Non-Dimmable, Off-Line, LED Driver with Low Total Harmonic Distortions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

 2016 Microchip Technology Inc.

DS20005640A-page 

 

1

HV98100/HV98101

Features

• Good LED Current Regulation

- Better than 5% accuracy

• Valley Switching Buck-Boost Converter with 

Power Factor Correction (PFC)
- 0.97 Power Factor (typical)
- 5% Total Harmonic Distortion (THD) (typical)

• Uses a Standard Off-the-Shelf Inductor

- No auxiliary winding required

• Single Input Voltage Range

- HV98100: 110

  V

AC

 ±15%

- HV98101: 230

 

V

AC

 ±15%

• Supports 5W-15W Output Power
• Space-saving SOT-23-6L Package

Applications

• LED Lamps
• LED Lighting Fixtures

Description

The HV98100/HV98101 LED driver integrated circuit 
(IC) is an off-line, high-power factor, buck-boost 
controller targeted at general LED lighting products, 
such as LED lamps and LED lighting fixtures with a 
maximum power rating of about 15W.
Valley-switching buck-boost converters are preferred in 
off-line applications since they reduce switching losses. 

A typical solution is to pair a constant on-time control 

scheme with valley switching to achieve both a 
high-power factor and good efficiency. However, this 
control scheme results in a higher total harmonic distor-
tion, and the actual value is dependent on the input and 
output voltages. The HV98100/HV98101 uses a unique 
control scheme to achieve a high-power factor and low 
THD simultaneously under all line and load conditions, 
while maximizing efficiency utilizing valley switching. 
The average LED current is also controlled in a closed-
loop manner to achieve high LED accuracy.
Other unique features of the ICs are the bootstrap of
the IC supply voltage from the output, as well as the 
unique valley-sensing scheme that allows the use of a 
standard off-the-shelf inductor to minimize the overall 
system cost.

Applications with low-output voltage can be 

accommodated using a coupled inductor.

Package Types

4

1

2

3

6 GATE

CS

IND

GND

COMP

5 PV

DD

HV98100/HV98101

6-Lead SOT-23

See 

Table

 3-1

 for pin description.

Non-Dimmable, Off-Line, LED Driver with Low Total 

Harmonic Distortions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

HV98100/HV98101

DS20005640A-page 

 

2

 2016 Microchip Technology Inc.

Typical Application Circuit

HV98100/1

GT

GN

D

CS

IN

D

COMP

P

VDD

M

BBT

L

BBT

R

CS

D

BBT

LED

C

COMP

C

REC

D

PVDD

R

PVDD

C

O

C

PVDD

R

HV

D

HV

R

VD

D

VD

V

AC

Internal Block Diagram

Monos hot

COMP

S

R

Q

Q

GATE

P

VDD

P

VDD

Startup 
clock

V

al

ley

_

D

et

GT_ON

Gate

VDD

on

/VDD

of f

THD

 control

POR

GND

P

VDD

IND

Valley Detect

RE

F

GT

_

R

RES E T

Monos hot

Gate

RE

S

E

T

Gate

IN

DE

T

_

V

A

L

GATE

I_V O

f

sta rt

POR

FLT

I_VO

CS

CS_REF

Fault 

Pr otection

I_VO

FLT

Gate

Reg

ST RT_UP

Vton_ref

V_TON

POR

Max F req 
Clock

A

VDD

Gate

Gate

LEB

OCP_REF

OCP

OCP

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

 2016 Microchip Technology Inc.

DS20005640A-page 

 

3

HV98100/HV98101

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage PV

DD 

to GND .....................................................................................................................-0.3V to +20V

GATE

 

to GND.................................................................................................................................-0.3V to (PV

DD 

+0.5V)

CS, COMP, IND

 

to GND............................................................................................................................... -0.3V to 4.5V

Operating Junction Temperature.............................................................................................................-40°C to +125°C
Storage Temperature ..............................................................................................................................-65°C to +150°C
Power Dissipation at +25°C for 6L-SOT-23 .........................................................................................................800

 

mW

ESD Protection on all pins (HBM) ..............................................................................................................................2

  kV

ESD Protection on all pins (MM) ...............................................................................................................................175V
* Based on JEDEC JESD51 testing and reporting standards

Notice:

 Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is 

a stress rating only and functional operation of the device at those or any other conditions above those indicated in 
the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended 
periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 

Electrical Specifications

: Unless otherwise specified, all specifications are for T

A

 =

  T

J

 =

  +25°C, PV

DD

 =

  12V. Boldface 

specifications apply over the full temperature range T

A

 =

  T

J

 =

  -40°C to +125°C.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Power Supply (PV

DD

)

PV

DD 

Clamp Voltage

PV

DD,clamp

15.5

17

18.5

V

Current into PV

DD

 = 4.0

 

mA; 

C

GATE

 =

  500

 

pF; 

f

sw

 =

  100

 

kHz;

V

DD

 Start Voltage

V

DD,ON

14.5

16

17.5

V

GATE starts switching

V

DD

 Stop Voltage

V

DD,OFF

6.5

8

9.5

V

GATE stops switching

Current into clamp

I

DD,max

5

mA

Note

 

1

Current drawn by IC before start

I

DD,Q

200

μA

Measured at PV

DD

 =

  12V 

after PV

DD

 rises from 0V to 

12V

Current drawn by IC during operation

I

DD,OP

4.3

mA

C

GATE

 =

  500

 

pF; 

f

sw

 

=

  100

 

kHz; COMP

 

=

  3V; 

I_IND

SINK

 

=

  200

 

μA; 

I_IND

SOURCE

 =

  250

 

μA

Gate Driver
GATE Driver Sourcing Current

I

SOURCE

0.3

A

Note

 

2

Gate Driver Sinking Current

I

SINK

0.6

A

Note

 

2

Gate Rise Time (10%-90%)

T

RISE

45

ns

C

GATE

 =

  500

 

pF

Gate Fall Time (10%-90%)

T

FALL

23

ns

C

GATE

 =

  500

 

pF

Output Current Control
Internal Reference Voltage

CS

REF

194

204

214

mV

Note

 

2

OTA Offset Voltage

V

OFFSET

-7.5

7.5

mV

Note

 

2

Open Loop DC Gain

A

V

55

dB

1V

 COMP

 

 4V; Output 

open 

Note

 

1

Small Signal Transconductance

g

m

160

230

300

μA/V 1V

 COMP 4V; 

Note

 

1

Gain Bandwidth Product

GBW

0.16

0.24

MHz

CCOMP = 150

 

pF  

(

Note

 

2

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

HV98100/HV98101

DS20005640A-page 

 

4

 2016 Microchip Technology Inc.

R

ON

 of COMP Reset FET

R

COMP

300

400

500

Internal Clocks
Start-up Clock

F

start

6.25

10

15

kHz

 

Maximum Frequency Limit

F

max

217

320

480

kHz

Note

 

1

Valley Detect
Current into IND pin

I

IND

600

μA

Note

 

2

Voltage at IND pin

V

IND

3.87

4.3

4.73

V

I

IND

 =

  250

 

μA

Comparator Delay Time

T

delay

50

ns

Note

 

2

Control Circuit
Internal Timing Constant

K

T

1.25

μs

Internal Voltage for Timing

V

Tref

2

V

HV98100

2.5

V

HV98101

GATE On-time

T

ON

6.83

7.35

7.89

μs

HV98100 
Ext Clk = 50

 

kHz 

COMP = 2V

T

ON

6.11

6.7

7.05

μs

HV98101 
Ext CSlk = 50

 

kHz 

COMP = 2V

Protection
Over Voltage Protection Current 
Threshold

I

OVP

350

450

550

μA

GATE

 

=

  LOW

Over Current Protection Reference

OCP

REF

2.2

2.35

2.5

V

Over Current Protection Blanking Time

T

BLNKOCP

150

250

ns

Note

 

2

Detect time for Over Current Protection

T

DETOCP

150

250

ns

After TBLNKOCP (

Note

 

2

)

Over Current Comparator Delay

OCP

DLY

50

100

ns

100

 

mV overdrive (

Note

 

2

)

Note 1:

Obtained by Design and Characterization; not 100% tested in production.

2:

Design Guidance only.

TABLE 1-1:

TEMPERATURE SPECIFICATIONS

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Storage Temperature

T

A

-65

 +150

°C

Operating Junction Temperature

T

J

-40

 +125

°C

Thermal Package Resistance
Thermal Resistance, 6L-SOT-23

JA

124

°C/W

JC

74

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications

: Unless otherwise specified, all specifications are for T

A

 =

  T

J

 =

 +25°C, 

PV

DD

 =

 12V. 

Boldface 

specifications apply over the full temperature range T

A

 =

  T

J

 =

  -40°C to +125°C.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

 2016 Microchip Technology Inc.

DS20005640A-page 

 

5

HV98100/HV98101

2.0

TYPICAL OPERATING CURVES

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: 

Unless otherwise indicated, T

A

 =

  T

J

 =

  +25°C, PV

DD

 =

  12V. Boldface specifications apply over the full temperature 

range T

A

 =

  T

J

 =

  -40°C to +125°C.

15.6

15.65

15.7

15.75

15.8

15.85

15.9

15.95

16

16.05

16.1

-55 -35 -15

5

25

45

65

85 105 125

V

DD,ON

 (V) 

Temperature (°C) 

FIGURE 2-1:

V

DD

 Start Voltage vs. 

Junction Temperature.

7.9

7.95

8

8.05

8.1

-55 -35 -15

5

25

45

65

85

105 125

V

DD,ON

 (V) 

Temperature (°C) 

FIGURE 2-2:

V

DD

 Stop Voltage vs. 

Junction Temperature.

199

199.5

200

200.5

201

-55 -35 -15

5

25

45

65

85 105 125

CS

REF

 (mV) 

Temperature (°C) 

FIGURE 2-3:

Internal Reference Voltage 

vs. Junction Temperature.

430

435

440

445

450

455

460

-55 -35 -15

5

25

45

65

85

105 125

I

OVP

 (uA) 

Temperature (°C) 

FIGURE 2-4:

Over Voltage Protection 

Current Threshold vs. Junction Temperature.

2.37

2.38

2.39

2.4

-55 -35 -15

5

25

45

65

85 105 125

OCP

REF

 (V) 

Temperature (°C) 

FIGURE 2-5:

Over Current Protection 

Reference vs. Junction Temperature.

0

5

10

15

20

25

30

35

40

45

50

7

7.5

8

8.5

9

9.5 10 10.5 11 11.5 12

%

 of 

Units

 

F

START

 (kHz) 

FIGURE 2-6:

Startup Clock Frequency 

Histogram.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

0

10

20

30

40

50

60

70

80

125 135 145 155 165 175 185 195 205

%

 of 

Units 

I

DD,Q

 (uA) 

HV98100/HV98101

DS20005640A-page 

 

6

 2016 Microchip Technology Inc.

FIGURE 2-7:

Quiescent Current 

Histogram.

0

10

20

30

40

50

60

90 92 94 96 98 100 102 104 106 108 110

%

 of 

Units 

Output Current (mA) 

FIGURE 2-8:

Output Current Accuracy in 

Application.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

 2016 Microchip Technology Inc.

DS20005640A-page 

 

7

HV98100/HV98101

3.0

PIN DESCRIPTION

The description of the pins are listed in 

Table

 

3-1

.

TABLE 3-1:

PIN DESCRIPTION

 

HV98100/HV98101

 SOT-23

Symbol

Description

1

IND

Input from LED String Anode for both valley detection and over-voltage protection 
Pin

2

GND

Common connection for all circuits Pin

3

COMP

Loop compensation for stable response Pin

4

CS 

Current sense input for sensing inductor current Pin

5

PV

DD

Supply Voltage for the IC Pin

6

GATE

Gate driver for driving the external MOSFET Pin

3.1

IND

This pin is used for detecting the valley, as well as for 
over-voltage protection. The voltage at pin is main-
tained at approximately 4.3V.

 

When the switching FET 

is off, current is sourced out of this pin. If this current 
exceeds 450

 

μA, then

 

over voltage is detected and the 

IC shuts down. This current sourced out of the pin is 
also used to detect the valley, using a patented method.
For proper operation, the IND pin should be shielded to 
prevent mis-triggering due to the large voltage slew 
rates present in application. A recommended layout is 
shown in 

Figure

 

3-1

.

FIGURE 3-1:

Shielding the IND Pin.

3.2

Power Ground Pin (GND)

This is the ground pin of the IC. The V

DD

 capacitor and 

COMP network should be connected to this pin and the 
GND pin should be connected to the sense resistor, as 
shown in the 

Typical Application Circuit

 for proper 

functioning of the IC. 

Figure

 

3-2

 shows a 

recommended layout. Red traces in the layout are on 
the top layer, whereas blue traces on the layout are on 
the bottom layer.

FIGURE 3-2:

Connection to the GND Pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

HV98100/HV98101

DS20005640A-page 

 

8

 2016 Microchip Technology Inc.

3.3

COMP

This pin is the output of the internal transconductance 
amplifier. A compensation network connected between 
COMP and GND pins is used to stabilize the closed 
loop control of the LED current.

3.4

CS

This pin is used to sense the inductor current. The 
inductor current information is used to derive the output 
LED current, as well as to protect the inductor from 
saturation.

3.5

PV

DD

This pin is the power supply pin for the IC. A minimum 
of 4.7

 

μF capacitor needs to be connected between 

PV

DD

 and GND for stability of the internal shunt regu-

lator. The C

PVDD

 capacitor needs to be placed physi-

cally close to the IC to minimize the trace length 
between the PV

DD

 pin and the capacitor.

3.6

GATE

This pin is the gate drive output of the IC and is used to 
control the switching of the external FET.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

 2016 Microchip Technology Inc.

DS20005640A-page 

 

9

HV98100/HV98101

4.0

FUNCTIONAL DESCRIPTION

4.1

Introduction

The HV98100/HV98101 control ICs provide constant 
average LED current for LED lamps and fixtures with a 
single-stage, valley-switching, buck-boost power- 
supply topology.
The IC is targeted at designs at a single-line voltage,
such as 110

  V

AC

 (HV98100) or 230

 

V

AC

 (HV98101) 

and does not support designs for universal input volt-
age range.

4.2

Principle of Operation

The IC adopts a novel control mechanism to vary both 
on-time and switching period at the same instant over 
the line cycle in a way that forces the average input cur-
rent to be proportional to the input voltage, realizing 
high-power factor and low THD which is independent of 
the load voltage (V

O

) (unlike a constant on-time control 

where the THD is dependent on the LED string volt-
age).
In order to determine the LED current regulation, power 
balancing is used to maintain the mean programmable 
LED current (I

O

) in a closed-loop manner by means of 

the adaptive V

COMP 

swing upon the defined input/out-

put voltage variation, as shown in 

Equation

 

4-1

.

EQUATION 4-1:

I

O

V

2

in,rms

K

T

V

COMP

V

O

---------------------------------------------------------------

=

Assume a V

COMP

 variation from 1.2V to 3.8V, an input 

voltage (V

IN,rms

) variation of ±15% and the internal tim-

ing constant (K

T

) variation of ±12%. With these 

assumptions, the maximum variation in the LED string 
voltage (to maintain constant LED current) cannot 
exceed ±18% approximately.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005640A-html.html
background image

HV98100/HV98101

DS20005640A-page 

 10

 2016 Microchip Technology Inc.

5.0

APPLICATION INFORMATION

5.1

Introduction

This section describes the operation of the various 
blocks in the IC. Detailed design information, along with 
a design example, is provided in 

Section

 

6.0 “Design 

Example”

.

5.2

PV

DD

 Regulator

The supply current is initially fed from the rectified AC 
input directly via an external start-up resistor (R

HV

) to

peak charge a hold-up capacitor (C

PVDD

) connected at 

this pin. Note that a switching diode (D

HV

) is required in 

series to prevent the capacitor from discharging when 
the buck-boost converter FET (M

BBT

) turns on. As the 

voltage on the V

DD

 capacitor increases, the IC is held 

in a Stand-by mode and draws minimum current 
(200

 

μA max.). Once the voltage at V

DD

 reaches 

V

DD,ON

, the IC turns on and starts switching at an inter-

nally fixed switching frequency of 10

  kHz, until the val-

ley can be detected. Once the valley is detected, the 
converter starts working in the normal Valley-Switching 
mode

 

and tries to regulate the LED current. In this 

mode, the current drawn by the IC from V

DD

 increases 

causing the voltage across the V

DD

 capacitor to start 

dropping (since the current supplied by the external 
start-up resistor is not sufficient).
If the V

DD

 voltage drops below V

DD,OFF

, the IC enters 

into Stand-by mode and the process starts again. If the 
bootstrap from the output capacitor (C

O

) is available to 

prevent the V

DD

 voltage from going below V

DD,OFF

then the LED driver operates normally. In this way, as 
shown in 

Figure

 

5-1

, the PV

DD 

voltage bounces 

between V

DD,ON 

and V

DD,OFF

 within a hysteresis band 

for the IC to start GATE switching, until the energy 
stored in the output capacitor can be partially delivered 
to PV

DD

 through the bootstrapping resistor-diode net-

work (R

PVDD

-D

PVDD

).

V

DDON

V

IN

P

VDD

0

0

GT

V

DDOF F

0

V

O

0

FIGURE 5-1:

Typical Startup Waveforms.

The IC includes an internal V

DD

 clamp circuit. The 

clamp limits the voltage on the V

DD

 supply pin to the 

maximum value (PV

DD,clamp

). If the maximum current 

supplied through the external resistors minus the cur-
rent consumption of the IC is lower than the maximum 
value that the Zener clamp can sustain (I

DD,MAX

), no 

external Zener diode is required. 

5.3

LED Current Regulator

The LED current (I

O

) is sensed directly using an exter-

nal sense resistor R

CS

 and compared to an internal 

fixed reference (CS

REF

). An internal transconductance 

amplifier is used to close the loop on the LED current 
with an external compensation capacitor. The LED cur-
rent can be programmed as in 

Equation

 

5-1

.

EQUATION 5-1:

I

LED

CS

REF

R

CS

--------------------

=

5.4

Valley Switching

The driver incorporates valley switching (quasi-reso-
nant switching), a technique for reducing switching loss 
at the turn-on event of the buck-boost converter FET. 
Valley detect is accomplished by sensing the current 
sunk into the IND pin when the GATE is low. The oper-
ation is illustrated in 

Figure

 

5-2

. When the inductor cur-

rent I

L

 has decreased to zero at t

2

, the positive LED 

voltage V

L

 starts to oscillate around the 0V level (with 

respect to the IC GND), with an amplitude V

O

. The 

GATE turns on again when the first lowest level (valley) 
is detected.

+Vo

-V

IN

Gate

V

L

0

0

0

magne tization

I

L

demag netization

valley

t

0

T

on

t

1

t

2

t

00

T

S

3

T

off

I

L,max

FIGURE 5-2:

Valley Detect Waveforms.

However, in case the valley is not detected (during 
startup, output short circuit and input voltage zero 
crossings), a 10

  kHz internal clock is used to start the 

next cycle.

Maker
Microchip Technology Inc.
Datasheet PDF Download