MD1813 High-Speed Quad-MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

 2017 Microchip Technology Inc.

DS20005747A-page  1

MD1813

Features

• 6 ns Rise and Fall Time
• 2A Peak Output Source and Sink Currents
• 1.8V to 5V Input CMOS Compatible
• Smart Logic Threshold
• Low-jitter Design
• Four Matched Channels
• Drives Two N-channel and Two P-channel 

MOSFETs

• Outputs can Swing below Ground
• Built-in Level Translator for Negative Gate Bias
• Non-inverting Gate Driver OUTD for Easy Logic
• Low-inductance Quad Flat No-lead Package
• Thermally Enhanced Package

Applications

• Ultrasound PN Code Transmitter
• Medical Ultrasound Imaging
• Piezoelectric Transducer Drivers
• Non-destructive Testing
• High-speed Level Translator
• High-voltage Bipolar Pulser

General Description

The  MD1813 is a high-speed quad-MOSFET driver. 
It is designed to drive two N-channel and two 
P-channel, high-voltage, DMOS FETs for medical 
ultrasound applications and may be used in any 
application requiring a high output current for a 
capacitive load. The input stage of the MD1813 is a 
high-speed level translator that is able to operate from 
logic input signals of 1.8V to 5V amplitude. An adaptive 
threshold circuit is used to set the level translator 
threshold to the average of the input logic 0 and logic 1
levels. The level translator uses a proprietary circuit, 
which provides DC coupling together with high-speed 
operation.
The output stage of the MD1813 has separate power 
connections, enabling the output signal L and H levels 
to be chosen independently from the driver supply 
voltages. As an example, the input logic levels may be 
0V and 1.8V, the control logic may be powered by 
+5V and –5V and the output L and H levels may be 
varied anywhere over the range of –5V to +5V. The 
output stage is capable of peak currents of up to ±2 
amps, depending on the supply voltages used and load 
capacitance. The OE pin serves a dual purpose. First, 
its logic H level is used to compute the threshold 
voltage level for the channel input level translators. 
Second, when OE is low, the outputs are disabled, with 
the A output high and the B output low. This assists in 
properly pre-charging the coupling capacitors that may 
be used in series in the gate drive circuit of an external 
PMOS and NMOS. A built-in level shifter is for PMOS 
gate negative bias driving. It enables the user-defined 
damping control to generate return-to-zero bipolar 
output pulses. The MD1813 has a non-inverting driver 
OUTD for easy logic.

Package Type

16-lead QFN 

(Top view)

See 

Table 2-1

 for pin information.

1

High-Speed Quad-MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

OUTA

INA

OUTB

INC

IND

LT

OUTG

OE

INB

VSS

GND

VL

VNEG

VDD

VH

MD1813

OUTD

OUTC

MD1813

DS20005747A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

 2017 Microchip Technology Inc.

DS20005747A-page  3

MD1813

Typical Application Circuit

-8.0V

MD1813

0.47μF

0.47μF

+10V

0.22μF

+10V

PULSE

DAMP

OUTA

OUTB

OUTC

OUTD

VDD

VH

VSS

VL

VNEG

GND

LT

2.0k

OUTG

TC2320

TC6320

1.0μF

1.0μF

10nF

10nF

10nF

INA

INB

INC

IND

3.3V CMOS

Logic Inputs

+100V

-100V

ENAB

OE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

MD1813

DS20005747A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V

DD

–V

SS 

..................................................................................................................... –0.5V to +13.5V

Output High Supply Voltage, V

.................................................................................................. V

L

–0.5V to V

DD 

+0.5V

Output Low Supply Voltage, V

.................................................................................................... V

SS

–0.5V to V

H

+0.5V

Low-side Supply Voltage, V

SS 

................................................................................................................... –7V to +0.5V

Supply Voltage, V

DD

–V

NEG 

..................................................................................................................... –0.5V to +20V

Negative Supply Voltage, V

NEG

–V

SS 

......................................................................................... V

SS

–10V to V

SS

 +0.5V

Logic Input Levels  ...................................................................................................................... V

SS

–0.5V to GND +7V

Maximum Junction Temperature, T

................................................................................................................... +125°C

Operating Ambient Temperature, T

....................................................................................................  –20°C to +85°C

Storage Temperature, T

..................................................................................................................... –65°C to +150°C

Power Dissipation ................................................................................................................................................... 2.2W
ESD Rating (

Note 1

) ............................................................................................................................... ESD Sensitive

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

Note 1: Device is ESD sensitive. Handling precautions are recommended.

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

Supply Voltage

V

DD

–V

SS

4.5

13

V

2.5V ≤ V

DD

 ≤ 13V

Supply Voltage

V

DD

–V

NEG

18

V

Low-side Supply Voltage

V

SS

–5.5

0

V

Output High Supply Voltage

V

H

V

SS

 +2

V

DD

V

Output Low Supply Voltage

V

L

V

SS

V

DD

–2

V

Negative Supply Voltage

V

NEG

–9

V

SS

–2

V

May be connected to V

SS 

if 

OUTG is not used.

V

DD

 Quiescent Current

I

DDQ

1.5

mA

No input transitions, OE = 1

V

H

 Quiescent Current

I

HQ

10

µA

V

NEG

 Quiescent Current

I

NEGQ

150

µA

V

DD

 Average Current

I

DD

7

mA

One channel on at 5 MHz, 

no load

V

H

 Average Current

I

H

22

mA

V

NEG

 Average Current

I

NEG

1.5

mA

Input Logic Voltage High

V

IH

V

OE

–0.3

5

V

For logic inputs INA, INB, INC 
and IND

Input logic Voltage Low

V

IL

0

0.3

V

Input Logic Current High

I

IH

1

µA

Input Logic Current Low

I

IL

1

µA

OE Input Logic Voltage High

V

IH

1.7

5

V

For logic input OE

OE Input Logic Voltage Low

V

IL

0

0.3

V

OE Input Resistance

R

IN

10

20

30

kΩ

Logic Input Capacitance

C

IN

5

10

pF

Output Sink Resistance

OUTA-D

R

SINK

12.5

I

SINK

 = 50 mA

OUTG

200

I

SINK

 = 5 mA

Output Source                   
Resistance

OUTA-D

R

SOURCE

12.5

I

SOURCE

 = 50 mA

OUTG

200

I

SOURCE

 = 5 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

 2017 Microchip Technology Inc.

DS20005747A-page  5

MD1813

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Maximum Junction Temperature

T

J

+125

°C

Operating Ambient Temperature

T

A

–20

+85

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
16-lead QFN

JA

25

°C/W

Note 1

Note 1: 1 oz. 4-layer 3” x 4” PCB

Peak Output Sink Current

I

SINK

2

A

Peak Output Source Current

I

SOURCE

2

A

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Input or OE Rise and Fall 
Time

t

irf

10

ns

Logic input edge speed              
requirement

Propagation Delay INC to 
OUTG

t

PCG

40

ns

10 MΩ load to GND

Propagation Delay when 
Output is from Low to High 
for OUTA-D

t

PLH

7

ns

C

LOAD

 = 1000 pF, input signal 

rise/fall time of 2 ns                
(See 

Timing Diagram

.)

Propagation Delay when 
Output is from High to Low 
for OUTA-D

t

PHL

7

ns

Output Rise Time

t

r

6

ns

Output Fall Time

t

f

6

ns

Rise and Fall Time Matching

l t

r

–t

f

 l

1

ns

For each channel

Propagation Low-to-high and 
High-to-low Matching

l t

PLH

–t

PHL

 l

1

ns

Propagation Delay Matching

∆t

dm

±2

ns

Device-to-device delay match

Output Enable Time

t

POE

9

ns

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

INPUT

t

PLH 

10% 

90% 

50% 50% 

OUTPUT

t

PHL

t

90% 

10% 

t

MD1813

DS20005747A-page  6

 2017 Microchip Technology Inc.

Timing Diagram

TABLE 1-1:

TRUTH FUNCTION TABLE  

Logic Inputs

Outputs

OE

INA

INB

OUTA

OUTB

H

L

L

V

H

V

H

H

L

H

V

H

V

L

H

H

L

V

L

V

H

H

H

H

V

L

V

L

L

X

X

V

H

V

L

      OE 

(

 1

)

INC

IND

OUTC

OUTG

      OUTD 

(

 2

)

L

L

V

H

V

SS

V

L

L

H

V

H

V

SS

V

H

H

L

V

L

V

NEG

V

L

H

H

V

L

V

NEG

V

H

Note 1: No control to OUTG, OUTC or OUTD

2: OUTD is non-inverting output.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

 2017 Microchip Technology Inc.

DS20005747A-page  7

MD1813

2.0

PIN DESCRIPTION

The details on the pins of MD1813 are listed on 

Table 2-1

. See 

Package Type

 for the location of pins.

 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

INB

Logic input. Controls OUTB when OE is high.

2

VL

Supply voltage for N-channel output stage

3

GND

Device ground

4

VNEG

Supply voltage for the auxiliary gate drive. (

Note 1

)

5

INC

Logic input. Controls OUTC. Not controlled by OE.

6

IND

Logic input. Controls OUTD. Not controlled by OE.

7

VSS

Supply voltage for low-side analog, level shifter and gate drive circuit

8

OUTD

Output driver

9

OUTC

Output driver

10

OUTG

Not controlled by OE

11

VH

Supply voltage for P-channel output stage

12

OUTB

Output driver

13

OUTA

Output driver

14

VDD

Supply voltage for high-side analog, level shifter and gate drive circuit

15

INA

Logic input. Controls OUTA when OE is high.

16

OE

Output enable logic input (See 

Figure 3-1

.)

Note 1: Thermal pad and pin 4, VNEG must be connected externally.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

MD1813

DS20005747A-page  8

 2017 Microchip Technology Inc.

3.0

APPLICATION INFORMATION

For proper operation of the MD1813, low-inductance 
bypass capacitors should be used in the various supply 
pins. The GND pin should be connected to the logic 
ground. The INA, INB, INC, IND and OE pins should be 
connected to a logic source with a swing of GND to 
V

CC

, where V

CC 

is 1.8V to 5V. Good trace practices 

should be followed corresponding to the desired 
operating speed. The internal circuitry of the MD1813 
is capable of operating up to 100 MHz, with the primary 
speed limitation being the loading effects of the load 
capacitance. Because of this speed and the high 
transient currents due to the capacitive loads, the 
bypass capacitors should be as close to the chip pins 
as possible. Unless the load specifically requires 
bipolar drive, the V

SS

 and V

L

 pins should have 

low-inductance feed-through connections directly to a 
ground plane. If these voltages are not zero, they need 
bypass capacitors in a manner similar to the positive 
power supplies. The power connections V

DD 

should 

have a ceramic bypass capacitor to the ground plane 
with short leads and decoupling components to prevent 
resonance in the power leads.
Output drivers, OUTA and OUTC drive the gate of an 
external P-channel MOSFET, while output drivers 
OUTB and OUTD drive the gate of an external 
N-channel MOSFET, and they all swing from V

H

 to V

L

The auxiliary output drive, OUTG, swings from V

SS

 to 

V

NEG

, and drives the external P-channel MOSFET as 

negative bias via a 2 kΩ series resistor.
The voltages of V

H

 and V

L

 decide the output signal 

levels. These two pins can draw fast transient currents 
of up to 2A, so they should be provided with an 
appropriate bypass capacitor located next to the chip 
pins. A ceramic capacitor of up to 1 µF may be 
appropriate, with a series ferrite bead to prevent 
resonance in the power supply lead going to the 
capacitor. Pay particular attention to minimizing trace 
lengths, current loop area, and using sufficient trace 
width to reduce inductance. Surface-mount 
components are highly recommended. Since the 
output impedance of this driver is very low, in some 
cases it may be desirable to add a small series resistor 
in series with the output signal to obtain better 
waveform transitions at the load terminals. This will 
reduce the output voltage slew rate at the terminals of 
a capacitive load.
The OE pin sets the threshold level of logic for inputs 
(V

OE

 + V

GND

)/2. When OE is low, OUTA is at V

H

. OUTB 

is at V

L

, regardless of the inputs INA and INB. This pin 

will not control OUTC, OUTD or OUTG.
Ensure that parasitic couplings are minimized from the 
output to the input signal terminals. The parasitic 
feedback may cause oscillations or spurious waveform 
shapes on the edges of signal transitions. Since the 
input operates with signals down to 1.8V, even small 
coupled voltages may cause problems. The use of a 

solid ground plane and good power and signal layout 
practices will prevent this problem. Make sure that a 
circulating ground return current from a capacitive load 
will not react with common inductance to cause noise 
voltages in the input logic circuitry. Best timing 
performance is obtained for OUTC when the voltage of 
V

SS 

– V

NEG

 = V

H

 – V

L

. When input logic is high, output 

will swing to V

L

, and when input logic is low, output will 

swing to V

H

. All inputs must be kept low until the device 

is powered up.

V

OE

V

TH

0.5 

1.0 

1.5 

2.0 

0           1.0         2.0         3.0          4.0          5.0 

0.6V 

V

OE/2 

V

TH 

vs V

OE

FIGURE 3-1:

V

TH

/V

OE

 Curve.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

 2017 Microchip Technology Inc.

DS20005747A-page  9

MD1813

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Legend: XX...X

Product Code or Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will 
be carried over to the next line, thus limiting the number of available characters 
for product code or customer-specific information. Package may or not include 
the corporate logo.

3

e

3

e

16-lead QFN

Example

XXXXXX
XXXXXX
   YYWW
NNN

e3

MD
1813K6
   1714
895

e3

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005747A-html.html
background image

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

MD1813

DS20005747A-page  10

 2017 Microchip Technology Inc.

Maker
Microchip Technology Inc.