MCP6H71/2/4 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

 2012-2014 Microchip Technology Inc.

DS20002325C-page 1

MCP6H71/2/4

Features:

• Input Offset Voltage: ±1 mV (typical)

• Quiescent Current:

 

480 µA (typical)

• Common Mode Rejection Ratio: 103 dB (typical)

• Power Supply Rejection Ratio: 105 dB (typical)

• Rail-to-Rail Output

• Supply Voltage Range:

- Single-Supply Operation: 3.5V to 12V

- Dual-Supply Operation: ±1.75V to ±6V

• Gain Bandwidth Product: 2.7 MHz (typical)

• Slew Rate: 2 V/µs (typical)

• Unity Gain Stable

• Extended Temperature Range: -40°C to +125°C

• No Phase Reversal

Applications:

• Automotive Power Electronics

• Industrial Control Equipment

• Battery Powered Systems

• Sensor Conditioning

Design Aids:

• SPICE Macro Models 

• FilterLab

®

 Software

• MAPS (Microchip Advanced Part Selector)

• Analog Demonstration and Evaluation Boards

• Application Notes

Typical Application

Description:

Microchip’s MCP6H71/2/4 family of operational
amplifiers (op amps) has a wide supply voltage range
of 3.5V to 12V and rail-to-rail output operation. This
family is unity gain stable and has a gain bandwidth
product of 2.7 MHz (typical). These devices operate
with a single-supply voltage as high as 12V, while only
drawing 480 µA/amplifier (typical) of quiescent current.

The MCP6H71/2/4 family is offered in single
(MCP6H71), dual (MCP6H72) and quad (MCP6H74)
configurations. All devices are fully specified in
extended temperature range from -40°C to +125°C.

Package Types

Difference Amplifier

R

1

V

OUT

R

2

R

1

V

REF

R

2

V

DD

V

1

V

2

MCP6H71

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

1

2

3

4

8

7

6

5

EP

9

V

DD

V

OUT

NC

NC

V

IN

+

V

IN

V

SS

NC

1

2

3

4

8

7

6

5

EP

9

V

OUTB

V

INB

V

INB

+

V

DD

V

INA

+

V

INA

V

SS

V

OUTA

V

INA

+

V

INA

V

SS

1

2

3

4

8

7

6

5

V

OUTA

V

DD

V

OUTB

V

INB

V

INB

+

V

IN

+

V

IN

V

SS

1

2

3

4

8

7

6

5

NC

NC

V

DD

V

OUT

NC

MCP6H71

SOIC

MCP6H72

SOIC

MCP6H71

2x3 TDFN

MCP6H72

2x3 TDFN

MCP6H74

SOIC, TSSOP

V

INA

+

V

INA

V

DD

1

2

3

4

14

13

12

11

V

OUTA

V

OUTD

V

IND

V

IND

+

V

SS

V

INB

+ 5

10 V

INC

+

V

INB

– 6

9

V

OUTB

7

8 V

OUTC

V

INC

2.7 MHz, 12V Op Amps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

MCP6H71/2/4

DS20002325C-page 2

 2012-2014 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

 2012-2014 Microchip Technology Inc.

DS20002325C-page 3

MCP6H71/2/4

1.0

ELECTRICAL 
CHARACTERISTICS

1.1

Absolute Maximum Ratings †

V

DD

 – V

SS

.......................................................................13.2V

Current at Input Pins......................................................±2 mA

Analog Inputs (V

IN

+, V

IN

-)††.............V

SS

 – 1.0V to V

DD

  + 1.0V

All Other Inputs and Outputs ............V

SS

 – 0.3V to V

DD

  + 0.3V

Difference Input Voltage..........................................V

DD

 – V

SS

Output Short-Circuit Current...................................continuous

Current at Output and Supply Pins ..............................±65 mA

Storage Temperature.....................................-65°C to +150°C

Maximum Junction Temperature (T

J

)...........................+150°C

ESD protection on all pins (HBM; MM)

 2 kV; 200V

† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at those or any other conditions
above those indicated in the operational listings of this
specification is not implied. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

†† See 

Section 4.1.2, Input Voltage Limits

.

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V

DD

= +3.5V to +12V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2 and R

L

= 10 k

to V

L

. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Offset

Input Offset Voltage

V

OS

-4

±1

4

mV

Input Offset Drift with Temperature

V

OS

/

T

A

±2.5

µV/°C T

A

= -40°C to +125°C

Power Supply Rejection Ratio

PSRR

82

105

dB

Input Bias Current and Impedance

Input Bias Current

I

B

10

pA

400

pA

T

A

= +85°C

9

25

nA

T

A

= +125°C

Input Offset Current

I

OS

±1

pA

Common Mode Input Impedance

Z

CM

10

13

||6

||pF

Differential Input Impedance

Z

DIFF

10

13

||6

||pF

Common Mode

Common Mode Input Voltage Range

V

CMR

V

SS

 – 0.3

V

DD

 – 2.5

V

Common Mode Rejection Ratio 

CMRR

76

96

dB

V

CM

= -0.3V to 1.0V, 

V

DD

= 3.5V

80

99

dB

V

CM

= -0.3V to 2.5V, 

V

DD

= 5V

80

103

dB

V

CM

= -0.3V to 9.5V, 

V

DD

= 12V

Open-Loop Gain

DC Open-Loop Gain (Large Signal)

A

OL

100

120

dB

0.2V < V

OUT

 <(V

DD 

– 

0.2V)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

MCP6H71/2/4

DS20002325C-page 4

 2012-2014 Microchip Technology Inc.

 

Output

High-Level Output Voltage 

V

OH

3.490

3.495

V

V

DD

= 3.5V

0.5V input overdrive

4.985

4.993

V

V

DD

= 5V 

0.5V input overdrive

11.970

11.980

V

V

DD

= 12V 

0.5V input overdrive

Low-Level Output Voltage 

V

OL

0.005

0.010

V

V

DD

= 3.5V 

0.5 V input overdrive

0.007

0.015

V

V

DD

= 5V 

0.5 V input overdrive

0.020

0.030

V

V

DD

= 12V 

0.5 V input overdrive

Output Short-Circuit Current

I

SC

±32

mA

V

DD

= 3.5V

±50

mA

V

DD

= 5V

±53

mA

V

DD

= 12V

Power Supply

Supply Voltage

V

DD

3.5

12

V

Single-Supply operation

±1.75

±6

V

Dual-Supply operation

Quiescent Current per Amplifier

I

Q

480

600

µA

I

O

= 0,  V

CM

= V

DD

/4

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T

A

= +25°C, V

DD

= +3.5V to +12V, V

SS

= GND, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

AC Response

Gain Bandwidth Product

GBWP

2.7

MHz

Phase Margin

PM

57

°C

G = +1V/V

Slew Rate

SR

2

V/µs

Noise

Input Noise Voltage

E

ni

11

µVp-p

f = 0.1 Hz to 10 Hz

Input Noise Voltage Density

E

ni

28

nV/

Hz f = 1 kHz

16

nV/

Hz f = 10 kHz

Input Noise Current Density

i

ni

1.9

fA/

Hz

f = 1 kHz

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V

DD

= +3.5V to +12V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2 and R

L

= 10 k

to V

L

. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

 2012-2014 Microchip Technology Inc.

DS20002325C-page 5

MCP6H71/2/4

1.2

Test Circuits

The circuit used for most DC and AC tests is shown in

Figure 1-1

. This circuit can independently set V

CM

 and

V

OUT

 (refer to 

Equation 1-1

). Note that V

CM

 is not the

circuit’s common mode voltage ((V

P

+ V

M

)/2), and that

V

OST

 includes V

OS

 plus the effects (on the input offset

error, V

OST

) of temperature, CMRR, PSRR and A

OL

.

EQUATION 1-1:

 

FIGURE 1-1:

AC and DC Test Circuit for 

Most Specifications.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V

DD

 = +3.5V to +12V and V

SS

= GND.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Operating Temperature Range

T

A

-40

+125

°C

Note 1

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances

Thermal Resistance, 8L-SOIC

JA

149.5

°C/W

Thermal Resistance, 8L-2x3 TDFN

JA

52.5

°C/W

Thermal Resistance, 14L-SOIC

JA

95.3

°C/W

Thermal Resistance, 14L-TSSOP

JA

100

°C/W

Note 1: The internal junction temperature (T

J

) must not exceed the absolute maximum specification of +150°C.

G

DM

R

F

R

G

=

V

CM

V

P

V

DD

2

+

 2

=

V

OUT

V

DD

2

V

P

V

M

 V

OST

1

G

DM

+

+

+

=

Where:

G

DM

= Differential Mode Gain

(V/V)

V

CM

= Op Amp’s Common Mode

Input Voltage

(V)

V

OST

= Op Amp’s Total Input Offset

Voltage

(mV)

V

OST

V

IN 

V

IN+

=

V

DD

R

G

R

F

V

OUT

V

M

C

B2

C

L

R

L

V

L

C

B1

100 k

100 k

R

G

R

F

V

DD

/2

V

P

100 k

100 k

60 pF

10 k

1 µF

100 nF

V

IN–

V

IN+

C

F

6.8 pF

C

F

6.8 pF

MCP6H7X

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

MCP6H71/2/4

DS20002325C-page 6

 2012-2014 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

 2012-2014 Microchip Technology Inc.

DS20002325C-page 7

MCP6H71/2/4

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

 

FIGURE 2-1:

Input Offset Voltage.

 

FIGURE 2-2:

Input Offset Voltage Drift.

 

FIGURE 2-3:

Input Offset Voltage vs. 

Common Mode Input Voltage.

 

FIGURE 2-4:

 Input Offset Voltage vs. 

Common Mode Input Voltage.

 

FIGURE 2-5:

Input Offset Voltage vs. 

Common Mode Input Voltage.

FIGURE 2-6:

Input Offset Voltage vs. 

Output Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

6%

8%

10%

12%

14%

16%

n

tage of Occurances

800 Samples

0%

2%

4%

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

Perce

n

Input Offset Voltage (mV)

15%

20%

25%

30%

35%

40%

45%

50%

tage of Occurances 

800 Samples
T

A

= - 40°C to +125°C

0%

5%

10%

15%

-24

-21

-18

-15

-12

-9

-6

-3

0

3

6

9

12

15

18

21

24

Percen

Input Offset Voltage Drift (µV/°C)

-400

-200

0

200

400

600

800

1000

t Offset V

o

ltage 

(µV)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

-1000

-800

-600

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Inpu

t

Common Mode Input Voltage (V)

V

DD

= 3.5V

Representative Part

-400

-200

0

200

400

600

800

1000

t Offset V

o

ltage 

(µV)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

-1000

-800

-600

-0.5 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Inpu

t

Common Mode Input Voltage (V)

V

DD

= 5V

Representative Part

-400

-200

0

200

400

600

800

1000

t Offset V

o

ltage 

(µV)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

V

= 12V

-1000

-800

-600

-0.5

1.5

3.5

5.5

7.5

9.5

11.5

Inpu

t

Common Mode Input Voltage (V)

V

DD

= 12V

Representative Part

-400

-200

0

200

400

600

800

1000

t Offset V

o

ltage 

(µV)

V

DD

= 12V

V

DD

= 3.5V

Representative Part

V

DD

= 5V

-1000

-800

-600

0

2

4

6

8

10

12

14

Inpu

t

Output Voltage (V)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

MCP6H71/2/4

DS20002325C-page 8

 2012-2014 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

 

FIGURE 2-7:

Input Offset Voltage vs. 

Power Supply Voltage.

FIGURE 2-8:

Input Noise Voltage Density 

vs. Frequency.

FIGURE 2-9:

Input Noise Voltage Density 

vs. Common Mode Input Voltage.

FIGURE 2-10:

CMRR, PSRR vs. 

Frequency.

FIGURE 2-11:

CMRR, PSRR vs. Ambient 

Temperature.

FIGURE 2-12:

Input Bias, Offset Currents 

vs. Ambient Temperature.

-300

-200

-100

0

100

200

O

ffset V

o

ltage (uV)

T

A

= +125°C

Representative Part

-600

-500

-400

0

2

4

6

8

10

12

Input

O

Power Supply Voltage (V)

T

A

125 C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

10

100

1,000

N

oise V

o

ltage Density

 

(nV/

¥

Hz)

1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

Input 

N

Frequency (Hz)

1           10        100  

1k

10k      100k      1M

12

14

16

18

20

N

oise V

o

ltage Density

 

(nV/

¥

Hz)

f = 10 kHz

8

10

-1

1

3

5

7

9

11

Input 

N

Common Mode Input Voltage (V)

f   10 kHz
V

DD

= 12 V

50

60

70

80

90

100

110

120

M

RR, PSRR 

(dB)

CMRR

PSRR+

PSRR-

Representative Part

20

30

40

10

100

1000

10000

100000

1000000

C

M

Frequency (Hz)

10           100         1k

      10k

  100k          1M

70

80

90

100

110

120

130

C

MRR, PSRR 

(dB)

PSRR

CMRR @ V

DD

= 12V

@ V

DD

= 5V

@ V

3 5V

50

60

70

-50

-25

0

25

50

75

100

125

C

Ambient Temperature (°C)

@ V

DD

= 3.5V

10

100

1000

10000

as and Offset 

Currents 

(A)

Input Bias Current

V

DD

= 12 V

10n

1n

100p

10p

0.1

1

25

35

45

55

65

75

85

95

105

11

5

125

Input Bi

Ambient Temperature (°C)

Input Offset Current

1p

0.1p

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

 2012-2014 Microchip Technology Inc.

DS20002325C-page 9

MCP6H71/2/4

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

FIGURE 2-13:

Input Bias Current vs. 

Common Mode Input Voltage.

FIGURE 2-14:

Quiescent Current vs. 

Ambient Temperature.

FIGURE 2-15:

Quiescent Current vs. 

Power Supply Voltage.

FIGURE 2-16:

Open-Loop Gain, Phase vs. 

Frequency.

FIGURE 2-17:

DC Open-Loop Gain vs. 

Power Supply Voltage.

 

FIGURE 2-18:

DC Open-Loop Gain vs. 

Output Voltage Headroom.

100

1000

10000

100000

u

Bias Current (A)

T

A

= +125°C

T

A

= +85°C

100n

10n

1n

100p

1

10

0

2

4

6

8

10

12

Inp

u

Common Mode Input Voltage (V)

V

DD

= 12 V

10p

1p

400

500

600

700

u

iescent Current 

(uA/Amplifier)

V

DD

= 12V

V

DD

= 5V

V

DD

= 3.5V

200

300

-50

-25

0

25

50

75

100

125

Q

u

Ambient Temperature (°C)

200

300

400

500

600

700

Q

uiescent Current 

(uA/Amplifier)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

40°C

0

100

0

2

4

6

8

10

12

Q

Power Supply Voltage (V)

T

A

= -40°C

-150

-120

-90

-60

-30

0

20

40

60

80

100

120

e

n-Loop Phase 

(°)

e

n-Loop Gain (dB)

Open-Loop Gain

Open-Loop Phase

-210

-180

150

-20

0

20

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

Op

e

Op

e

Frequency (Hz)

1      10     100      1k     10k   100k    1M   10M

100

110

120

130

140

150

160

pen Loop Gain (dB)

80

90

100

3

5

7

9

11

13

DC-O

Power Supply Voltage (V)

V

SS

+ 0.2V < V

OUT

< V

DD

- 0.2V

80

100

120

140

160

-Open Loop Gain (dB)

V

DD

= 12V

V

DD

= 5V

V

DD

= 3.5V

40

60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DC

-

Output Voltage Headroom (V)

V

DD

- V

OH

or V

OL

- V

SS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002325C-html.html
background image

MCP6H71/2/4

DS20002325C-page 10

 2012-2014 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

FIGURE 2-19:

Channel-to-Channel 

Separation vs. Frequency (MCP6H72/4 only).

FIGURE 2-20:

Gain Bandwidth Product, 

Phase Margin vs. Ambient Temperature.

FIGURE 2-21:

Gain Bandwidth Product, 

Phase Margin vs. Ambient Temperature.

 

FIGURE 2-22:

Output Short Circuit Current 

vs. Power Supply Voltage.

 

FIGURE 2-23:

Output Voltage Swing vs. 

Frequency.

FIGURE 2-24:

Output Voltage Headroom 

vs. Output Current.

90

100

110

120

130

140

h

annel to Channel 

S

eparation (dB)

70

80

90

100

1000

10000

100000

100000

C

h

S

Frequency (Hz)

100              1k           10k

    100k           1M

Input Referred

60

80

100

120

140

160

180

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B

andw

idth Product

(MHz)

Gain Bandwidth Product

Gain Bandwidth Product

Gain Bandwidth Product

Gain Bandwidth Product

Gain Bandwidth Product

Gain Bandwidth Product

h

ase Mar

gin (°)

0

20

40

0.0

0.5

1.0

-50

-25

0

25

50

75

100 125

Gain

B

Ambient Temperature (°C)

Phase Margin

V

DD

= 3.5V

Phase Margin

V

DD

= 3.5V

Phase Margin

V

DD

= 3.5V

Phase Margin

V

DD

= 3.5V

Phase Margin

V

DD

= 3.5V

Phase Margin

V

DD

= 3.5V

P

h

40

60

80

100

120

140

160

180

1 0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

n

 Bandw

idth Product

(MHz)

Gain Bandwidth Product

P

hase Mar

gin (°)

0

20

40

0.0

0.5

1.0

-50

-25

0

25

50

75

100 125

Gai

n

Ambient Temperature (°C)

V

DD

= 12V

V

DD

= 12V

V

DD

= 12V

V

DD

= 12V

V

DD

= 12V

V

DD

= 12V

V

DD

= 12V

Phase Margin

V

DD

= 12V

P

20

30

40

50

60

70

t Short 

Circuit Current 

(mA)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T = 40°C

0

10

0

2

4

6

8

10

12

Outpu

Power Supply Voltage (V)

T

A

= -40 C

1

10

100

t V

o

ltage 

Sw

ing (V

P-P

)

V

DD

= 3.5V

V

DD

= 5V

V

DD

= 12V

0.1

1000

10000

100000

1000000

10000000

Outpu

t

Frequency (Hz)

1k

10k             100k              1M            10M

1

10

100

1000

V

oltage Headroom (mV)

V

DD

- V

OH

V

OL

- V

SS

V

DD

= 12V

0.1

1

0.01

0.1

1

10

100

Output

V

Output Current (mA)

DD

OH

Maker
Microchip Technology Inc.
Datasheet PDF Download