converted analog data. Integrator zero (the final
phase of conversion) removes any residue remaining
in the integrator in preparation for the next conversion.
The TC500/A/510/514 offer high resolution (up to
17 bits), superior 50/60 Hz noise rejection, low-power
operation, minimum I/O connections, low input bias
currents and lower cost compared to other converter
technologies having similar conversion speeds.

Precision Analog Front Ends with Dual Slope ADC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

TC500/A/510/514

DS21428E-page 2

© 2008 Microchip Technology Inc.

Package Types

Typical Application

1

2

3

4

16

15

14

13

5

6

7

12

11

10

9

8

CMPTR OUT

A

DGND

B

V

DD

V

IN

+

V

IN

V

REF

+

BUF

V

SS

C

INT

ACOM

V

REF

C

REF

+

C

REF

C

AZ

TC500/

TC500A

16-Pin PDIP/SOIC/CERDIP

V

OUT

1

2

3

4

20

19

18

CAP–

5

6

7

8

17

23

22

21

9

10

11

12

24

25

26

27

28

DGND

A

B

C

REF

C

INT

C

AZ

BUF

ACOM

CH4–

CH3–

CH2–

TC514

C

REF

+

V

REF

V

REF

+

 

V

DD

OSC

CMPTR OUT

 

CAP+

 

16

15

13

14

CH1–

N/C

CH1+

CH2+

CH3+

CH4+

A0

A1

28-Pin PDIP/SOIC

24-Pin PDIP/SOIC

1

2

3

4

16

15

14

5

6

7

8

13

19

18

17

9

10

11

12

20

21

22

23

24

TC510

 

CAP–

DGND

A

B

V

DD

OSC

CMPTR OUT

V

IN

+

V

IN

N/C

N/C

CAP+ 

C

REF

C

INT

C

AZ

BUF

ACOM

N/C

N/C

N/C

V

OUT

C

REF

+

V

REF

V

REF

+

Level

Shift

Control Logic

Analog

Switch

Control

Signals

ACOM

V

REF

+

BUF

C

AZ

Buffer

Integrator

SW

R

SW

IZ

CMPTR 1

CMPTR 2

CMPTR

Output

DGND

Control Logic

SW

1

TC500
TC500A
TC510
TC514

C

REF

C

REF

+

SW

R

C

REF

-

C

AZ

R

INT

C

INT

C

INT

SW

RI

- SW

RI

-

SW

RI

+ SW

RI

-

SW

Z

SW

I

SW

Z

V

SS

OSC

 

+

+

 

 

+

Phase

Decoding 

Logic

Polarity

Detection

DC-TO-DC

Converter

(TC510 & TC514)

-

+

A          B   

 0 

0    

Zero Integrator Output

 0 

Auto-Zero

 1 

Signal Integrate

 1 

De-integrate

V

REF

-

V

OUT

-

C

OUT

-

1.0 μF

1.0 μF

V

SS

SW

I

B

A

A0

A1

DIF.

MUX

(TC514)

CH1+
CH2+
CH3+
CH4+

CH1-
CH2-
CH3-
CH4-

CAP- CAP+

(TC500
TC500A)

Converter Sate

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

© 2008 Microchip Technology Inc.

DS21428E-page 3

TC500/A/510/514

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

TC510/TC514 Positive Supply Voltage 

(V

DD

 to GND) .........................................+10.5V

TC500/TC500A Supply Voltage 

(V

DD 

to V

SS

) ..............................................+18V

TC500/TC500A Positive Supply Voltage 

(V

DD

 to GND) ............................................+12V

TC500/TC500A Negative Supply Voltage

(V

SS

 to GND)................................................-8V

Analog Input Voltage (V

IN

+ or V

IN

-) ............V

DD

 to V

SS

Logic Input Voltage...............V

DD

 +0.3V to GND - 0.3V

Voltage on OSC:

...........................  -0.3V to (V

DD

 +0.3V) for V

DD

 < 5.5V

Ambient Operating Temperature Range:

................................................................ 0°C to +70°C

Storage Temperature Range:............. -65°C to +150°C

† Notice:

 Stresses above those listed under “Absolute

Maximum Ratings” may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

DC CHARACTERISTICS

Electrical Specifications:

 Unless otherwise specified, TC510/TC514: V

DD

 = +5V, TC500/TC500A: V

SS

 

= ±5V. 

C

AZ

 = C

REF

 = 0.47

μ

F.

Parameters

Sym

T

A

 = +25°C

T

A

 = 0°C to 70°C

Units

Conditions

Min.

Typ.

Max.

Min.

Typ.

Max.

Analog

Resolution

60

 —

 —

 

μ

V

Note 1

Zero-scale Error with 
Auto-zero Phase

ZSE

0.005

0.005

0.012

 % F.S. TC500/TC510/TC514

0.003

 0.003

0.009

TC500A

End Point Linearity

ENL

0.005

0.015

0.015

0.060

% F.S.

TC500/TC510/TC514

0.010

0.010

0.045

% F.S.

Note 1

Note 2

TC500A

Best-Case Straight 
Line Linearity

NL

0.003

0.008

 % F.S. TC500/TC510/TC514

Note 1

Note 2

0.005

 % F.S. TC500A

Zero-scale Temp. 
Coefficient

ZS

TC

 

 

1

2

μ

V/°C

Over Operating 
Temperature Range

Full-scale Symmetry 
Error (Rollover Error) 

SYE

0.01

 — 

0.03

% F.S.

Note 1

Full-scale 
Temperature 
Coefficient

FS

TC

 — 

10

 ppm/°C Over Operating 

Temperature Range; 
External Reference 
TC = 0 ppm/°C 

Input Current

I

IN

6

 

pA

V

IN

 = 0V 

Common Mode 
Voltage Range

V

CMR

V

SS 

+ 1.5

V

DD 

– 1.5 V

SS

 + 1.5

V

DD

 – 1.5

V

Integrator Output 
Swing

V

SS 

+ 0.9

V

DD

 – 0.9 V

SS

 + 0.9

V

SS

 + 0.9

V

Analog Input Signal 
Range

V

SS 

+ 1.5

V

DD

 – 1.5 V

SS 

 + 1.5

V

SS 

 + 1.5

V

ACOM = GND = 0V

Note

1:

Integrate time 

≥ 66 ms, auto-zero time ≥ 66 ms, V

INT

 (peak) 

≈ 4V.

2:

End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.

3:

Rollover error is related to C

INT

, C

REF

, C

AZ

 characteristics.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

TC500/A/510/514

DS21428E-page 4

© 2008 Microchip Technology Inc.

Voltage Reference 
Range 

V

REF

V

SS

 +1

V

DD

 – 1

V

SS 

+1

 —

 V

DD

 – 1

V

V

REF

  

V

REF

+

Digital

Comparator Logic 1, 
Output High

V

OH

4

4

 

 

V

I

SOURCE

 = 400

μ

A

Comparator Logic 0, 
Output Low

V

OL

0.4

 —

 0.4

V

I

SINK

 = 2.1 mA

Logic 1, Input High 
Voltage

V

IH

3.5

3.5

 —

 —

V

Logic 0, Input Low 
Voltage

V

IL

1

 

 

1

V

Logic Input Current

I

L

 

0.3

μ

A

Logic ‘

1

’ or ‘

0

Comparator Delay

t

D

2

 

3

μ

s

Multiplexer (TC514 Only)

Maximum Input 
Voltage

-2.5

2.5

-2.5

 —

 2.5 

 V

V

DD

 = 5V

Drain/Source ON 
Resistance

R

DSON

6

10

 

 

— 

kΩ

V

DD

 = 5V

Power (TC510/TC514 Only)

Supply Current

I

S

1.8

2.4

 —

 3.5

mA

V

DD

 = 5V, A = 1, B = 1

Power Dissipation

P

D

18

 

 

mW

V

DD

 = 5V

Positive Supply 
Operating Voltage 
Range

V

DD

4.5

5.5

4.5 —

5.5

V

Operating Source 
Resistance

R

OUT

60

85

 —

 100

I

OUT 

= 10 mA

Oscillator Frequency

100

 —

 —

kHz

Note 1

Maximum Current 
Out

I

OUT

-10

 

-10

mA

V

DD

 = 5V

Power (TC500/TC500A Only)

Supply Current

I

S

1

1.5

 —

 2.5

mA

V

= ±5V, A = B = 1

Power Dissipation

P

D

10

 

 

mW

V

DD  

= 5V, V

SS

 = -5V

Positive Supply 
Operating Range

V

DD

4.5

7.5

4.5 —

7.5

V

Negative Supply 
Operating Range

V

SS

-4.5

-7.5

- 4.5

 —

-7.5

V

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications:

 Unless otherwise specified, TC510/TC514: V

DD

 = +5V, TC500/TC500A: V

SS

 

= ±5V. 

C

AZ

 = C

REF

 = 0.47

μ

F.

Parameters

Sym

T

A

 = +25°C

T

A

 = 0°C to 70°C

Units

Conditions

Min.

Typ.

Max.

Min.

Typ.

Max.

Note

1:

Integrate time 

≥ 66 ms, auto-zero time ≥ 66 ms, V

INT

 (peak) 

≈ 4V.

2:

End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.

3:

Rollover error is related to C

INT

, C

REF

, C

AZ

 characteristics.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

© 2008 Microchip Technology Inc.

DS21428E-page 5

TC500/A/510/514

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Output Voltage vs. Load 

Current.

FIGURE 2-2:

Output Ripple vs. Load 

Current.

FIGURE 2-3:

Oscillator Frequency vs. 

Capacitance.

FIGURE 2-4:

Output Voltage vs. Output 

Current.

FIGURE 2-5:

Output Source Resistance 

vs. Temperature.

FIGURE 2-6:

Oscillator Frequency vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Load Current (mA)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

10

20

30

40

50

60

70

80

Output Voltage (V)

T

A

 = +25°C

V+ = 5V

Slope 60

Ω

Load Current (mA)

0

3

4

5

6

1

2

7

8

9 10

0

25

50

75

100

125

150

175

200

Output Ripple (mV PK-PK)

V+ = 5V, T

A

 = +25°C

Osc. Freq. = 100 kHz

CAP = 1 µF

CAP = 10 µF

Oscillator Capacitance (pF)

100

10

1

1

10

100

1000

Oscillator Frequency (kHz)

T

A

 = +25°C

V+ = 5V

Output Current (mA)

0

6

8

10

4

2

14

16

18

12

20

-0

-1

-3

-2

-4

-5

-7

-6

-8

Output Voltage  (V)

TA = +25°C

Temperature (°C)

70

80

90

100

60

50

40

-50

0

25

-25

50

75

100

Output Source Resistance (

Ω

)

V+ = 5V
I

OUT

 = 10 mA

Temperature (°C)

125

150

100

75

50

-50

0

25

-25

50

75

125

100

Oscillator Frequency (kHz)

V+ = 5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

TC500/A/510/514

DS21428E-page 6

© 2008 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

© 2008 Microchip Technology Inc.

DS21428E-page 7

TC500/A/510/514

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

TC500, 

TC500A

TC510

TC514

Symbol

Function

CERDIP, 

PDIP, SOIC

PDIP, SOIC

PDIP, SOIC

1

2

2

C

INT

Integrator output. Integrator capacitor connection.

2

Not Used

Not Used

V

SS

Negative power supply input (TC500/TC500A only).

3

3

3

C

AZ

Auto-zero input. The auto-zero capacitor connection.

4

4

4

BUF

Buffer output. The Integrator capacitor connection.

5

5

5

ACOM

This pin is grounded in most applications. It is recommended that 
ACOM and the input common pin (Ve

n

- or

 

CH

n

-) be within the analog 

Common Mode Range (CMR).

6

6

6

C

REF

-

Input. Negative reference capacitor connection.

7

7

7

C

REF

+

Input. Positive reference capacitor connection.

8

8

8

V

REF

-

Input. External voltage reference (-) connection.

9

9

9

V

REF

+

Input. External voltage reference (+) connection.

10

15

Not Used

V

IN

-

Negative analog input.

11

16

Not Used

V

IN

+

Positive analog input.

12

18

22

A

Input. Converter phase control MSB. (See input B.)

13

17

21

B

Input. Converter phase control LSB. The states of A, B place the 

TC5XX

 in one of four required phases. A conversion is complete 

when all four phases have been executed:
Phase control input pins: AB =  00: Integrator zero

01: Auto-zero
10: Integrate
11: De-integrate

14

19

23

CMPTR OUT Zero crossing comparator output. CMPTR is high during the 

integration phase when a positive input voltage is being integrated 
and is low when a negative input voltage is being integrated. A high-
to-low transition on CMPTR signals the processor that the De-
integrate phase is completed. CMPTR is undefined during the auto-
zero phase. It should be monitored to time the integrator zero phase.

15

23

27

DGND

Input. Digital ground.

16

21

25

V

DD

Input. Power supply positive connection.

22

26

CAP+

Input. Negative power supply converter capacitor (+) connection.

24

28

CAP-

Input. Negative power supply converter capacitor (-) connection.

1

1

V

OUT

-

Output. Negative power supply converter output and reservoir 
capacitor connection. This output can be used to power other 
devices in the circuit requiring a negative bias voltage.

20

24

OSC

Oscillator control input. The negative power supply converter 
normally runs at a frequency of 100 kHz. The converter oscillator 
frequency can be slowed down (to reduce quiescent current) by 
connecting an external capacitor between this pin and V

DD

 (see 

Section 2.0 “Typical Performance Curves”

).

18           

CH1+

Positive analog input pin. MUX channel 1.

13

CH1-

Negative analog input pin. MUX channel 1.

17

CH2+

Positive analog input pin. MUX channel 2.

12

CH2-

Negative analog input pin. MUX channel 2.

16

CH3+

Positive analog input pin. MUX channel 3.

11

CH3-

Negative analog input pin. MUX channel 3.

15

CH4+

Positive analog input pin. MUX channel 4.

10

CH4-

Negative analog input pin. MUX channel 4

20

A0

Multiplexer input channel select input LSB (see A1).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

TC500/A/510/514

DS21428E-page 8

© 2008 Microchip Technology Inc.

19

A1

Multiplexer input channel select input MSB.
Phase control input pins: A1, A0 =

00 = Channel 1
01 = Channel 2
10 = Channel 3
11 = Channel 4

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

TC500, 

TC500A

TC510

TC514

Symbol

Function

CERDIP, 

PDIP, SOIC

PDIP, SOIC

PDIP, SOIC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

© 2008 Microchip Technology Inc.

DS21428E-page 9

TC500/A/510/514

4.0

DETAILED DESCRIPTION

4.1

Dual Slope Conversion Principles

 

Actual data conversion is accomplished in two
phases: input signal integration and reference voltage
de-integration.
The integrator output is initialized to 0V prior to the start
of integration. During integration, analog switch S

1

connects V

IN

 to the integrator input where it is

maintained for a fixed time period (T

INT

). The

application of V

IN

 causes the integrator output to depart

0V at a rate determined by the magnitude of V

IN

 and a

direction determined by the polarity of V

IN

. The de-

integration phase is initiated immediately at the
expiration of T

INT

.

During de-integration, S1 connects a reference voltage
(having a polarity opposite that of V

IN

) to the integrator

input. At the same time, an external precision timer is
started. The de-integration phase is maintained until
the comparator output changes state, indicating the
integrator has returned to its starting point of 0V. When
this occurs, the precision timer is stopped. The de-
integration time period (T

DEINT

), as measured by the

precision timer, is directly proportional to the magnitude
of the applied input voltage (see 

Figure 4-3

).

A simple mathematical equation relates the input
signal, reference voltage and integration time:

EQUATION 4-1:

For a constant V

IN

:

EQUATION 4-2:

The dual slope converter accuracy is unrelated to the
integrating resistor and capacitor values as long as
they are stable during a measurement cycle.
An inherent benefit is noise immunity. Input noise
spikes are integrated (averaged to zero) during the
integration periods. Integrating ADCs are immune to
the large conversion errors that plague successive
approximation converters in high noise environments.

Integrating converters provide inherent noise rejection
with at least a 20dB/decade attenuation rate.
Interference signals with frequencies at integral
multiples of the integration period are, theoretically,
completely removed, since the average value of a sine
wave of frequency (1/T) averaged over a period (T) is
zero.
Integrating converters often establish the integration
period to reject 50/60 Hz line frequency interference
signals. The ability to reject such signals is shown by a
normal mode rejection plot (

Figure 4-1

). Normal mode

rejection is limited in practice to 50 to 65 dB, since the
line frequency can deviate by a few tenths of a percent
(

Figure 4-2

).

FIGURE 4-1:

Integrating Converter 

Normal Mode Rejection.

FIGURE 4-2:

Line Frequency Deviation.

Where:

V

REF

=

Reference Voltage

T

INT

=

Signal Integration time (fixed)

t

DEINT

=

Reference Voltage Integration time 
(variable)

1

R

INT

C

INT

------------------------

V

IN

T

( )DT

0

T

INT

V

REF

C

DEINT

R

INT

C

INT

--------------------------------

=

V

IN

V

REF

T

DEINT

T

INT

------------------

=

30

20

10

0

0.1/T

1/T

10/T

Input Frequency

Normal Mode Rejection (dB)

T = Measurment

 Period

0.01

0.1

1.0

Normal Mode Rejeciton (dB)

80

70

60

50

40

30

20

t = 0.1 sec

Line Frequency Deviation from 60 Hz (%)

Normal Mode = 20 LOG

Rejection

DEV = Deviation from 60 Hz

t  = Integration Period

SIN 60    t (1 –         )

p

p

DEV

100

DEV

100

60    t (1 –         )

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21428e-html.html
background image

TC500/A/510/514

DS21428E-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-3:

Basic Dual Slope Converter.

Phase

Control

Comparator

Integrator

Output

Integrator

C

INT

Analog

Input (V

IN

)

Switch Driver

Ref

Voltage

Control

Logic

Polarity Control

S

1

I/O

Timer

Counter

ROM

RAM

Microcomputer

A

B

CMPTR Out

V

SUPPLY

±

T

INT

TC510

V

INT

V

IN

 

≈ 

V

REF

V

IN

 

≈ 

1/2 V

REF

T

DEINT

+

R

INT

V

INT

+

Maker
Microchip Technology Inc.