MD1820 High-Speed 4-Channel MOSFET Driver with Non-Inverting Outputs Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

 2017 Microchip Technology Inc.

DS20005767A-page  1

MD1820

Features

• Non-inverting, 4-channel MOSFET Driver
• 6 ns Rise and Fall Time 
• 2A Peak Output Source and Sink Currents
• 1.8V to 5V Input CMOS Compatible
• 5V to 10V Total Supply Voltage
• Smart Logic Threshold
• Low-jitter Design
• Four Matched Channels
• Drives Two P-channel and Two N-channel 

MOSFETs

• Outputs can Swing below Ground
• Low-inductance Quad Flat No-lead Package
• High-performance, Thermally Enhanced Package

Applications

• Medical Ultrasound Imaging
• Piezoelectric Transducer Drivers
• Non-destructive Testing (NDT)
• PIN Diode Driver
• CCD Clock Driver/buffer
• High-speed Level Translator

General Description

The  MD1820 is a high-speed, 4-channel MOSFET 
driver designed to drive high-voltage P-channel and 
N-channel MOSFETs for medical ultrasound 
applications and other applications requiring a high 
output current for a capacitive load. The high-speed 
input stage of the MD1820 can operate from a 
1.8V to 5V logic interface with an optimum operating 
input signal range of 1.8V to 3.3V. An adaptive 
threshold circuit is used to set the level translator 
switch threshold to the average of the input logic 0 and 
logic  1 levels. The input logic levels may be ground 
referenced, even though the driver is putting out bipolar 
signals. The level translator uses a proprietary circuit, 
which provides DC coupling together with high-speed 
operation.
The output stage of the MD1820 has separate power 
connections, enabling the output signal L and H levels 
to be chosen independently from the supply voltages 
used for the majority of the circuit. As an example, the 
input logic levels may be 0V and 1.8V, the control logic 
may be powered by +5V and –5V and the output L and 
H levels may be varied anywhere over the range of 
–5V to +5V. The output stage is capable of peak 
currents of up to ±2A, depending on the supply 
voltages used and load capacitance present. The PE 
pin serves a dual purpose. First, its logic H level is used 
to compute the threshold voltage level for the channel 
input level translators. Second, when PE is low, the 
outputs are High Z. This assists in properly precharging 
the AC coupling capacitors that may be used in series 
in the gate drive circuit of an external PMOS and 
NMOS transistor pair.

Package Type

16-lead QFN 

(Top view)

1

See 

Table 2-1

 for pin information.

High-Speed 4-Channel MOSFET Driver with Non-Inverting Outputs

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

PE

INA

INB

OUTA

OUTB

VDD

VH

INC

IND

OUTC

OUTD

MD1820

GND

VSS

VL

INB

OUTC

OUTD

GND

VH

PE

INA

VL

OUTB

OUTA

VDD

VH

INC

IND

SUB

VSS

VL

VH

VL

VH

VL

MD1820 

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

Level 

Shifter 

Level 

Shifter 

Level 

Shifter 

Level 

Shifter 

Level 

Shifter 

Simplified Block Diagram

Detailed Block Diagram

MD1820

DS20005767A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagrams

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

 2017 Microchip Technology Inc.

DS20005767A-page  3

MD1820

Typical Application Circuit

10nF

10nF

0.1μF

10nF

TC6320

10nF

To Piezoelectric
Transducer

VSS

VDD

VH

VL

PE

INA

GND

INB

INC

IND

OUTA

+10V

OUTB

OUTC

OUTD 

0.47μF

0.47μF

+10V

+100V

0.1μF

+100V

0.1μF

-100V

0.1μF

-100V

TC6320

MD1820

3.3V CMOS

Logic Inputs

To Piezoelectric
Transducer

Typical 2-Channel +/–100V Application Diagram 

s

TC6320

+100V

0.1μF

-100V

10nF

10nF

TC2320

VSS

VDD

VH

VL

PE 

INA

GND

INB

INC

IND

OUTA

+5.0V

3.3V CMOS

Logic Inputs

OUTB

OUTC

OUTD

+5.0V

0.47μF

0.47μF

-5.0V

0.47μF

-5.0V

0.47μF

MD1820

0.1μF

To Piezoelectric
Transducer

Typical 1-Channel +/–100V RTZ Application Diagram 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

OUTA

OUTB

OUTC

OUTD

+10V

VDD

VH

+10V

VSS

VL

GND

INA

INB

INC

IND

PE

MD1820

10nF

10nF

+100V

HV

OUT

-100V

TC6320

0.47μF

TC6320

1.0μF

1.0μF

-10V

1.0μF

+10V

1.0μF

10nF

10nF

3.3V CMOS

Logic Inputs

0.47μF

MD1820

DS20005767A-page  4

 2017 Microchip Technology Inc.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

 2017 Microchip Technology Inc.

DS20005767A-page  5

MD1820

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Logic Supply Voltage, V

DD

–V

SS

 ............................................................................................................ –0.5V to +12.5V

Output High Supply Voltage, V

H

................................................................................................... V

L

–0.5V to V

DD

 +0.5V

Output Low Supply Voltage, V

.................................................................................................... V

SS

–0.5V to V

+0.5V

Low-side Supply Voltage, V

SS 

.................................................................................................................... –6V to +0.5V

Logic Input Levels

 

.................................................................................................................... V

SS

–0.5V to GND +5.5V

Maximum Junction Temperature, T

J

 

................................................................................................................... +125°C

Operating Ambient Temperature, T

A

 .....................................................................................................  –20°C to +85°C

Storage Temperature, T

.....................................................................................................................  –65°C to +150°C

Package Power Dissipation:

16-lead QFN  ............................................................................................................................................... 2.2W

ESD Rating (

Note 1

) ............................................................................................................................... ESD Sensitive

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

Note 1: Device is ESD sensitive. Handling precautions are recommended.

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 10V, V

L

 = V

SS

 = GND = 0V, V

PE

 = 3.3V, T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Logic Supply Voltage

V

DD

–V

SS

4.75

11.5

V

4V ≤ V

DD

 ≤ 11.5V

Low-side Supply Voltage

V

SS

–5.5

0

V

Output High Supply Voltage

V

H

V

SS

+2

V

DD

V

Output Low Supply Voltage

V

L

V

SS

V

DD

–4

V

V

DD

 Quiescent Current

I

DDQ

60

μA

No input transitions, PE = 0

V

H

 Quiescent Current

I

HQ

2

μA

V

DD

 Quiescent Current

I

DDQ

0.8

mA

No input transitions, PE = 1

V

H

 Quiescent Current

I

HQ

2

μA

V

DD

 Average Current

I

DD

3.5

mA

One channel on at 5 MHz, no load

V

H

 Average Current

I

H

10

mA

Input Logic Voltage High

V

IH

V

PE

–0.3

V

PE

V

For logic inputs INA, INB, INC and 
IND

Input Logic Voltage Low

V

IL

0

0.3

V

Input Logic Current High

I

IH

1

μA

Input Logic Current Low

I

IL

1

μA

PE Input logic Voltage High

V

IH

1.7

3.3

5.25

V

For logic input PE

PE Input Logic Voltage Low

V

IL

0

0.3

V

PE Input Resistance

R

IN_PE

100

kΩ

Logic Input Capacitance

C

IN

5

10

pF

Output Sink Resistance

R

SINK

1.5

I

SINK

 = 50 mA

Output Source Resistance

R

SOURCE

2

I

SOURCE

 = 50 mA

Peak Output Sink Current

I

SINK

2

A

Peak Output Source Current

I

SOURCE

2

A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 10V, V

L

 = V

SS

 = GND = 0V, V

PE

 = 3.3V, T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Input or PE Rise and Fall Time

t

irf

10

ns

Logic input edge speed          
requirement

Propagation Delay when Output is 
from Low to High

t

PLH

6.5

ns

C

LOAD

 = 1000 pF (See 

Timing 

Diagram

.), input signal rise/fall 

time 2 ns

Propagation Delay when Output is 
from High to Low

t

PHL

6.5

ns

Output Rise Time

t

r

7

ns

Output Fall Time

t

f

7

ns

Rise and Fall Time Matching

l t

r

–t

f

 l

1

ns

For each channel

Propagation Low to High and High 
to Low Matching

l t

PLH

–t

PHL

 l

1

ns

Propagation Delay Matching

∆t

dm

±2

ns

Device-to-device delay match

PE On Time

t

PE–ON

5

µs

V

PE

 = 1.7V~5.25V,

V

DD

 = 7.5V~11.5V, 

–20°C~85°C

PE Off-time

t

PE–OFF

4

µs

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Maximum Junction Temperature 

T

J

+125

°C

Operating Ambient Temperature

T

A

–20

+85

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
16-lead QFN

JA

55

°C/W

Note 1

MD1820

DS20005767A-page  6

 2017 Microchip Technology Inc.

Note 1: 1 oz four-layer 3” x 4” PCB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

 2017 Microchip Technology Inc.

DS20005767A-page  7

MD1820

Timing Diagram

0V

3.3V

IN

t

PLH

10%

90%

50%

0V

10V

50%

OUT

t

PHL

t

r

90%

10%

t

f

TABLE 1-1:

TRUTH FUNCTION TABLE  

Logic Inputs

Output

PE

IN

H

L

V

L

H

H

V

H

L

X

High Z

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

MD1820

DS20005767A-page  8

 2017 Microchip Technology Inc.

2.0

PIN DESCRIPTION

The details on the pins of MD1820 are listed on 

Table 2-1

. See 

Package Type

 for the location of pins.

 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

INB

Logic input

2

VDD

High-side supply voltage

3

VSS

Low-side supply voltage. VSS is also connected to the IC substrate. It is required to 
connect to the most negative potential of voltage supplies.

4

INC

Logic input

5

IND

6

GND

Logic input ground reference

7

VL

Supply voltage for N-channel output stage

8

OUTC

Output drivers

9

OUTD

10, 11

VH

Supply voltage for P-channel output stage

12

OUTA

Output drivers

13

OUTB

14

VL

Supply voltage for N-channel output stage

15

PE

Power enable logic input. When PE is high, the input logic threshold is set. When PE is 
low, all outputs are at default state and the IC is in Standby mode. (See 

Table 1-1

 and 

Figure 3-1

.)

16

INA

Logic input

Substrate

The IC substrate is internally connected to the thermal pad. The thermal pad and VSS 
must be connected externally.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

 2017 Microchip Technology Inc.

DS20005767A-page  9

MD1820

3.0

APPLICATION INFORMATION

For proper operation of the MD1820, low-inductance 
bypass capacitors should be used on the various 
supply pins. The GND pin should be connected to the 
logic ground. The INA, INB, INC, IND and PE pins 
should be connected to a logic source with a swing of 
GND to PE, where PE is 1.8V to 5V. Good trace 
practices should be followed corresponding to the 
desired operating speed. The internal circuitry of the 
MD1820 is capable of operating up to 100 MHz, with 
the primary speed limitation being the loading effects of 
the load capacitance. Because of this speed and the 
high transient currents due to capacitive loads, the 
bypass capacitors should be as close to the chip pins 
as possible. Unless the load specifically requires 
bipolar drive, the V

SS

 and V

L

 pins should have a 

low-inductance bypass capacitor to GND and supply 
power connections. If these voltages are not zero, they 
need bypass capacitors similar to the positive power 
supplies. The power connection V

DD

 should have a 

ceramic bypass capacitor to the ground plane with 
short leads and decoupling components to prevent 
resonance in the powerleads.

V

PE

V

TH

0

0.5

1.0

1.5

2.0

1.0

2.0

3.0

4.0

5.0

0

V

PE

/2

V

TH 

vs V

PE

FIGURE 3-1:

V

TH

/V

PE 

Curve.

MD1820 Delay vs Temperature 

MD1820 t

r

 & t

f

 vs Temperature 

MD1820 Delay vs V

DD 

MD1820 t

r

 & t

f

 vs V

DD 

De

la

y T

im

e

 (

n

s)

t

PLH 

t

PHL 

Temperature (

O

C)

-50                                   0                                   50                                 125 

9

8

7

6

5

4

3

Ti

me

 (

n

s

)

t

t

Temperature (

O

C)

-50                                   0                                   50                                 125 

9

8

7

6

5

4

3

Delay T

ime (ns)

t

PLH 

t

PHL 

V

DD 

Voltage (V)

5                                   8                                   10                                  12 

14

12

10

8

6

4

2

Ti

m

e

 (

n

s

)

t

t

V

DD 

Voltage (V)

5                                   8                                   10                                  12 

14

12

10

8

6

4

2

FIGURE 3-2:

Timing Characteristics vs.Temperature and V

DD

.

The voltages of V

H

 and V

L

 decide the output signal 

levels. These two pins can draw fast transient currents 
of up to 2A, so they should be provided with an 
appropriate bypass capacitor located next to the chip 
pins. A ceramic capacitor of up to 1 µF may be 
appropriate, with a series ferrite bead to prevent 
resonance in the power supply lead going to the 
capacitor. Pay particular attention to minimizing trace 
lengths, current loop area and using sufficient trace 

width to reduce inductance. Surface-mount 
components are highly recommended. Since the 
output impedance of this driver is very low, in some 
cases, it may be desirable to add a small series resistor 
in series with the output signal to obtain better 
waveform transitions at the load terminals. This will 
reduce the output voltage slew rate at the terminals of 
a capacitive load. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005767A-html.html
background image

MD1820

DS20005767A-page  10

 2017 Microchip Technology Inc.

Make sure that parasitic couplings are minimized from 
the output to the input signal terminals. The parasitic 
feedback may cause oscillations or spurious waveform 
shapes on the edges of signal transitions. Since the 
input operates with signals down to 1.8V, even small 
coupled voltages may cause problems. The use of a 
solid ground plane and good power and signal layout 
practices will prevent this problem. Make sure that the 
circulating ground return current from a capacitive load 
will not react with common inductance to cause noise 
voltages in the input logic circuitry.

Maker
Microchip Technology Inc.