MD1812 High-Speed Quad-MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

 2017 Microchip Technology Inc.

DS20005746A-page  1

MD1812

Features

• 6 ns Rise and Fall Time
• 2A Peak Output Source and Sink Currents
• 1.8V to 5V Input CMOS Compatible
• Smart Logic Threshold
• Low-jitter Design
• Four Matched Channels
• Drives Two P-channel and Two N-channel 

MOSFETs

• Outputs can Swing below Ground
• Built-in Level Translator for Negative Gate Bias
• User-defined damping for Return-to-zero 

Application

• Low-inductance Quad-flat No-lead Package
• High-performance Thermally Enhanced Package

Applications

• Ultrasound PN Code Transmitter
• Medical Ultrasound Imaging
• Piezoelectric Transducer Drivers
• Non-destructive Testing
• High-speed Level Translator
• High-voltage Bipolar Pulser

General Description

The  MD1812 is a high-speed quad-MOSFET driver 
designed to drive two P-channel and two N-channel 
high-voltage MOSFETs for medical ultrasound 
applications and other applications requiring a 
high-output current for a capacitive load. The input 
stage of the MD1812 is a high-speed level translator 
that is able to operate from logic input signals of 1.8V 
to 5V amplitude. An adaptive threshold circuit is used 
to set the level translator switch threshold to the 
average of the input logic 0 and logic 1  levels. The 
level translator uses a proprietary circuit which 
provides DC coupling together with high-speed 
operation. 
The output stage of the MD1812 has separate power 
connections, enabling the output signal L and H levels 
to be chosen independently from the supply voltages 
used for the majority of the circuit. As an example, the 
input logic levels may be 0V and 1.8V, the control logic 
may be powered by +5V and –5V, and the 
output L and H levels may be varied anywhere over the 
range of –5V to +5V. The output stage is capable of 
peak currents of up to ±2A, depending on the supply 
voltages used and load capacitance present. 
The OE pin serves a dual purpose. First, its logic 
H level is used to compute the threshold voltage level 
for the channel input level translators. Second, when 
OE is low, the outputs are disabled, with the A and C 
outputs high and the B and D outputs low. This assists 
in properly pre-charging the AC coupling capacitors 
that may be used in series in the gate drive circuit of an 
external PMOS and NMOS transistor pair. A built-in 
level shifter provides PMOS gate negative bias drive. 
This enables the user-defined damping control to 
generate return-to-zero bipolar output pulses.

Package Type

16-lead QFN 

(Top view)

See 

Table 2-1

 for pin information.

1

High-Speed Quad-MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

Logic

Inputs

OUTA

OUTB

OUTC

OUTD

+10V

0.22  µF

V

DD

V

H

+10V

0.47µF

V

SS

V

L

V

NEG

GND

INA

INB

INC

IND

OE

-8V

0.47µF

LT

MD1812

OUTG

MD1812

DS20005746A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

 2017 Microchip Technology Inc.

DS20005746A-page  3

MD1812

Typical Application Circuit

OUTA

OUTB

OUTC

OUTD

VDD

VH

VSS

VL

VNEG

GND

-8V

LT

2k

Ω

OUTG

MD1812

TC2320

TC6320

1.0μF

1.0μF

10nF

10nF

10nF

0.47μF

0.47μF

INA

INB

INC

IND

3.3V CMOS

Logic Inputs

OE

0.22μF

+10V

+10V

+100V

-100V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

MD1812

DS20005746A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V

DD

–V

SS

...................................................................................................................... –0.5V to +13.5V

Output High Supply Voltage, V

H

................................................................................................... V

L

–0.5V to V

DD 

+0.5V

Output Low Supply Voltage, V

L

.................................................................................................... V

SS

–0.5V to V

+0.5V

Low-side Supply Voltage, V

SS

.................................................................................................................... –7V to +0.5V

Supply Voltage, V

DD

–V

NEG

......................................................................................................................  –0.5V to +20V

Negative Supply Voltage, V

NEG

–V

SS

.........................................................................................  V

SS

–10V to V

SS

 +0.5V

Logic Input Levels ....................................................................................................................... V

SS

–0.5V to GND +7V

Operating Junction Temperature, T

J

.................................................................................................... –25°C to +125°C

Storage Temperature, T

S

...................................................................................................................... –65°C to +150°C

Power Dissipation ..................................................................................................................................................  2.2W
ESD Rating (

Note 1

) ................................................................................................................................ ESD Sensitive

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

Note 1: Device is ESD sensitive. Handling precautions are recommended.

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

J

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Supply Voltage

V

DD

–V

SS

4.5

13

V

2.5V ≤ V

DD

 ≤ 13V

Supply Voltage

V

DD

–V

NEG

18

V

Low-side Supply Voltage

V

SS

–5.5

0

V

Output High Supply Voltage

V

H

V

SS

 +2

V

DD

V

Output Low Supply Voltage

V

L

V

SS

V

DD

2

V

Negative Supply Voltage

V

NEG

–9

V

SS

–2

V

May be connected to V

SS 

if OUTG is not used

V

DD

 Quiescent Current

I

DDQ

1.5

mA

No input transitions,        
OE = 1

V

H

 Quiescent Current

I

HQ

10

µA

V

NEG

 Quiescent Current

I

NEGQ

150

µA

V

DD

 Average Current

I

DD

7

mA One channel on at 5 

MHz, 

no load

V

H

 Average Current

I

H

22

mA

V

NEG

 Average Current

I

NEG

1.5

mA

Input Logic Voltage High

V

IH

V

OE

–0.3

5

V

For logic inputs INA, INB, 
INC and IND

Input Logic Voltage Low

V

IL

0

0.3

V

Input Logic Current High

I

IH

1

µA

Input Logic Current Low

I

IL

1

µA

OE Input Logic Voltage High

V

IH

1.7

5

V

For logic input OE

OE Input Logic Voltage Low

V

IL

0

0.3

V

OE Input Resistance

R

IN

10

20

30

kΩ

Logic Input Capacitance

C

IN

5

10

pF

Output Sink Resistance

OUTA-D

R

SINK

12.5

I

SINK

 = 50 mA

OUTG

200

I

SINK

 = 5 mA

Output Source                   
Resistance

OUTA-D

R

SOURCE

12.5

I

SOURCE

 = 50 mA

OUTG

200

I

SOURCE

 = 5 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

 2017 Microchip Technology Inc.

DS20005746A-page  5

MD1812

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Junction Temperature

T

J

–25

125

°C

Storage Temperature

T

S

–65

150

°C

PACKAGE THERMAL RESISTANCE
16-lead QFN

JA

25

°C/W

Note 1

Note 1: 1 oz. 4-layer 3” x 4” PCB

Peak Output Sink Current

I

SINK

2

A

Peak Output Source Current

I

SOURCE

2

A

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

A

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Input or OE Rise and Fall Time

t

irf

10

ns

Logic input edge speed              
requirement

Propagation Delay INC to OUTG

t

PCG

40

ns

10 MΩ load to GND

Propagation Delay when Output is 
from Low to High for OUTA-D

t

PLH

7

ns

C

LOAD

 = 1000 pF, input signal 

rise/fall time of 2 ns

Propagation Delay when Output is 
from High to Low for OUTA-D

t

PHL

7

ns

Output Rise Time

t

r

6

ns

Output Fall Time

t

f

6

ns

Rise and Fall Time Matching

l t

r

–t

f

 l

1

ns

For each channel

Propagation Low-to-high and 
High-to-low Matching

l t

PLH

–t

PHL

 l

1

ns

Propagation Delay Matching

∆t

dm

±2

ns

Device-to-device delay match

Output Enable Time

t

OE_ON

200

ns

t

OE_OFF

9

ns

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V

H

 = V

DD

 = 12V, V

L

 = V

SS

 = GND = 0V, V

NEG

 = –6V, V

OE

 = 3.3V and T

J

 = 25°C

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

INPUT

t

PLH

10% 

90% 

50% 

50% 

OUTPUT

t

PHL

t

90% 

10% 

t

MD1812

DS20005746A-page  6

 2017 Microchip Technology Inc.

Timing Diagram

TABLE 1-1:

TRUTH FUNCTION TABLE  

Logic Inputs

Outputs

OE

INA

INB

OUTA

OUTB

H

L

L

V

H

V

H

H

L

H

V

H

V

L

H

H

L

V

L

V

H

H

H

H

V

L

V

L

L

X

X

V

H

V

L

OE

INC

IND

OUTC

OUTG

OUTD

H

L

L

V

H

V

SS

V

H

H

L

H

V

H

V

SS

V

L

H

H

L

V

L

V

NEG

V

H

H

H

H

V

L

V

NEG

V

L

L

X

X

V

H

V

SS

V

L

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

 2017 Microchip Technology Inc.

DS20005746A-page  7

MD1812

2.0

PIN DESCRIPTION

The details on the pins of MD1812 are listed on 

Table 2-1

. See 

Package Type

 for the location of pins.

 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

INB

Logic input. Controls OUTB when OE is high.

2

VL

Supply voltage for N-channel output stage

3

GND

Device ground

4

VNEG

Supply voltage for the auxiliary gate drive (

Note 1

)

5

INC

Logic input. Controls OUTC when OE is high.

6

IND

Logic input. Controls OUTD when OE is high.

7

VSS

Supply voltage for low-side analog, level shifter and gate drive circuit

8

OUTD

Output driver

9

OUTC

Output driver

10

OUTG

Auxiliary output driver

11

VH

Supply voltage for P-channel output stage

12

OUTB

Output driver

13

OUTA

Output driver

14

VDD

Supply voltage for high-side analog, level shifter and gate drive circuit

15

INA

Logic input. Controls OUTA when OE is high.

16

OE

Output enable logic input

Note 1: Thermal pad and pin 4, VNEG must be connected externally.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

MD1812

DS20005746A-page  8

 2017 Microchip Technology Inc.

3.0

APPLICATION INFORMATION

For proper operation of the MD1812, low-inductance 
bypass capacitors should be used on the various 
supply pins. The GND input pin should be connected to 
the logic ground. The INA, INB, INC, IND and OE pins 
should be connected to a logic source with a swing of 
GND to V

CC

, where V

CC

 is 1.8V to 5V. When the input 

logic(s) is high, the output(s) will swing to V

L

, and when 

the input(s) logic is low, the output(s) will swing to V

H

All inputs must be kept low until the device is powered 
up. Good trace practices should be followed 
corresponding to the desired operating speed. The 
internal circuitry of the MD1812 is capable of operating 
up to 100 MHz, with the primary speed limitation being 
the loading effect of the load capacitance. Because of 
this speed and the high transient currents due to the 
capacitive loads, the bypass capacitors should be as 
close to the chip pins as possible. Unless the load 
specifically requires bipolar drive, the V

SS

 and V

L

 pins 

should have a low-inductance bypass capacitor to 
GND and supply power connections. If these voltages 
are not zero, they need bypass capacitors in a manner 
similar to the positive power supplies. The power 
connection V

DD

 should have a ceramic bypass 

capacitor to the ground plane with short leads and 
decoupling components to prevent resonance in the 
power leads.
Output drivers OUTA and OUTC drive the gate of an 
external P-channel MOSFET, while output drivers 
OUTB and OUTD drive the gate of an external 
N-channel MOSFET, and they all swing from V

H

 to V

L

The auxiliary output drive, OUTG, swings from V

SS

 to 

V

NEG

 and drives the gate of an external P-channel 

MOSFET through a 2 kΩ series resistor.
The voltages of V

H

 and V

decide the output logic 

levels. These two pins can draw fast transient currents 
of up to 2A, so they should be provided with a suitable 
bypass capacitor located next to the chip pins. 
A ceramic capacitor of up to 1 µF may be appropriate, 
with a series ferrite bead to prevent resonance in the 
power supply lead going to the capacitor. Pay particular 
attention to minimizing trace lengths, current loop area 
and using sufficient trace width to reduce inductance. 
Surface-mount components are highly recommended. 
Since the output impedance of this driver is very low, in 
some cases, it may be desirable to add a small series 
resistor in series with the output signal to obtain better 
waveform transitions at the load terminals. This will 
reduce the output voltage slew rate at the terminals of 
a capacitive load.
The OE pin sets the threshold level of logic for inputs 
(V

OE

 + V

GND

)/2. When OE is low, OUTA and OUTC are 

at V

H

, while OUTB and OUTD are at V

L

. Auxiliary 

output OUTG is at V

SS

, regardless of the inputs INA 

and INB.

Ensure that parasitic couplings are minimized from the 
driver output to the input signal terminals. The parasitic 
feedback may cause oscillations or spurious waveform 
shapes on the edges of signal transitions. Since the 
input operates with signals down to 1.8V, even small 
coupled voltages may cause problems. The use of a 
solid ground plane and good power and signal layout 
practices will prevent this problem. Make sure that the 
circulating ground return current from a capacitive load 
will not react with common inductance and cause noise 
voltages in the input logic circuitry. Best timing 
performance is obtained for OUTC when the voltage of 
V

SS

–V

NEG

 = V

H

–V

L

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

 2017 Microchip Technology Inc.

DS20005746A-page  9

MD1812

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Legend: XX...X

Product Code or Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will 
be carried over to the next line, thus limiting the number of available characters 
for product code or customer-specific information. Package may or not include 
the corporate logo.

3

e

3

e

16-lead QFN

Example

XXXXXX
XXXXXX
   YYWW
NNN

e3

MD
1812K6
   1710
265

e3

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005746A-html.html
background image

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

MD1812

DS20005746A-page  10

 2017 Microchip Technology Inc.

Maker
Microchip Technology Inc.