MTS62C19A Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

 2010-2013 Microchip Technology Inc.

DS22260C-page 1

Features

• 750 mA Continuous Output Current

• Load Voltage Supply: 10V to 40V 

• Full Bipolar Stepper Motor Drive Capability

• Bidirectional DC Motor Capability

• Internal Fixed T

OFF

 Time PWM Current Control

• Internal Protection Diodes

• Internal Thermal Shutdown

• Under Voltage Lockout

• LS-TTL Compatible Logic Inputs with Pull-Up 

Resistors

• Low  R

ON

 Output Resistance

• Low Quiescent Current

• Operating Temperature Range: -40°C to +105°C

• Pin Compatible with Allegro 6219

Applications

• Stepper Motor Actuators

• DC Motor Actuators

• Automotive HVAC Ventilation

• Automotive Power Seats

Description

The MTS62C19A motor driver is a CMOS device capa-
ble of driving both windings of a bipolar stepper motor
or bidirectionally control two DC motors. Each of the
two independent H-bridge outputs is capable of sus-
taining 40V and delivering up to 750 mA of continuous
current. The output current level is controlled by an
internal pulse-width modulation (PWM) circuit that is
configured using two logic inputs, a current sense
resistor, and a selectable reference voltage. The
H-bridge outputs have been optimized to provide a low
output saturation voltage drop.

Full, half and micro-stepping operations are possible
with the PWM current control and logic inputs. The
maximum output current is set by a sensing resistor
and a user-selectable reference voltage. The output
current limit is selected using two logic level inputs. The
selectable output current limits are 0%, 33%, 67% or
100% of the maximum output current. Each bridge has
a PHASE input signal which is used to control the
direction of current flow through the H-bridge and the
load.

The H-bridge power stage is controlled by non-overlap-
ping signals which prevent current cross conduction
when switching the direction of the current flow. Internal
clamp diodes protect against inductive transients.
Thermal protection circuitry disables the outputs when
the junction temperature exceeds the safe operating
limit. No special power-up sequencing is required.
Undervoltage Lockout circuitry prevents the chip from
operating when the load supply is applied prior to the
logic supply.

The device is supplied in a 24-pin SOP Package.

Package Types

Note:

The MTS62C19A device is formerly a
product of Advanced Silicon.

GND

1

2

3

4

24

23

22

21

20

19

18

17

5

6

7

8

I01

V

LOAD

OUT1A

OUT2A

SENSE2

COMPIN2

OUT2B

GND

16

9

V

REF1

I11

PHASE1

GND

GND

I02

SENSE1

15

10

I12

PHASE2

OUT1B

COMPIN1

MTS62C19A

SOP-24

V

REF2

RC2

RC1

V

LOGIC

11

12

14

13

Dual Full-Bridge Motor Driver

MTS62C19A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

MTS62C19A

DS22260C-page 2

 2010-2013 Microchip Technology Inc.

Functional Block Diagram

V

LOGIC

Logic

Shift

Drivers

Power
Bridge

Power
Bridge

Shift

Drivers

Thermal

Shutdown

One-shot

Logic

Current

Sense

Comparator

Current

Sense

Comparator

One-shot

Under-V

Lockout

COMPIN1

COMPIN2

RC2

RC1

GND

SENSE1

SENSE2

OUT2B

OUT2A

OUT1B

OUT1A

V

LOAD

V

REF1

V

REF2

PHASE1

PHASE2

I01

I11

I02

I12

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

 2010-2013 Microchip Technology Inc.

DS22260C-page 3

MTS62C19A

Typical Application

5V

V

LOGIC

V

LOAD

10 to 30V

V

REF1

V

REF2

100 nF

PHASE1

PHASE2

I01

I11

I02

I12

100 nF

100 µF

Logic

Logic

Current

Sense

Comparator

Current

Sense

Comparator

M

One-shot

One-shot

Under-V

Lockout

Thermal

Shutdown

Shift

Drivers

Shift

Drivers

OUT1A

OUT1B

OUT2A

OUT2B

COMPIN1

COMPIN2

RC2

RC1

GND

SENSE1

SENSE2

R

S

R

S

C

t

R

t

R

t

R

C

R

C

C

t

C

C

C

C

Logic/

µP

Power
Bridge

Power
Bridge

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

MTS62C19A

DS22260C-page 4

 2010-2013 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Logic Supply Voltage (V

LOGIC

)

 

.........................  -0.3 to +5.5V

Load Supply Voltage (V

LOAD

) .......................... -0.3 to +40.0V

Logic Input Voltage Range (V

IN

)  ....... -0.3 to VLOGIC + 0.3V

V

REF

 Voltage Range (V

REF

) ............................. -0.3 to +10.0V

Output Current (Peak) ..................................................... ±1A
Output Current (Continuous)  ...................................... ±0.75A
Sense Output Voltage  ......................................  -0.3V to 1.5V
Junction Temperature (T

J

).............................-40°C to +150°C

Operating Temperature Range (T

OPR

)..........-40°C to +105°C

Storage Temperature Range (T

STG

) .............-55°C to +150°C

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for V

LOGIC

= 4.5V to 5.5V,

V

LOAD

= 30V,V

REF

= 5V,  T

A

= +25°C

Parameters

Sym

Min

Typ

Max

Units

Conditions

DC Characteristics

Logic Supply Voltage

V

LOGIC

4.5

5.0

5.5

V

Load Supply Voltage

V

LOAD

10

30

40

V

Logic Supply Current

I

VLOGIC

0.8

1.0

mA

V

REF

 Voltage Range

V

REF

1.5

5.0

7.0

V

Driver Supply Current

I

VLOAD_ON

0.55

1.0

mA

Both Bridges ON, No Load

I

VLOAD_OFF

0.55

1.0

mA

Both Bridges Off

Control Logic 
Input Current (V

IN

 = 0V)

I

IN

-70

µA

I01, I11, I02, I12, PHASE1,
PHASE2, (

Note 1

)

Logic-Low 
Input Voltage

V

IL

0.8

V

I01, I11, I02, I12, PHASE1,
PHASE2

Logic-High 
Input Voltage

V

IH

2.4

V

I01, I11, I02, I12, PHASE1,
PHASE2

Current Limit Threshold 
Ratio (V

REF 

÷ V

SENSE

)

V

REF

_V

SENSE

9.5

10

10.5

I0 = L, I1 = L

13.5

15

16.5

I0 = H, I1 = L

25.5

30

34.5

I0 = L, I1 = H

Driver Output Satura-
tion Voltage V

CE(SAT)

V

ONN

(Low Side)

0.55

0.65

V

(Sink) I

OUT

 = +500 mA

0.90

1.00

V

(Sink) I

OUT

 = +750 mA

V

ONP

(High Side)

1.05

1.40

V

(Source) I

OUT

 = -500 mA

1.85

2.10

V

(Source) I

OUT

 = -750 mA

Clamp Diode Forward 
Voltage (

Note 2

)

V

F_NDIODE

0.95

1.30

V

I

F

 = 750 mA

V

F_PDIODE

1.00

1.30

V

I

F

 = 750 mA

Driver Output 
Leakage Current

I

LEAK

-50

µA

V

OUT

 = 0V

50

µA

V

OUT

 = V

LOAD

Thermal Shutdown 
Temperature

T

J_SHDN

170

°C

AC Characteristics

Cut-off Time 
(one-shot pulse)

T

OFF

50

58

µs

R

s

= 1

, R

C

= 1 k

, C

C

= 820 pF, 

R

t

= 56 k

, C

t

= 820 pF

Turn-off Delay

T

D

1.5

10

µs

Note

1:

V

IN

 = 5.0V input current given by internal pull-up to Logic Supply.

2:

Clamp/Freewheel diode is the intrinsic body-drain diode of the NMOS and PMOS transistors.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

 2010-2013 Microchip Technology Inc.

DS22260C-page 5

MTS62C19A

TEMPERATURE SPECIFICATIONS

Parameters

Sym

Min

Typ

Max

Units

Conditions

Recommended Temperature Ranges

Junction Temperature Range

T

J

-40

+125

°C

Operating Temperature Range

T

A

-40

+105

°C

Thermal Package Resistance

Thermal Resistance, SOP-24

JA

76

°C/W

EIA/JEDEC JESD51-10

Thermal Resistance, SOP-24

JC

16

°C/W

EIA/JEDEC JESD51-10

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

MTS62C19A

DS22260C-page 6

 2010-2013 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

MTS62C19A PIN FUNCTION TABLE

Pin No.

SOP-24

Type

Name

Function

1

Output

OUT1A

Output 1 ‘A’ Side of Motor Winding

2

Output

OUT2A

Output 2 ‘A’ Side of Motor Winding

3

Input

SENSE2

Current Sense for Output 2

4

Input

COMPIN2

Current Sense Comparator Input for Output 2

5

Output

OUT2B

Output 2 ‘B’ Side of Motor Winding

6

Power

GND

Negative Logic Supply (Ground)

7

Power

GND

Negative Logic Supply (Ground)

8

Input

I02

Output 2 Current Selection Bit 0

9

Input

I12

Output 2 Current Selection Bit 1

10

Input

PHASE2

Output 2 Phase

11

Input

V

REF2

Output 2 Current Reference

12

Input

RC2

Output 2 RC Time Constant

13

Power

V

LOGIC

Positive Logic Supply Voltage

14

Input

RC1

Output 1 RC Time Constant

15

Input

V

REF1

Output 1 Current Reference

16

Input

PHASE1

Output 1 Phase

17

Input

I11

Output 1 Current Selection Bit 1

18

Power

GND

Negative Logic Supply (Ground)

19

Power

GND

Negative Logic Supply (Ground)

20

Input

I01

Output 1 Current Selection Bit 0

21

Output

OUT1B

Output 1 ‘B’ Side of Motor Winding

22

Input

COMPIN1

Current Sense Comparator Input for Output 1

23

Input

SENSE1

Current Sense for Output 1

24

Power

V

LOAD

Positive Load Supply Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

 2010-2013 Microchip Technology Inc.

DS22260C-page 7

MTS62C19A

2.1

Output Stage (OUT1A, OUT2A, 
OUT1B, OUT2B)

Output connection to “A” side and “B” side of motor
windings.

2.2

Current Sense Input (SENSE1, 
SENSE2)

Connection to lower sources of output stage for
insertion of current sense resistor.

2.3

Current Sense Comparator Input 
(COMPIN1, COMPIN2)

Current sense comparator input.

2.4

Ground Terminal (GND)

Logic supply ground. Only the driver current flows out
of this pin; there is no high current. Minimize voltage
drops between this pin and the logic inputs.

2.5

Current Detection Selection 
(I01, I02, I11, I12)

Comparator input for current threshold detection. The
voltage across the sense resistor is fed back to this
input through the low-pass filter R

c

C

c

. The power tran-

sistors are disabled when the sense voltage exceeds
the reference voltage of the selected comparator.
When this occurs, the current decays for a time set by
R

t

C

t

 (T

OFF

 = 1.1 R

t

C

t

).

2.6

Current Flow Direction Selection 
(PHASE1, PHASE2)

Logic input to select the direction of the current flow
through the load. A “HIGH” logic signal level causes
load current to flow from OUTxA to OUTxB. A “LOW”
logic level causes load current to flow from OUTxB to
OUTxA.

2.7

Current Sense Reference 
(V

REF1

, V

REF2

)

Reference voltage for current sense comparator.
Determines the level of output current detection
together with sensing resistor and inputs I0x, I1x.

2.8

Output Stage OFF Time 
(RC1, RC2)

A parallel R

t

C

t

 network connected to this pin sets the

OFF time of the power transistors. The monostable
pulse generator is triggered by the output of the current
sense comparator.

2.9

Logic Supply Voltage (V

LOGIC

)

Connect V

LOGIC

 to the logic source voltage. Decouple

the supply with a 0.1 µF ceramic capacitor mounted
close to the V

LOGIC

 and GND terminals.

2.10

Load Supply Voltage (V

LOAD

)

Connect V

LOAD

 to the motor positive voltage supply.

The motor current is supplied through this pin and the
selected output transistors.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

MTS62C19A

DS22260C-page 8

 2010-2013 Microchip Technology Inc.

3.0

FUNCTIONAL DESCRIPTION

The circuit is designed to drive the two windings of a
bipolar stepper motor, and can be divided in two identi-
cal channels (channel 1 and channel 2) and protection
circuitry for overtemperature and undervoltage. The
functionality of a channel and protection circuitry is
presented in the following sections.

3.1

Power Bridge Operation

Each motor winding is driven by an H-type bridge
consisting of two N and two P transistors that allow the
current to flow in both winding directions depending on
the value of the PHASE signal (

Table 3-1

). The

H-bridge can be set in five configurations that are
related to the digital inputs PHASE, I0 and I1 and to the
current sensed. These configurations are shown in

Table 3-2

.

FIGURE 3-1:

Power Bridge Control (PHASE = H/forward).

Legend: a) Bridge ON, b) Source OFF, c) All OFF/Coasting

Note: For PHASE = L/Reverse, invert A and B in drawings.

V

LOAD

Pb

Pa

H

H

L

L

Nb

Na

SENSE

OUTA

OUTB

V

LOAD

Pb

Pa

H

H

L

L

Nb

Na

SENSE

OUTA

OUTB

V

LOAD

Pb

Pa

H

H

L

L

Nb

Na

SENSE

OUTA

OUTB

R

S

R

S

R

S

a)

b)

c)

TABLE 3-1:

CURRENT DIRECTION CONTROL

Phase

Output Current

L

Current flows from OUTxB to OUTxA

H

Current flows from OUTxA to OUTxB

TABLE 3-2:

POWER BRIDGE GATE CONTROL TRUTH TABLE

I0I1

PHASE

Overi

T

OFF

Case/Mode

gna

gpa

gnb

gpb

00/01/10

1

0

0

Forward ON

L

L

H

H

00/01/10

1

x

1

Forward OFF

L

H

H

H

00/01/10

0

0

0

Reverse ON

H

H

L

L

00/01/10

0

x

1

Reverse OFF

H

H

L

H

11

x

x

x

No Current/

Coasting

L

H

L

H

Legend: Bold = Active MOS Transistors, Overi = Overcurrent flag, T

OFF

 = Channel T

OFF

 State Flag

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

 2010-2013 Microchip Technology Inc.

DS22260C-page 9

MTS62C19A

3.2

PWM Current Control

The current level in each motor winding is controlled by
a PWM circuit with a fixed T

OFF

 time. The load current

flowing in the winding is sensed through an external
sensing resistor R

S

, connected between the power

bridge's source pin SENSE (sources of transistors Na
and Nb) and GND.

FIGURE 3-2:

PWM Current Control Circuit Principle (Channel 1 Shown).

The voltage across R

S

 is compared to a fraction of the

reference voltage V

REF

, chosen with the logic input bits

I0 and I1 (

Table 3-3

). The power bridge, and thus the

load current, can also be switched off completely when
both logic inputs are high. Note that any logic input left
unconnected will be treated as a high level (pull-up
resistor).

The maximum trip current for regulation, given for
I0 I1 = 00 is calculated in 

Equation 3-1

.

EQUATION 3-1:

V

LOAD

SENSE

V

REF

I0

I1

COMPIN

C

C

R

C

C

t

R

t

R

S

RC

÷10

One-Shot

Source
Disable

Power
Bridge

Pa

Pb

Na

Nb

OUTA

OUTB

I

MAX

V

REF

10

R

S

------------------

=

TABLE 3-3:

CURRENT LEVEL CONTROL TRUTH TABLE

I0

I1

Comp. Trip Voltage

Output Current

0

0

V

TRIP

 = 1/10 x V

REF

I

MAX

 = V

REF

/10R

S

1

0

V

TRIP

 = 1/15 x V

REF

2/3 x I

MAX

 = V

REF

/15R

S

0

1

V

TRIP

 = 1/30 x V

REF

1/3 x I

MAX

 = V

REF

/30R

S

1

1

x

0 (no current)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22260C-html.html
background image

MTS62C19A

DS22260C-page 10

 2010-2013 Microchip Technology Inc.

When the maximum allowed current is reached, the
bridge source is turned off during a fixed period T

OFF

(typically 50 µs) given by a non-retriggerable pulse
generator and the external timing components R

t

(20k – 100 k

 range) and C

t

 (100 pF – 1000 pF

range):

EQUATION 3-2:

During T

OFF

 the winding current decreases. When the

driver is re-enabled, the winding current increases
again until it reaches the threshold, and the cycle
repeats itself, maintaining the load current at the
desired level.

FIGURE 3-3:

PWM Output Current 

Waveform.

3.3

Circuit Protection

A thermal protection circuitry turns off all drivers when
the junction temperature exceeds a safe operating limit
of +170°C (typical). This protects the devices from
failure due to excessive heating. Despite this thermal
protection, output short circuits are not permitted. The
output drivers are re-enabled once junction
temperature has dropped below +145°C (typical).

FIGURE 3-4:

Thermal Shutdown Output 

vs. Temperature Showing Hysteresis.

An undervoltage lockout circuit protects the
MTS62C19A from potential shoot-through currents
when the load supply voltage is applied prior to the
logic supply voltage. The power bridge and all outputs
are disabled if V

LOGIC

 is smaller than 4V.

With this protection feature, the circuit will withstand
any order of turn-on or turn-off of the supply voltages
V

LOGIC

 and V

LOAD.

 Normal dV/dt values are assumed.

T

OFF

1.1

R

t

C

t

=

 

PHASE

I

OUT

+
0

-

I

OUT

t

off

t

d

t

on

1

0

+170°C

+145°C

thshtd_en

Maker
Microchip Technology Inc.
Datasheet PDF Download