MCP9902/3/4 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

 2015-2016 Microchip Technology Inc.

DS20005382C-page 1

MCP9902/3/4

Features

• Up to Three External Temperature Monitors

- ±1°C maximum accuracy

MCP9902: -40°C to +105°C
MCP9903/4: -40°C to +125°C

- ±2°C maximum accuracy 

(+65°C < T

DIODE

 < +125°C)

- 0.125°C resolution

• Internal Temperature Monitor

- ±1°C accuracy
- (-40°C to +65°C)
- 0.125°C resolution

• Supports up to 2.2 nF diode filter capacitor
• Up to 400 kHz clock rate

- Maskable with register control

• Programmable SMBus address
• Operating voltage: 3.0 to 3.6 (V)
• ESD protection: 2 kV HBM
• Temperature Range: -40°C to +125°C
• Available in a small 8-Lead 2x2 mm WDFN and 

10-lead 3x3 mm VDFN packages

Typical Applications

• General Purpose Temperature Sensing
• Industrial Freezers and Refrigerators
• Food Processing
• Base Stations
• Remote Radio Unit

Description

The MCP9902/3/4 is a high-accuracy, low-cost,
System Management Bus (SMBus) temperature
sensor. The MCP9902/3/4 monitors up to four
temperature channels. Advanced features such as
Resistance Error Correction (REC), Beta
Compensation and automatic diode-type detection
combine to provide a robust solution for complex
environmental monitoring applications.
Resistance Error Correction automatically eliminates
the temperature error caused by series resistance
allowing greater flexibility in routing thermal diodes.
Beta Compensation eliminates temperature errors
caused by low, variable beta transistors common in
today's fine geometry processors. The automatic beta
detection feature monitors the external diode/transistor
and determines the optimum sensor settings for
accurate temperature measurements regardless of
processor technology. This frees the user from
providing unique sensor configurations for each
temperature monitoring application. These advanced
features plus ±1°C measurement accuracy for both
external and internal diode temperatures provide a
low-cost, highly flexible and accurate solution for
critical temperature monitoring applications.

Package Types

1

2

3
4

8

7

6
5

EP

9

V

DD

DP1

DN1

THERM/ADDR

SMCLK

SMDATA

ALERT/THERM2

GND

MCP9902

2 x 2 WDFN*

1

2

3
4

10

9

8
7

EP

11

V

DD

DP1

DN1
DP2

SMCLK

SMDATA

ALERT/THERM2

THERM/ADDR

5

6

DN2

GND

MCP9903

3 x 3  VDFN*

1

2

3
4

10

9

8
7

EP

11

V

DD

DP1

DN1

DP2/DN3

SMCLK

SMDATA

ALERT/THERM2

THERM/ADDR

5

6

DN2/DP3

GND

MCP9904

3 x 3 VDFN*

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

Multi-Channel Low-Temperature Remote Diode Sensor

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

MCP9902/3

/4

DS2

0005382C-page 2

 2015-20

16 M

ic

rochip 

T

e

chnology 

In

c.

MCP9902/3/4 Functional Block Diagram

Internal

Temp Diode

Switching

Current

Analog

Mux

Internal

Temperature Register

Digital

M

ux

Digital

M

ux

Limit

C

omparator

Low Limit Registers

High Limit Registers

Conversion Rate Register

Interupt Masking

Status Registers

Configuration Register

SMBus

Interface

SMCLK

SMDATA

DP1

DN2

(1)

/DP3

(2)

V

DD

GND

External Temperature

Register(s)

'6 ADC

THERM Limit Register

THERM Hysteresis Register

SMBus Address Decode

ALERT

MCP990X

THERM/ADDR

DN1

DP2

(1)

/DN3

(2)

Note 1:

Second remote channel for MCP9903 and MCP9904.

2:

Third remote channel for MCP9904.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

 2015-2016 Microchip Technology Inc.

DS20005382C-page 3

MCP9902/3/4

1.0

ELECTRICAL CHARACTERISTICS

1.1

Electrical Specifications

Absolute Maximum Ratings

(†)

Ambient Temperature under Bias...................................................................................................... -40°C to +125°C
Storage Temperature .......................................................................................................................  -65°C to +150°C
Voltage on V

DD

 with respect to V

SS

  ...................................................................................................  -0.3V to +4.0V

Voltage on all other pins with respect to V

SS

  ........................................................................... -0.3V to (V

DD

 + 0.3V)

Total Power Dissipation

(

1

)

............................................................................................................................. 500 mW

Maximum Current out of V

SS

 pin .....................................................................................................................  20 mA

Maximum Current into V

DD

 pin ........................................................................................................................  20 mA

Clamp Current, I

K

 (V

PIN

 < 0 or V

PIN

 > V

DD

)

20 mA

ESD Rating, All pins HBM................................................................................................................................. 2000V
Input Current, any pin Except V

DD

10 mA

Note 1:

Power dissipation is calculated as follows: P

DIS

= V

DD

x {I

DD

 I

OH

} +

 {(V

DD

– V

OH

) x I

OH

} + 

(V

OL 

x I

OL

). Rating up to +85°C.

† NOTICE

: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for
extended periods may affect device reliability.

1.2

DC Characteristics

Electrical Characteristics

: Unless otherwise specified, 3.0 ≤ V

DD

≤ 3.6V at -40°C ≤ T

A

≤ +125°C

Characteristic

Sym.

Min.

Typ.

Max.

Units

Conditions

Power Supply
Supply Voltage

V

DD

3.0

3.3

3.6

V

Supply Current

I

DD

200

450

µA

0.0625 conversion/second, dynamic 
averaging disabled

225

600

µA

1 conversion/second, dynamic 
averaging enabled

450

850

µA

4 conversions/second, dynamic 
averaging enabled

1120

1500

µA

> 16 conversions/second, dynamic 
averaging enabled

One-Shot Supply 
Current

I

DD_OS

170

230

µA

Device in One-Shot state, no active 
SMBus communications, ALERT and 
THERM pins not asserted.

Standby Supply Current

I

DD_SBY

170

230

µA

Device in Standby state, no SMBus 
communications, ALERT and THERM 
pins not asserted.

Power-on Reset 
Voltage

POR_V

0.6

0.9

V

Pin states defined

Power-On Reset 
Release Voltage

PORR

1.45

V

Rising V

DD

Power-Up Timer

t

PWRT

10

ms

V

DD

 Rise Rate

V

DD_RISE

0.05

V/ms

0 to 3V in 60 ms

Supply Voltage

V

DD

3.0

3.3

3.6

V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

MCP9902/3/4

DS20005382C-page 4

 2015-2016 Microchip Technology Inc.

External Temperature Monitor
Temperature Accuracy
(MCP9902)

-1

±0.25

+1

°C

-40°C < T

DIODE

< +105°C, 

-40°C < T

A

< +65°C

-2

±0.25

+2

°C

-40°C < T

DIODE

< +125°C

-40°C < T

A

< +125°C

Temperature Accuracy
(MCP9903, MCP9904)

-1

±0.25

+1

°C

-40°C < T

DIODE

< +125°C, 

-40°C < T

A

< +65°C

-2

±0.25

+2

°C

+40°C < T

DIODE

<   +125°C

-40°C < T

A

< +125°C

Temperature 
Resolution

0.125

°C

Internal Temperature Monitor
Temperature Accuracy

-1

±0.25

+1

°C

-40°C < T

A

< +65°C

-2

±0.5

+2

°C

-40°C < T

A

< +125°C

Temperature 
Resolution

0.125

°C

Timing and Capacitive Filter
Time to First 
Communications

t

INT_T

15

20

ms

Time after power up before ready to 
begin communications and 
measurement

Conversion Time All 
Channels
(MCP9903, MCP9904)

t

CONV

190

ms

Default settings

Conversion Time All 
Channels
(MCP9902)

t

CONV

150

ms

Default settings

Time to First 
Conversion from 
Standby

t

CONV1

220

ms

 Default settings

Capacitive Filter

C

FILTER

2.2

2.7

nF

Connected across external diode

ALERT and THERM Pins
Output Low Voltage

V

OL

0.4

V

I

SINK

= 8 mA

Leakage Current

I

LEAK

±5

µA

ALERT and THERM pins
Device powered or 
unpowered
T

A

< +85°C

pull-up voltage < 3.6V

1.2

DC Characteristics (Continued)

Electrical Characteristics

: Unless otherwise specified, 3.0 ≤ V

DD

≤ 3.6V at -40°C ≤ T

A

≤ +125°C

Characteristic

Sym.

Min.

Typ.

Max.

Units

Conditions

1.3

Thermal Specifications

Electrical Characteristics:

 Unless otherwise specified, 3.0

 V

DD

 3.6V at -40C  T

A

 +125C

Parameters

Sym.

Min.

Typ.

Max.

Units

Test Conditions

Temperature Ranges
Specified Temperature Range

T

A

-40

+125

°C

Operating Temperature Range

T

A

-40

+125

°C

Storage Temperature Range

T

A

-65

+125

°C

Thermal Package Resistances (

Note 1

)

Thermal Resistance, 8L-WDFN, 2x2

JA

141.3

°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

 2015-2016 Microchip Technology Inc.

DS20005382C-page 5

MCP9902/3/4

FIGURE 1-1:

POR and POR Rearm With Slow Rising V

DD

.

Thermal Resistance, 10L-VDFN, 3x3

JA

78

°C/W

Note 1:

JEDEC 2s2p, board size 76.2 x 114.3 x 1.6 mm, 1 via, airflow = 0 m/s.

1.3

Thermal Specifications

Electrical Characteristics:

 Unless otherwise specified, 3.0

 V

DD

 3.6V at -40C  T

A

 +125C

Parameters

Sym.

Min.

Typ.

Max.

Units

Test Conditions

V

DD

V

POR

V

PORR

V

SS

V

SS

N

POR

T

POR

(

3

)

POR REARM

Note 1:

When N

POR

 is low, the device is held in Reset.

2:

T

POR

 1

s typical.

3:

T

VLOW

 2.7

s typical.

T

VLOW

(

2

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

MCP9902/3/4

DS20005382C-page 6

 2015-2016 Microchip Technology Inc.

FIGURE 1-2:

SMBus Timing Diagram.

1.4

SMBUS Module Specifications

Operating Conditions

 (unless otherwise indicated): 3.0V ≤ V

DD

 ≤ 3.6V at -40°C ≤ T

A

 ≤ +85°C

Characteristic

Sym.

Min.

Typ.

Max.

Units

Conditions

SMBus Interface
Input High Voltage

V

IH

2.1

V

DD

V

Input Low Voltage

V

IL

-0.3

0.8

V

Leakage Current

I

LEAK

±5

µA

Powered or unpowered
T

A

 < +85°C

Hysteresis

0.1 

 V

DD

mV

Input Capacitance

C

IN

5

pF

Output Low Sink Current

I

OL

8.2

15

mA

SMDATA = 0.2V

SMBus Timing 
Clock Frequency

f

SMB

10

400

kHz

Spike Suppression

t

SP

50

ns

Bus Free Time Stop to 
Start

t

BUF

1.3

µs

Hold Time: Start

t

HD:STA

0.6

µs

Setup Time: Start

t

SU:STA

0.6

µs

Setup Time: Stop

t

SU:STO

0.6

µs

Data Hold Time

t

HD:DAT

0

µs

Data Hold Time

t

HD:DAT

0.3

µs

When transmitting to the master

Data Setup Time

t

SU:DAT

100

ns

When receiving from the master

Clock Low Period

t

LOW

1.3

µs

Clock High Period

t

HIGH

0.6

µs

Clock/Data Fall Time

t

FALL

300

ns

Clock/Data Rise Time

t

RISE

300

ns

Min = 20+0.1 C

LOAD

ns

Capacitive Load

C

LOAD

400

pF

Min = 20+0.1 C

LOAD

ns

Timeout

t

TIME-

OUT

25

35

ms

Per bus line

Clock Frequency

f

SMB

10

400

kHz

Disabled by default

SMDATA

SMCLK

T

BUF

P

S

S - Start Condition

P - Stop Condition

P

S

T

HIGH

T

LOW

T

HD:STA

T

SU:STO

T

HD:STA

T

HD:DAT

T

SU:DAT

T

SU:STA

T

FALL

T

RISE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

 2015-2016 Microchip Technology Inc.

DS20005382C-page 7

MCP9902/3/4

2.0

TYPICAL OPERATING CURVES

Note

: Unless otherwise indicated 3.0 

V

DD

 

 3.6V at -40C  T

A

 

 +125C.

FIGURE 2-1:

Supply Current vs. 

Conversion Rate (T

A

 = +25°C, V

DD

 = 3.3V).

FIGURE 2-2:

I

DD

 vs. Temperature.

FIGURE 2-3:

Temperature Error vs. Filter 

Capacitor (V

DD

= 3.3V, T

A

= T

D

= +25°C, 2N3904).

FIGURE 2-4:

Temperature Error vs. 

Ambient Temperature (V

DD

= 3.3V, T

D

= +25°C, 

16 Units, 2N3904).

FIGURE 2-5:

Temperature Error vs. 

Remote Temperature. (V

DD

= 3.3V, T

D

= +25°C, 

16 Units, 2N3904).

FIGURE 2-6:

Temperature Error vs. 

Series Resistance (T

A

= +25°C, V

DD

= 3.3V).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0.01

0.1

1

10

100

Supply

 Current 

(µA) 

Conversion Rate (Hz) 

Disabled
Enabled

Dynamic 

Averaging 

0

50

100

150

200

250

-40C -20C

0C

25C

45C

65C

85C 105C 125C

Average of 5 

devices 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0

1000

2000

3000

4000

T

emperature Error (

°C)

 

Filter Capacitance (pF) 

-4

-3

-2

-1

0

1

2

3

4

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

T

e

meprature Error (°C)

Temperature (°C)

V

DD

= 3.3V

T

D

= 25°C

30 Units

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

T

e

meprature Error (°C)

Temperature (°C)

0

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

T

emperaure Error 

C) 

T

emperature Error (

°C) 

Series Resistance (Ω) 

Disabled

Enabled

REC 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

MCP9902/3/4

DS20005382C-page 8

 2015-2016 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The MCP9902/3/4 has two variants that include
features unique to each device. Refer to the table to
determine applicability of the pin descriptions.
The description of the pins is listed in 

Table 3-1

.

 

3.1

Power Supply (V

DD

)

This pin is used to supply power to the device.

3.2

Diode 1 Pair (DN1/DP1)

Remote Diode 1 anode (DP1) and cathode (DN1) pins
for the MCP9902/3/4.

3.3

Diode 2 Pair (DN2/DP2)

Remote Diode 2 anode (DP2) and cathode (DN2) pins
for the MCP9903.

3.4

Anti-Parallel Diode Pair (DN3/DP2 
and DN2/DP3) (MCP9904 only)

• DP2/DN3: DP2 anode and DN3 cathode
• DN2/DP3: DN2 cathode and DP3 anode

3.5

 THERM LIMIT ALERT
(THERM/ADDR)

This pin asserts low when the hardware-set THERM
limit threshold is exceeded by one of the temperature
sensors. The assertion of this signal can’t be controlled
or masked by register setting. If enabled, the SMBus
slave address is set by the pull-up resistor on this pin.

3.6

Ground (GND)

This pin is used for system ground for the device.

3.7

Maskable ALERT 
(ALERT/THERM2)

This pin asserts when a diode temperature exceeds
the ALERT threshold. This pin may be masked by
register settings.

3.8

SMBus Data (SMDATA)

This is the open drain, bidirectional data pin for SMBus
communication.

3.9

 SMBus Clock (SMCLK)

This is the SMBus input clock pin for SMBus
communication.

3.10

Exposed Thermal Pad (EP)

Not internally connected, but recommend grounding for
mechanical support.

TABLE 3-1:

PIN FUNCTION TABLE

MCP9902

WDFN

MCP9903

VDFN

MCP9904

VDFN

Pin

Name

Pin

Type

Description

1

1

1

V

DD

P

Power

2

2

2

DP1

Analog

Diode 1/2 Connection

3

3

3

DN1

Analog

Diode 1/2 Connection

4

4

DP2

(

1

)

(/DN3)

(

2

)

Analog

Diode 1/2 Connection

5

5

DN2

(

1

)

(/DP3)

(

2

)

Analog

Diode 1/2 Connection

5

6

6

GND

P

Ground

4

7

7

THERM/ADDR

OD

Non-Maskable THERM

6

8

8

ALERT/THERM2

OD

Maskable ALERT/THERM2

7

9

9

SMDATA

OD

SMBus Clock

8

10

10

SMCLK

OD

SMBus Data

9

11

11

EP

Exposed Thermal pad

Note 1:

MCP9903 only.

2:

MCP9904 only.

3:

See 

Section 3.10 “Exposed Thermal Pad (EP)”

 for grounding recommendations.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

 2015-2016 Microchip Technology Inc.

DS20005382C-page 9

MCP9902/3/4

4.0

FUNCTIONAL DESCRIPTION

Thermal management is performed in cooperation
with a host device. This consists of the host reading
the temperature data of both the external and internal
temperature diodes of the MCP9902/3/4 and using
that data to control the speed of one or more fans.
The MCP9902/3/4 has two levels of monitoring. The
first provides a maskable ALERT signal to the host
when the measured temperatures exceed user pro-
grammable limits. This allows the MCP9902/3/4 to be
used as an independent thermal watchdog to warn the
host of temperature hot spots without direct control by
the host. The second level of monitoring provides a
non-maskable interrupt on the THERM output if the
measured temperatures meet or exceed a second pro-
grammable limit. 

Figure 4-1

 shows a system level block diagram of the

MCP9902/3/4.

FIGURE 4-1:

MCP9902/3/4

 System 

Diagram.

4.1

 Power States

The MCP9902/3/4 has two modes of operation: 
• Active (Run) - In this mode of operation, the ADC 

is converting on all temperature channels at the 
programmed conversion rate. The temperature 
data is updated at the end of every conversion 
and the limits are checked. In Active mode, writing 
to the one-shot register will do nothing.

• Standby (Stop) - In this mode of operation, the 

majority of circuitry is powered down to reduce 
supply current. The temperature data is not 
updated and the limits are not checked. In this 
mode of operation, the SMBus is fully active and 
the part will return requested data. Writing to the 
one-shot register will enable the device to update 
all temperature channels. Once all the channels 
are updated, the device will return to the Standby 
mode. 

4.2

Conversion Rates

The MCP9902/3/4 may be configured for different con-
version rates based on the system requirements. The
default conversion rate is 4 conversions per second.
Other available conversion rates are shown in 

Table 4-1

.

4.3

Dynamic Averaging

Dynamic averaging allows the MCP9902/3/4 to
measure the external diode channel for an extended
time based on the selected conversion rate. This
functionality can be disabled for increased power
savings at the lower conversion rates (see

Register 5-6

). When dynamic averaging is enabled,

the device will automatically adjust the sampling and
measurement time for the external diode channels.
This allows the device to average 2x or 16x longer
than the normal 11 bit operation (nominally 21 ms per
channel) while still maintaining the selected
conversion rate. The benefits of dynamic averaging
are improved noise rejection due to the longer
integration time as well as less random variation of the
temperature measurement.
When enabled, the dynamic averaging applies when a
one-shot command is issued. The device will perform
the desired averaging during the one-shot operation
according to the selected conversion rate.
When enabled, the dynamic averaging will affect the
typical supply current based on the chosen conversion
rate as shown in the power supply characteristics in

Table 1.2 "DC Characteristics"

.

CPU/GPU

MCP990X

Host

DP1

DN1

SMDATA

Thermal 
Junction

SMCLK

SMBus

Interface

THERM/ADDR

ALERT

Power 

Control

V

DD

GND

V

DD

 = 3.3V

3.3V – 5V

DN2/

DP3

DP2/

DN3

Optional

Anti-parallel 

diode

MCP9903/4 only

TABLE 4-1:

CONVERSION RATE

CONV<3:0>

Conversions/

Second

HEX

3

2

1

0

0h

0

0

0

0

1/16 

1h

0

0

0

1

1/8

2h

0

0

1

0

1/4

3h

0

0

1

1

1/2

4h

0

1

0

0

1

5h

0

1

0

1

2

6h

0

1

1

0

4 (default)

7h

0

1

1

1

8

8h

1

0

0

0

16

9h

1

0

0

1

32

Ah

1

0

1

0

64

Bh - Fh

All others 

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005382C-html.html
background image

MCP9902/3/4

DS20005382C-page 10

 2015-2016 Microchip Technology Inc.

4.4

THERM Output

The THERM output is asserted independently of the
ALERT output and cannot be masked. Whenever any
of the measured temperatures exceed the user
programmed Therm Limit values for the programmed
number of consecutive measurements, the THERM
output is asserted. Once it has been asserted, it will
remain asserted until all measured temperatures drop
below the Therm Limit minus the Therm Hysteresis
(also programmable). 
When the THERM output is asserted, the THERM
status bits will likewise be set. Reading these bits will
not clear them until the THERM output is deasserted.
Once the THERM output is deasserted, the THERM
status bits will be automatically cleared.

4.5

THERM Pin Address Decoding

The Address decode is performed by pulling known
currents from V

DD

 through the external resistor

causing the pin voltage to drop based on the
respective current/resistor relationship. This pin
voltage is compared against a threshold that
determines the value of the pull-up resistor. 
The MCP9902/3/4-A SMBus slave address is deter-
mined by the pull-up resistor on the THERM/ADDR pin
as shown in 

Table 4-2

 

The MCP9902-1 I

2

C/SMBus address is hard coded to

1001_100(r/w).

 

The MCP9902-2 I

2

C/SMBus address is hard coded to

1001_101(r/w).

 

The MCP9903-1 I

2

C/SMBus address is hard coded to

1001_100(r/w).

 

The MCP9903-2 I

2

C/SMBus address is hard coded to

1001_101(r/w).

 

The MCP9904-1 I

2

C/SMBus address is hard coded to

1001_100(r/w).

The MCP9904-2 I

2

C/SMBus address is hard coded to

1001_101(r/w).

4.6

ALERT/THERM2 Output

4.6.1

ALERT/THERM2 PIN INTERRUPT 
MODE

When configured to operate in interrupt mode, the
ALERT/THERM2 pin asserts low when an out-of-limit
measurement (> high limit or < low limit) is detected on
any diode or when an external diode fault is detected.
The ALERT/THERM2 pin will remain asserted as long
as an out-of-limit condition remains. Once the
out-of-limit condition has been removed, the
ALERT/THERM2 pin will remain asserted until the
appropriate status bits are cleared.
The ALERT/THERM2 pin can be masked by setting
the MASK_ALL bit. Once the ALERT/THERM2 pin has
been masked, it will be deasserted and remain deas-
serted until the MASK_ALL bit is cleared by the user.
Any interrupt conditions that occur while the
ALERT/THERM2 pin is masked will update the Status
Register normally. There are also individual channel
masks (see 

Register 5-20

).

The ALERT/THERM2 pin is used as an interrupt signal
or as an SMBus Alert signal that allows an SMBus
slave to communicate an error condition to the master.
One or more ALERT/THERM2 Outputs can be
hard-wired together. 

4.6.2

ALERT/THERM2 PIN IN THERM 
MODE

When the ALERT/THERM2 pin is configured to oper-
ate in THERM mode, it will be asserted if any of the
measured temperatures exceeds the respective high
limit. The ALERT/THERM2 pin will remain asserted
until all temperatures drop below the corresponding
high limit minus the Therm Hysteresis value. 
When the ALERT/THERM2 pin is asserted in THERM
mode, the corresponding high limit status bits will be
set. Reading these bits will not clear them until the
ALERT/THERM2 pin is deasserted. Once the
ALERT/THERM2 pin is deasserted, the status bits will
be automatically cleared. 
The MASK_ALL bit will not block the ALERT/THERM2
pin in this mode; however, the individual channel
masks (see 

Register 5-20

) will prevent the respective

channel from asserting the ALERT/THERM2 pin.

4.6.3

DEFAULT POWER UP CONDITIONS

On power-up, the ALERT/THERM2 is disabled and the
MASK ALL (MSKAL) bit in the CONFIG register (see

Register 5-6

) is set. Additionally, an artificial fault has

been placed in the device, and is enabled at power up.
The FAULT TEST (FT_TST) bit in the Fault Status reg-
ister (see 

Register 5-20

) will allow the assertion of the

ALERT/THERM2 pin when this test mode is enabled
once MSKAL is cleared. To use the ALERT/THERM2
functions described in this section, the MSKAL bit must
be set to ‘0’, and the FT_TST bit to ‘1’ in order for the
pin to function properly.

TABLE 4-2:

I

2

C/SMBUS ADDRESS 

DECODE

Pull Up Resistor on 

THERM pin (±5%)

SMBus Address

4.7 kΩ

1111_100 (r/w)b

6.8 kΩ

1011_100 (r/w)b

10 kΩ

1001_100 (r/w)b

15 kΩ

1101_100 (r/w)b

22 kΩ

0011_100 (r/w)b

33 kΩ

0111_100 (r/w)b

Maker
Microchip Technology Inc.
Datasheet PDF Download