MIC5331.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

 2017 Microchip Technology Inc.

DS20005874A-page 1

MIC5331

Features

• 2.3V to 5.5V Input Voltage Range
• 300 mA Output Current per LDO
• Low Quiescent Current: 25 µA per LDO
• High PSRR: >65 dB on Each LDO
• Stable with 1 µF Ceramic Output Capacitors
• Tiny 8-pin 2 mm x 2 mm Thin DFN Package
• Ultra-Low Dropout Voltage: 120 mV @ 300 mA
• Low Output Voltage Noise: 50 µV

RMS

• Thermal Shutdown Protection
• Current-Limit Protection

Applications

• Camera Phones
• Mobile Phones
• PDAs
• GPS Receivers
• Portable Devices

General Description

The MIC5331 is a tiny dual low quiescent current LDO
ideal for applications that are power sensitive. The
MIC5331 integrates two high performance, 300 mA
LDOs into a tiny 2 mm x 2 mm Thin DFN package,
which occupies less PC board area than a single
SOT-23 package.
The MIC5331 is designed to reject input noise and
provide low output noise with fast transient response to
any load change quickly even though it is a low
quiescent current part. This combination of PSRR, low
noise and transient response along with low power
consumption makes for a very high performance, yet
general purpose product.
The MIC5331 is a µCap design, operating with very
small ceramic output capacitors, which reduces
required board space and component cost; and it is
available in fixed output voltages in the tiny 8-pin 2 mm
x 2 mm Thin DFN lead-less package.

Package Type

MIC5331

8-Lead TDFN (MT)

1

VIN

GND

NC

EN2

8

VOUT1

VOUT2

NC

EN1

7

6

5

2

3

4

Micro-Power High Performance Dual 300 mA ULDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

MIC5331

DS20005874A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuit

Functional Block Diagram

MIC5331

TDFN-8

MIC5331-xxYMT

I/O

CORE

Camera DSP      

VIN

EN2

VOUT1

VOUT2

GND

EN1

1μF

VBAT

1μF

1μF

EN1

Reference

Enable

Thermal

Shutdown

LDO1

EN2

LDO2

VIN

VOUT1

VOUT2

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

 2017 Microchip Technology Inc.

DS20005874A-page 3

MIC5331

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V

IN

) ......................................................................................................................................... 0V to +6V

Enable Input Voltage (V

EN1

, V

EN2

) .....................................................................................................................0V to V

IN

Power Dissipation (P

D

Note 1

).............................................................................................................. Internally Limited

ESD Rating .............................................................................................................................................................

Note 2

Operating Ratings ‡

Supply Voltage (V

IN

) ................................................................................................................................. +2.3V to +5.5V

Enable Input Voltage (V

EN1

, V

EN2

) .....................................................................................................................0V to V

IN

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice:

 The device is not guaranteed to function outside its operating ratings.

Note 1:

The maximum allowable power dissipation of any T

A

 (ambient temperature) is P

D(max)

 = (T

J(max)

 – T

A

)/θ

JA

.

Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the reg-
ulator will go into thermal shutdown.

2:

Devices are ESD sensitive. Handling precautions recommended.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS

Electrical Characteristics:

 V

IN

 = V

EN1

 = V

EN2

 = V

OUT

 + 1.0V, higher of the two regulator outputs; I

OUT1

 = I

OUT2

 = 

100 µA; C

OUT1

 = C

OUT2

 = 1 µF; T

J

 = +25°C, bold values indicate –40°C ≤ T

J

 ≤ +125°C; unless noted. 

Note 1

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Voltage Accuracy

∆V

OUT

–1.0

1.0

%

Variation from nominal V

OUT

–2.0

2.0

%

Variation from nominal V

OUT

–40°C to +125°C

Line Regulation

∆V

OUT

/

(V

OUT

 x 

∆V

IN

)

0.02

0.3

%/V

V

IN

 = V

OUT

 +1V to 5.5V; 

I

OUT

 = 100 µA

0.6

Load Regulation

∆V

OUT

/

V

OUT

0.2

0.5

%

I

OUT

  =  100 µA  to  300 mA

Dropout Voltage

V

DO

20

40

mV

I

OUT

 = 50 mA

120

240

mV

I

OUT

 = 300 mA

Ground Current

I

GND

25

50

µA

V

EN1

 = High; V

EN2

 = Low; 

I

OUT

  =  100 µA  to  300 mA

25

50

µA

V

EN1

 = Low; V

EN2

 = High; 

I

OUT

  =  100 µA  to  300 mA

40

75

µA

V

EN1

 = V

EN2

 = High; 

I

OUT1

 = 300 mA, I

OUT2

 = 300 mA

Ground Current in Shutdown

I

SHDN

0.01

1.0

µA

V

EN1

 = V

EN2

 < 0.2V 

Ripple Rejection

PSRR

65

dB

f = 1 kHz; C

OUT

 = 2.2 µF

45

dB

f = 20 kHz; C

OUT

 = 2.2 µF

Current Limit

I

LIMIT

350

550

800

mA

V

OUT

 = 0V

Output Voltage Noise

e

N

50

µV

RMS

C

OUT

  =  1 µF;  10 Hz  to  100 kHz

Enable Inputs (EN1/EN2)

Enable Input Voltage

V

ENABLE

0.2

V

Logic Low

1.2

V

Logic High

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

MIC5331

DS20005874A-page 4

 2017 Microchip Technology Inc.

Enable Input Current

I

ENABLE

0.01

1.0

µA

V

IL

 ≤ 0.2V

0.01

1.0

µA

V

IH

 ≥ 1.2V

Turn-On Time

Turn-On Time (LDO1 and 2)

t

ON

140

500

µs

C

OUT

 = 1 µF (Enable of First LDO)

110

500

µs

C

OUT

 = 1 µF (Enable of Second 

LDO after First Enabled)

Note 1:

Specification for packaged product only.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 V

IN

 = V

EN1

 = V

EN2

 = V

OUT

 + 1.0V, higher of the two regulator outputs; I

OUT1

 = I

OUT2

 = 

100 µA; C

OUT1

 = C

OUT2

 = 1 µF; T

J

 = +25°C, bold values indicate –40°C ≤ T

J

 ≤ +125°C; unless noted. 

Note 1

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

 2017 Microchip Technology Inc.

DS20005874A-page 5

MIC5331

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Junction Operating Temperature 
Range

T

J

–40

+125

°C

Storage Temperature Range

T

S

–65

+150

°C

Lead Temperature

+260

°C

Soldering, 3s

Package Thermal Resistances
Thermal Resistance 2 mm x 2 mm 
TDFN 8-Ld

JA

90

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

MIC5331

DS20005874A-page 6

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Power Supply Rejection 

Ratio. 

FIGURE 2-2:

Power Supply Rejection 

Ratio.

FIGURE 2-3:

Dropout Voltage vs. Load 

Current.

FIGURE 2-4:

Dropout Voltage vs. 

Temperature.

FIGURE 2-5:

Ground Current vs. Supply 

Voltage.

FIGURE 2-6:

Ground Current vs. Load 

Current.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

dB

100

1K

10K

100K

1M

FREQUENCY (Hz)

50mA

300mA

V

IN

 = 2.3V

V

OUT

 = 1.2V

C

OUT

 = 2.2μF

10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

dB

100

1K

10K

100K

1M

FREQUENCY (Hz)

50mA

300mA

V

IN

 = 2.3V

V

OUT

 = 1.2V

C

OUT

 = 1μF

10

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

50

100 150 200 250 300

DROPOUT VOLTAGE (V)

LOAD CURRENT (mA)

V

OUT

 = 2.8V

C

OUT

 = 1μF

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

DROPOUT VOLTAGE (V)

TEMPERATURE (°C)

V

OUT

 = 2.8V

C

OUT

 = 1μF

-40 -20 0

20 40 60 80 100 120

100mA

10mA

50mA

300mA

20

22

24

26

28

30

32

34

36

38

40

2

2.5

3

3.5

4

4.5

5

5.5

SUPPLY VOLTAGE (V)

GROUND CURRENT (μA)

V

OUT1 

= 2.5V

V

OUT2

 = 1.2V

C

OUT1

 = 1μF

C

OUT2

 = 1μF

I

OUT1

 = 300mA

I

OUT2

 = 300mA

Dual LDO Enabled

Single LDO Enabled

25

27

29

31

33

35

37

39

41

0

50

100 150 200 250 300

LOAD CURRENT (mA)

GROUND CURRENT (μA)

V

IN 

= V

OUT 

+ 1V

V

OUT1 

= 2.5V

V

OUT2

 = 1.2V

C

OUT1

 = 1μF

C

OUT2

 = 1μF

Dual LDO Enabled

Single LDO Enabled

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

 2017 Microchip Technology Inc.

DS20005874A-page 7

MIC5331

FIGURE 2-7:

Ground Current vs. 

Temperature.

FIGURE 2-8:

Output Voltage vs. Load 

Current.

FIGURE 2-9:

Output Voltage vs. 

Temperature.

FIGURE 2-10:

Current Limit vs. Supply 

Voltage.

FIGURE 2-11:

Output Noise Spectral 

Density.

FIGURE 2-12:

Load Transient (0 mA – 

150 mA).

30

33

36

39

42

45

GROUND CURRENT (μA)

EN1 = EN2 = V

IN

V

IN 

= V

OUT

 + 1V

V

OUT

 = 2.8V

C

OUT

 = 1μF

100mA

300mA

10mA

TEMPERATURE (°C)

-40 -20 0

20 40 60 80 100 120

2.800

2.804

2.808

2.812

2.816

2.820

0

50

100 150 200 250 300

OUTPUT VOLTAGE (V)

LOAD CURRENT (mA)

V

IN 

= V

OUT +

 1V

V

OUT

 = 2.8V

C

OUT

 = 1μF

2.5

2.6

2.7

2.8

2.9

3.0

OUTPUT VOLTAGE (V)

V

IN 

= V

OUT

 + 1V

V

OUT

 = 2.8V

C

OUT

 = 1μF

TEMPERATURE (°C)

-40 -20 0

20 40 60 80 100 120

350

400

450

500

550

600

650

700

750

800

850

2

2.5

3

3.5

4

4.5

5

5.5

CURRENT LIMIT (mA)

SUPPLY VOLTAGE (V)

C

IN

 = 1μF

C

OUT

 = 1μF

0

0.2

0.4

0.6

0.8

1.2

1.0

10

1K

10K 100K

FREQUENCY (Hz)

100

1M

V

IN 

= V

OUT

 + 1V

V

OUT

 = 2.8V

C

OUT

 = 1μF

Load = 50mA

28738712,6(—9¥+]

OUTPUT

 CURRENT

(100mA/div)

LDO VOL

T

AGE

(50mV/div)

Time (100μs/div)

2.5V

0mA

150mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

MIC5331

DS20005874A-page 8

 2017 Microchip Technology Inc.

FIGURE 2-13:

Load Transient (150 mA – 

300 mA)

.

FIGURE 2-14:

Enable Turn-On

.

OUTPUT

 CURRENT

(100mA/div)

LDO VOL

T

AGE

(50mV/div)

Time (100μs/div)

2.5V

300mA

150mA

ENABLE

(2V/div)

LDO1/LDO2 VOL

T

AGE

(1V/div)

Time (40μs/div)

V

IN

 = V

EN1

 = V

EN2

 = V

OUT1

 + 1V

V

OUT1

 = 2.5V

V

OUT2

 = 1.2V

C

IN

 = 1μF

C

OUT1

 = C

OUT2

 = 1μF

LDO1

LDO2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

 2017 Microchip Technology Inc.

DS20005874A-page 9

MIC5331

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

Pin Name

Description

1

VIN

Supply Input.

2

GND

Ground.

3

NC

Not Internally Connected.

4

EN2

Enable Input (Regulator 2): Active-High Input. Logic-High = On; Logic-Low = Off. Do 
not leave floating.

5

EN1

Enable Input (Regulator 1): Active-High Input. Logic-High = On; Logic-Low = Off. Do 
not leave floating.

6

NC

Not Internally Connected.

7

VOUT2

Regulator Output: LDO2.

8

VOUT1

Regulator Output: LDO1.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005874A-html.html
background image

MIC5331

DS20005874A-page 10

 2017 Microchip Technology Inc.

4.0

APPLICATION INFORMATION

MIC5331 is a tiny, dual, low quiescent current, 300 mA
LDO. The MIC5331 regulator is fully protected from
damage due to fault conditions, offering linear current
limiting and thermal shutdown.

4.1

Input Capacitor

The MIC5331 is a high-performance, high bandwidth
device. Therefore, it requires a well-bypassed input
supply for optimal performance. A 1 µF capacitor is
required from the input to ground to provide stability.
Low-ESR ceramic capacitors provide optimal
performance at a minimum of space. Additional
high-frequency capacitors, such as small-valued NPO
dielectric-type capacitors, help filter out high-frequency
noise and are good practice in any RF-based circuit.
X5R or X7R dielectrics are recommended for the input
capacitor. Y5V dielectrics lose most of their
capacitance over temperature and are therefore, not
recommended.

4.2

Output Capacitor

The MIC5331 requires an output capacitor of 1 µF or
greater to maintain stability. The design is optimized for
use with low-ESR ceramic chip capacitors. High ESR
capacitors may cause high frequency oscillation. The
output capacitor can be increased, but performance
has been optimized for a 1 µF ceramic output capacitor
and does not improve significantly with larger
capacitance. 
X7R/X5R dielectric-type ceramic capacitors are
recommended because of their temperature
performance. X7R-type capacitors change capacitance
by 15% over their operating temperature range and are
the most stable type of ceramic capacitors. Z5U and
Y5V dielectric capacitors change value by as much as
50% and 60%, respectively, over their operating
temperature ranges. To use a ceramic chip capacitor
with Y5V dielectric, the value must be much higher than
an X7R ceramic capacitor to ensure the same
minimum capacitance over the equivalent operating
temperature range.

4.3

No-Load Stability

Unlike many other voltage regulators, the MIC5331 will
remain stable and in regulation with no load. This is
especially important in CMOS RAM keep-alive
applications.

4.4

Enable/Shutdown

The MIC5331 comes with dual active-high enable pins
that allow each regulator to be disabled independently.
Forcing the enable pin low disables the regulator and
sends it into a “zero” off-mode-current state. In this
state, current consumed by the regulator goes nearly to

zero. Forcing the enable pin high enables the output
voltage. The active-high enable pin uses CMOS
technology and the enable pin cannot be left floating; a
floating enable pin may cause an indeterminate state
on the output.

4.5

Thermal Considerations

The MIC5331 is designed to provide 300 mA of
continuous current for both outputs in a very small
package. Maximum ambient operating temperature
can be calculated based on the output current and the
voltage drop across the part. For example, if the input
voltage is 3.6V, the output voltage is 3.0V for V

OUT1

,

2.8V for V

OUT2

 and the output current equals 300 mA

for each output. The actual power dissipation of the
regulator circuit can be determined using 

Equation 4-1

:

EQUATION 4-1:

Because this device is CMOS and the ground current
is typically <100 µA over the load range, the power
dissipation contributed by the ground current is <1%
and can be ignored for this calculation.

EQUATION 4-2:

To determine the maximum ambient operating
temperature of the package, use the
junction-to-ambient thermal resistance of the device
and the following basic equation:

EQUATION 4-3:

P

D

V

IN

V

OUT1

 I

OUT1

V

IN

V

OUT2

 I

OUT2

V

IN

I

GND

+

+

=

P

D

3.6V

3.0V

 300mA

3.6V

2.8V

 300mA

+

0.42W

=

=

P

D MAX

T

J MAX

T

A

JA

--------------------------------

=

Where:

T

J(MAX)

= 125°C

θ

JA

= 90°C/W

Maker
Microchip Technology Inc.
Datasheet PDF Download