Microsoft Word - 5277DS-JL-Sep 3 09.doc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 
 
 
 

 

 

 

Features 

•  Companion Chip to CryptoRF

®

 and CryptoMemory

®

 

⎯  Securely implements host algorithms 

⎯  Securely stores host secrets 
⎯  Verifies Host Firmware Digests 

•  High Security Features in Hardware 

⎯  CryptoMemory and CryptoRF F2 Algorithm 

⎯  SHA-1 Standard Cryptographic Algorithm 
⎯  64-bit Mutual Authentication Protocol (Under License of ELVA) 
⎯  Permanently Coded Serial Numbers 
⎯  High Quality Random Number Generator (RNG) 
⎯  Metal Shield Over Memory 
⎯  Data Scrambling in Nonvolatile Memory 
⎯  Delay Penalties to prevent Systematic Attacks 
⎯  Reset Locking to prevent Illegal Power Cycling 
⎯  Voltage and Frequency Monitors 

•  Host-side Crypto Functions 

⎯  Authentication Challenge Generation 

⎯  Device Challenge Response 
⎯  Message Authentication Codes (MAC) Generation 
⎯  Data Encryption and Decryption 
⎯  Secure Authentication Key Management 

•  Secure Storage and Key Management 

⎯  Up to 16 sets of 64-bits Diversified Host Keys 

⎯  Eight Sets of Two 24-bit Passwords 
⎯  Secure and Custom Personalization 
⎯  Up to 232-Byte Read/Write Configurable User Data Area 

•  Nonvolatile Up Counters 

⎯  Four sets Unidirectional Counters 

⎯   6.4 Million Maximum Counts Per Counter 

•  Application Features 

⎯  Low Voltage Supply: 2.7V – 3.6V 

⎯  2-Wire Serial Interface (TWI, 5V Compatible) 
⎯  Standard 8-lead SOIC Plastic Package, Green compliant (exceeds RoHS) 

•  High Reliability 

⎯  Endurance 

: 100,000 Cycles 

⎯  Data Retention  : 10 years 
⎯  ESD Protection  : 3,000 V min. HBM 

 
 

 

CryptoCompanion

Chip for 
CryptoMemory and 
CryptoRF 

AT88SC018 
 
Summary 

5277DS–CryptoCompanion–9/09 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 

 

 

 

 

2

 CryptoCompanion

 Chip  

 

5277DS–CryptoCompanion–9/09 

1. Product 

Overview 

The CryptoCompanion™ Chip is designed as the mate to Atmel’s CryptoRF and CryptoMemory chips, collectively 
referred to in the remainder of this document as CRF. 

CryptoCompanion makes extensive use of the SHA-1 hash algorithm as specified in 

http://www.itl.nist.gov/fipspubs/fip180-1.htm

 and elsewhere. In this document, the nomenclature SHA-1(a, b, c) means 

to concatenate a, b & c in that order and then pad them to a block size of 64 bytes before computing the digest. 
CryptoCompanion generates SHA-1 digests of single round datasets at a time. 

1.1. General 

Operation 

The CRF chip contains secrets that must be known or derived by a host system in order to establish a trusted link 
between the two and permit communications to happen.  CryptoCompanion stores these secrets in an obscured way in 
nonvolatile memory and contains all the circuitry necessary to perform the authentication, password and 
encryption/decryption functions specified in the CRF datasheet. In this manner, the secrets do not ever need to be 
revealed. 

The general cryptographic strategy is as follows: 
•  Each CRF chip has a serial or identification number (ID) and authentication secret G

i

 stored in EEPROM. ID is 

freely readable while G

i

 can never be read and is unique for all tags. 

•  CryptoCompanion contains an EEPROM that holds a set of common secrets (F

n

). CryptoCompanion combines F

n

 

with ID and K

ID

 to compute a value of G that is expected to match that in the CRF chip. Specifically, G = SHA-1(F

n

ID, K

ID

• 

G is further diversified by the inclusion of a number (K

ID

) generated by the host system in a manner of its choosing. 

Typically, it will be the result of a cryptographic operation on the CRF ID value calculated using other data, secrets 
and/or algorithms external to CryptoCompanion. This permits scenarios that offer varying degrees of additional 
security. 

•  CryptoCompanion includes a general purpose cryptographic quality random number generator which is used to 

seed a mutual authentication process between CryptoCompanion and CRF. If the CRF confirms the 
CryptoCompanion challenge, and the CryptoCompanion confirms the CRF response, then the host system 
proceeds with CRF operations. In this way the host system may use the CRF without knowing the CRF's secrets 
directly. 

1.2. CryptoCompanion 

Benefits 

The following is a partial list of the benefits of using this chip versus storing the algorithms and secrets in standard 
FLASH system memory. 
•  Keep confidential those core secrets that are used to authenticate with and communicate to/from CRF.  

(Store them in EEPROM, use them on-chip) 

•  Flexible system implementation – multiple secrets and policies for different CRF locations within the system. 

Multiple manufacturer setup options. 

• 

Hardware encryption engines, avoids algorithm disclosure from reverse-compilation of system operating code. 

•  Full hardware security implementation makes it harder for an attacker (even with lab equipment) to get secrets 

stored on CryptoCompanion. 

• 

Global secrets are protected using strong security, standard algorithm (SHA-1). 

•  Robust random number generation avoids accidental replay for all cryptographic operations using the system, not 

just with respect to CRF. 

• 

Secure EEPROM storage for configuration information, etc. May permit reduction in the total BOM for the system. 

• 

Easy to use – little programming required; no knowledge of security algorithms or protocols, fast time to market. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

CryptoCompanion

 Chip 

 
 

 

 

 

 

3

 

5277DS–CryptoCompanion–9/09 

1.3. 

Package, Pin Definition & IO 

1.3.1. Pin 

Definition 

1.3.1.1. V

CC  

, Gnd 

Power supply is 2.7 – 3.6V. Supply current less than 5 mA.

 

CryptoCompanion will be available to accept commands 60 ms after the later of V

CC

 rising above 2.7V or Reset being 

driven high if CryptoCompanion is in a security delay then this interval is significantly longer. 

During Power Up, V

CC

 must exhibit a monotonic ramp at a minimum rate of 50 mV/mS until V

CC

 has crossed the 2.7V 

level. During Power Down, V

CC

 must exhibit a monotonic ramp at a minimum rate of 50 mV/mS once it has dropped 

below the 2.5V boundary.  CryptoCompanion does not support hot swapping or hot plugging. 

V

CC

 must be bypassed with high quality surface mount capacitors that are properly located on the board. Atmel 

recommends two capacitors connected in parallel having a value of 1

μF and 0.01μF. The capacitors should be 

manufactured using X5R or X7R dielectric material. These capacitors should be connected to CryptoCompanion using 
a total of no more than 1cm PC board traces. Atmel recommends the use of a ground plane and a trace length of less 
than 0.5cm between the capacitors and the V

CC

 pin. Failure to follow these recommendations may result in improper 

operation. 

1.3.1.2. SDA 

Two wire interface data pin, 5 V compatible. Minimum data setup time = 0.1 

μs, and minimum data hold time = 0 μs min. 

The system board must include an external pull-up resistor. 

1.3.1.3. SCL 

Two wire interface clock pin, 5 V compatible. Maximum SCL rate is 400KHz, minimum T

LOW

 = 1.2 

μs, minimum  

T

HIGH

 = 0.6 

μs. The system board must include an external pull-up resistor. 

1.3.1.4. Reset 

(RST) 

This active low input will reset all states within CryptoCompanion. Honored regardless of the state of PowerDown. 

1.3.1.5. PowerDown 

(PDN) 

When held low, the part operates normally. When held high the part will go to sleep and ignore all transitions on SDA 
and SCL, power consumption will drop to less than 10 

μA. There is a 50 ms delay between this pin falling and the first 

transition on SDA or SCL that will be accepted by the chip. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 

 

 

 

 

4

 CryptoCompanion

 Chip  

 

5277DS–CryptoCompanion–9/09 

1.3.2. Package 

CryptoCompanion is packaged in an 8 lead SOIC package with the following pin definition: 

Table  1.    8 lead SOIC package pin definition 

Pin Number 

Pin Name 

1 V

CC

 

5 Gnd 

7 SDA 

8 SCL 

4 RST 

3 PDN 

2,6 NC 

 

Pins 2 & 6 are not internally connected and should be connected to ground on the PC board. 

1.3.3. 

Connection Diagram  

Figure 1.     Connection Diagram 

 

2.7v - 5.5v

2.7v - 3.6v

SDA

SCL

Microprocessor

CryptoCompanion

 

 

1.3.4. Environmental 

CryptoCompanion is guaranteed to operate over the industrial temperature range of -40° to 85° C. ESD is rated at 3KV, 
Human Body Model.

 

1.3.5. 

TWI Input/Output Operation 

CryptoCompanion communicates to the system using a two wire interface (TWI), which is similar to SMBus. The chip 
operates as a slave and does not support clock stretching. This two wire protocol is identical to that supported by the 
Atmel AT24C16B serial EEPROM chips. Please see that datasheet on the Atmel web site for detailed timing and 
protocol information. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

CryptoCompanion

 Chip 

 
 

 

 

 

 

5

 

5277DS–CryptoCompanion–9/09 

The system processor is expected to properly format commands for CryptoCompanion (which may include information 
from the CRF chip), and then process the outputs of CryptoCompanion (which may include sending some of the 
outputs to the CRF chip). 

CryptoCompanion cannot directly communicate with CRF chips. Both CRF and CryptoCompanion are slave devices. 
The bus master may use one or two busses to communicate with them. Separate TWI addresses must be used if both 
chips are on the same bus. 

1.4. Memory 

Locking 

When this initialization is complete the Lock command should be executed which limits access to the memory per the 
restrictions listed later in this section. The system can determine the current lock value by using the 
ReadManufacturingID command to read out the ManufacturingID value (MfrID) and the lock byte. 

The table below describes the encoding of the least significant two bits of the Lock byte. On shipment from Atmel, 
Lock[1:0] will have a value of either 10 or 00, depending on the part number ordered. An AT88SC018 in either of these 
two states is considered ‘unlocked’. It is not possible to change from one of these unlocked states to the other. 

After the Lock command has been executed, the Lock byte will have the value 0xFF. Subsequent changes to the Lock 
byte are impossible. 

Table  2.    Memory Locking 

LockBit 1 

Lock Bit 0 (LSB) 

Meaning 

Locked. ReadMemory & WriteMemory enabled, subject to the restrictions in this 
section. WriteMemoryEncrypted and ReadMemoryDigest disabled. 

1 0 

Unlocked/Confidential. 

ReadMemoryDigest, WriteMemory and 

WriteMemoryEncrypted enabled. ReadMemory disabled. 

Unlocked. ReadMemory & WriteMemory enabled. WriteMemoryEncrypted and 
ReadMemoryDigest disabled. 

 

2. 

AC & DC Characteristics 

Table  3.    DC Characteristics 

(1)

 

Applicable over recommended operating range from V

CC

 = +2.7 to 3.6 V,  

T

AC

 = -40

C to 85

C (unless otherwise noted) 

 

 

 

 

Symbol 

Parameter 

Test Condition 

Min 

Typ 

Max 

Units 

V

CC

 

Supply Voltage 

  

2.7 

  

3.6 

I

CC

 

Supply Current  

400kHz 

  

  

mA 

I

SB

 Standby 

Current 

V

IN

 = V

CC

 or GND 

  

  

15 

μA 

V

IL

 

SDA Input Low Voltage 

  

-0.3 

  

V

CC

 x 0.3 

V

IL

 

CLK Input Low Voltage 

  

-0.3 

  

V

CC

 x 0.3 

V

IL

 

RST Input Low Voltage 

  

-0.3 

  

V

CC

 x 0.3 

V

IL

 

PDN Input Low Voltage 

  

-0.3 

  

V

CC

 x 0.3 

V

IH

 

SDA Input High Voltage 

  

V

CC

 x 0.7 

  

5.25 

V

IH

 

SCL Input High Voltage 

  

V

CC

 x 0.7 

  

5.25 

V

IH

 

RST Input High Voltage 

  

V

CC

 x 0.7 

  

5.25 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 

 

 

 

 

6

 CryptoCompanion

 Chip  

 

5277DS–CryptoCompanion–9/09 

V

IH

 

PDN Input High Voltage 

  

V

CC

 x 0.7 

  

5.25 

I

IL

 

SDA Input Low Current 

0 < V

IL 

< V

CC

 x 0.15 

-10  

  

10 

μA 

I

IL

 

SCL Input Low Current 

0 < V

IL 

< V

CC

 x 0.15 

 -10 

  

10 

μA 

I

IL

 

RST Input Low Current 

0 < V

IL 

< V

CC

 x 0.15 

 -10 

  

10 

μA 

I

IL

 

PDN Input Low Current 

0 < V

IL 

< V

CC

 x 0.15 

 -10 

  

10 

μA 

I

IH

 

SDA Input High Current 

V

CC

 x 0.7 < V

IH

 < V

CC

 

 -10 

  

10 

μA 

I

IH

 

SCL Input High Current 

V

CC

 x 0.7 < V

IH

 < V

CC

 

 -10 

  

10 

μA 

I

IH

 

RST Input High Current 

V

CC

 x 0.7 < V

IH

 < V

CC

 

 -10 

  

10 

μA 

I

IH

 

PDN Input High Current 

V

CC

 x 0.7 < V

IH

 < V

CC

 

 -10 

  

10 

μA 

V

OH

 

SDA Output High Voltage 

20k Ohm external 
Pull-up  

 

 

V

CC

 x 0.8 

V

OL

 

SDA Output Low Voltage 

I

OL

 = 1mA 

 

  

0.4 

Note:  1.  Typical values at 25° C.  Maximum values are characterized values and not test limits in production. 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

CryptoCompanion

 Chip 

 
 

 

 

 

 

7

 

5277DS–CryptoCompanion–9/09 

Table  4.    AC Characteristics 

(1)

 

Applicable over recommended operating range from V

CC

 = +2.7 to 3.6 V,  

T

AC

 = -40

C to 85

C, CL = 30pF (unless otherwise noted) 

Symbol 

Parameter 

Min 

Max 

Units 

f

CLK

 Clock 

Frequency 

400 

kHz 

  

Clock Duty cycle 

(2)

 40 

60 

t

R

 

Rise Time - SDA, RST, PDN 

(2)

  

 

300 

nS 

t

F

 

Fall Time - SDA, RST, PDN 

(2)

  

 

300 

nS 

t

R

 

Rise Time - SCL 

(2)

  

 

300 

nS 

t

F

 

Fall Time - SCL 

(2)

  

 

300 

nS 

t

AA

 

Clock Low to Data Out Valid 

  

900 

nS 

t

HD.STA

 

Start Hold Time 

600 

  

nS 

t

SU.STA

 

Start Set-up Time 

600 

  

nS 

t

HD.DAT

 

Data In Hold Time 

100 

  

nS 

t

SU.DAT

 

Data In Set-up Time 

100 

  

nS 

t

SU.STO

 

Stop Set-up Time 

600 

  

nS 

t

DH

 

Data Out Hold Time 

50 

900  

nS 

Note:  1.  Typical values at 25° C.  Maximum values are characterized values and not test limits in production. 
 

2.  This parameter is not tested.  Values are based on characterization and/or simulation data. 

Figure  2.   SCL: Serial Clock, SDA: Serial Data I/O® 

 

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 

 

 

 

 

8

 CryptoCompanion

 Chip  

 

5277DS–CryptoCompanion–9/09 

3. Ordering 

Codes 

Table  5.    Ordering Codes 

Ordering Code 

Package 

Voltage 

Range 

Memory Locking  

(see  

Section 1.4 for Lock Definitions)

 

Temperature Range 

AT88SC018-SU-CM

 

8S1 

2.7V – 3.6V 

00 (Unlocked) 

Green compliant (exceeds 
RoHS), Industrial (-40

C – 85

C), Bulk 

AT88SC018-SU-CM-T 

8S1 

2.7V – 3.6V 

00 (Unlocked) 

 Green compliant (exceeds 
RoHS), Industrial (-40

C – 85

C), Tape and Reel 

AT88SC018-SU-CN 

8S1 

2.7V – 3.6V 10 

(Unlocked/Confidential) 

 Green compliant (exceeds 
RoHS), Industrial (-40

C – 85

C), Bulk 

AT88SC018-SU-CN-T 

8S1 

2.7V – 3.6V 10 

(Unlocked/Confidential) 

 Green compliant (exceeds 
RoHS), Industrial (-40

C – 85

C), Tape and Reel 

Table  6.    Package Type 

Package Type 

Description 

8S1 

8-lead, 0.150” Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC) 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

CryptoCompanion

 Chip 

 
 

 

 

 

 

9

 

5277DS–CryptoCompanion–9/09 

4. Package 

Drawing 

Figure 3.     8S1 – SOIC 

 

 
 

 
 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/5277s-html.html
background image

 

 

 

 

 

10

 CryptoCompanion

 Chip  

 

5277DS–CryptoCompanion–9/09 

5. Revision 

History 

 

Doc. Rev. 

Date 

Comments 

5277DS 

09/2009 

Finalized AC & DC Charateristics.  Updated Counter information. 

5277CS 02/2009 

Document 

updated. 

5277BS 

12/2008 

Document updated.  

 

 

 

Maker
Microchip Technology Inc.
Datasheet PDF Download