2015 Microchip Technology Inc.
DS20005405A-page 1
MCP47FVBXX
Features
• Operating Voltage Range:
- 2.7V to 5.5V – Full Specifications
- 1.8V to 2.7V – Reduced Device Specifications
• Output Voltage Resolutions:
- 8-bit: MCP47FVB0X (256 Steps)
- 10-bit: MCP47FVB1X (1024 Steps)
- 12-bit: MCP47FVB2X (4096 Steps)
• Rail-to-Rail Output
• Fast Settling Time of 6 µs (typical)
• DAC Voltage Reference Source Options:
- Device V
DD
- External V
REF
pin (buffered or unbuffered)
- Internal Band Gap (1.22V typical)
• Output Gain Options:
- (1x) Unity
- 2x (when not using internal V
DD
as voltage
source)
• Power-on/Brown-out Reset Protection
• Power-Down Modes:
- Disconnects output buffer (High Impedance)
- Selection of V
OUT
pull-down resistors
(100 k
or 1 k)
• Low Power Consumption:
- Normal operation: <180 µA (Single), 380 µA
(Dual)
- Power-down operation: 650 nA typical
• I
2
C™ Interface:
- Slave address options: four predefined
addresses
- Standard (100 kbps), Fast (400 kbps), and
High-Speed (up to 3.4 Mbps) modes
- High Voltage Command Support
(MCP47FEBXX compatibility)
• Package Types: 8-lead TSSOP
• Extended Temperature Range: -40°C to +125°C
Package Types
General Description
The MCP47FVBXX are Single- and Dual-channel 8-bit,
10-bit, and 12-bit buffered voltage output Digital-to-
Analog Converters (DAC) with volatile memory and an
I
2
C serial interface.
The V
REF
pin, the device V
DD
or the internal band gap
voltage can be selected as the DAC’s reference
voltage. When V
DD
is selected, V
DD
is connected
internally to the DAC reference circuit. When the V
REF
pin is used, the user can select the output buffer’s gain
to be 1 or 2. When the gain is 2, the V
REF
pin voltage
should be limited to a maximum of V
DD
/2.
These devices have a two-wire I
2
C-compatible serial
interface for Standard (100 kHz), Fast (400 kHz) or
High-Speed (1.7 MHz and 3.4 MHz) modes.
Applications
• Set Point or Offset Trimming
• Sensor Calibration
• Low-Power Portable Instrumentation
• PC Peripherals
• Data Acquisition Systems
• Motor Control
MCP47FVBX1
TSSOP
Single
V
OUT0
V
REF0
NC
SCL
LAT0/HVC
1
2
3
4
8
7
6
5 V
SS
SDA
V
DD
MCP47FVBX2
TSSOP
Dual
V
OUT0
V
REF
(
1
)
V
OUT1
SCL
LAT
(
1
)
/HVC
1
2
3
4
8
7
6
5 V
SS
SDA
V
DD
Note 1:
This pin’s signal can be connected to DAC0
and/or DAC1.
8- /10- /12-Bit Single/Dual Voltage Output Volatile
Digital-to-Analog Converters with I
²
C™ Interface
MCP47FVBXX
DS20005405A-page 2
2015 Microchip Technology Inc.
MCP47FVBX1 Device Block Diagram (Single-Channel Output)
Power-up/
Brown-out
Control
V
DD
V
SS
I
2
C™ Serial
Interface
Module and
Control Logic
Memory (32x16)
DAC0 (Vol)
V
REF0
Op
Amp
Gain
V
OUT0
LAT0/HVC
Re
si
st
o
r
La
dde
r
V
SS
PD1:PD0 and
VREF1:VREF0
VREF1:VREF0
+
-
V
DD
SDA
SCL
Band Gap
(1.22V)
PD1:PD0
VREF1:VREF0
V
DD
V
BG
PD1:PD0
1k
10
0
k
VREF (Vol)
Power-down (Vol)
Gain (Vol)
Status (Vol)
(
1
)
and PD1:PD0
Note 1:
If Internal Band Gap is selected, this buffer has a 2x gain. If the G bit = ‘1’, this is a total gain of 4.
2015 Microchip Technology Inc.
DS20005405A-page 3
MCP47FVBXX
MCP47FVBX2 Device Block Diagram (Dual-Channel Output)
Power-up/
Brown-out
Control
V
DD
V
SS
I
2
C™ Serial
Interface
Module and
Control Logic
V
REF
LAT/HVC
Re
si
st
o
r
La
dde
r
Op
Amp
Gain
V
OUT1
Re
si
sto
r
Lad
der
intVR1
PD1:PD0 and
VREF1:VREF0
VREF1:VREF0
+
-
V
DD
PD1:PD0 and
VREF1:VREF0
VREF1:VREF0
+
-
V
DD
SDA
SCL
Band Gap
(1.22V)
Band Gap
(1.22V)
PD1:PD0
V
DD
V
BG
V
DD
V
SS
V
SS
PD1:PD0
Op
Amp
Gain
V
OUT0
1k
10
0
k
1k
10
0
k
Memory (32x16)
DAC0 and 1 (Vol)
VREF (Vol)
Power-down (Vol)
Gain (Vol)
Status (Vol)
VREF1:VREF0
and PD1:PD0
VREF1:VREF0
and PD1:PD0
PD1:PD0
PD1:PD0
(
1
)
(
1
)
Note 1:
If Internal Band Gap is selected, this buffer has a 2x gain. If the G bit = ‘1’, this is a total gain of 4.
MCP47FVBXX
DS20005405A-page 4
2015 Microchip Technology Inc.
Family Device Features
Device
# o
f
Cha
n
ne
ls
Re
s
o
lutio
n
(bit
s
)
Con
trol
In
terfac
e
DAC Outp
ut
POR/BOR
Se
tting
(
1
)
# of
VREF
Inputs
Internal
band
gap
?
# of
LAT
Inputs
Memory
Specified
Operating Range
(V
DD
)
(
2
)
MCP47FVB01
1
8
I
2
C™
7Fh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FVB11
1
10
I
2
C
1FFh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FVB21
1
12
I
2
C
7FFh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FVB02
2
8
I
2
C
7Fh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FVB12
2
10
I
2
C
1FFh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FVB22
2
12
I
2
C
7FFh
1
Yes
1
RAM
1.8V to 5.5V
MCP47FEB01
1
8
I
2
C™
7Fh
1
Yes
1
EEPROM
1.8V to 5.5V
MCP47FEB11
1
10
I
2
C
1FFh
1
Yes
1
EEPROM
1.8V to 5.5V
MCP47FEB21
1
12
I
2
C
7FFh
1
Yes
1
EEPROM
1.8V to 5.5V
MCP47FEB02
2
8
I
2
C
7Fh
1
Yes
1
EEPROM
1.8V to 5.5V
MCP47FEB12
2
10
I
2
C
1FFh
1
Yes
1
EEPROM
1.8V to 5.5V
MCP47FEB22
2
12
I
2
C
7FFh
1
Yes
1
EEPROM
1.8V to 5.5V
Note 1:
The Factory Default value.
2:
Analog performance specified from 2.7V to 5.5V.
2015 Microchip Technology Inc.
DS20005405A-page 5
MCP47FVBXX
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(†)
Voltage on V
DD
with respect to V
SS
......................................................................................................... -0.6V to +6.5V
Voltage on all pins with respect to V
SS
............................................................................................... -0.6V to V
DD
+0.3V
Input clamp current, I
IK
(V
I
< 0, V
I
> V
DD
, V
I
> V
PP
on HV pins) ..........................................................................±20 mA
Output clamp current, I
OK
(V
O
< 0 or V
O
> V
DD
)...................................................................................................±20 mA
Maximum current out of V
SS
pin
(Single) ..........................................................................................................50 mA
(Dual)...........................................................................................................100 mA
Maximum current into V
DD
pin
(Single) ..........................................................................................................50 mA
(Dual)...........................................................................................................100 mA
Maximum current sourced by the V
OUT
pin ............................................................................................................20 mA
Maximum current sunk by the V
OUT
pin..................................................................................................................20 mA
Maximum current sunk by the V
REF
pin .................................................................................................................125 µA
Maximum input current source/sunk by SDA, SCL pins ..........................................................................................2 mA
Maximum output current sunk by SDA Output pin .................................................................................................25 mA
Total power dissipation
(
1
)
....................................................................................................................................400 mW
Package power dissipation (T
A
= +50°C, T
J
= +150°C)
TSSOP-8...................................................................................................................................................700 mW
ESD protection on all pins
±4 kV (HBM)
±400V (MM)
±2 kV (CDM)
Latch-Up (per JEDEC JESD78A) @ +125°C .....................................................................................................±100 mA
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied ...............................................................................................-55°C to +125°C
Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C
Maximum Junction Temperature (T
J
).................................................................................................................... +150°C
Note 1:
Power dissipation is calculated as follows:
P
DIS
= V
DD
x {I
DD
-
I
OH
} +
{(V
DD
– V
OH
) x I
OH
} +
(V
OL
x I
OL
)
† Notice:
Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods
may affect device reliability.
MCP47FVBXX
DS20005405A-page 6
2015 Microchip Technology Inc.
DC CHARACTERISTICS
DC Characteristics
Standard Operating Conditions (unless otherwise specified)
Operating Temperature
–40°C
T
A
+125°C (Extended)
All parameters apply across the specified operating ranges unless noted.
V
DD
= +2.7V to 5.5V, V
REF
= +2.048V to V
DD
, V
SS
= 0V,
Gx = ‘0’, R
L
= 5 k
from V
OUT
to GND, C
L
= 100 pF.
Typical specifications represent values for V
DD
= 5.5V, T
A
= +25°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Supply Voltage
V
DD
2.7
—
5.5
V
1.8
—
2.7
V
DAC operation (reduced analog
specifications) and Serial Interface
V
DD
Voltage
(rising) to ensure device
Power-on Reset
V
POR/BOR
—
—
1.7
V
RAM retention voltage (V
RAM
) < V
POR
V
DD
voltages greater than V
POR/BOR
limit
ensure that device is out of reset.
V
DD
Rise Rate to ensure
Power-on Reset
V
DDRR
(
Note 3
)
V/ms
High-Voltage Commands
Voltage Range (HVC pin)
V
HV
V
SS
—
12.5
V
The HVC pin will be at one of three input
levels (V
IL
, V
IH
or V
IHH
)
(
1
)
High-Voltage
Input Entry Voltage
V
IHHEN
9.0
—
—
V
Threshold for Entry into WiperLock™
Technology
High-Voltage
Input Exit Voltage
V
IHHEX
—
—
V
DD
+ 0.8V
V
(
Note 1
)
Power-on Reset to Out-
put-Driven Delay
T
PORD
—
25
50
µs
V
DD
rising, V
DD
> V
POR
Note 1
This parameter is ensured by design.
Note 3
POR/BOR voltage trip point is not slope dependent. Hysteresis implemented with time delay.
2015 Microchip Technology Inc.
DS20005405A-page 7
MCP47FVBXX
DC CHARACTERISTICS (CONTINUED)
DC Characteristics
Standard Operating Conditions (unless otherwise specified)
Operating Temperature
–40°C
T
A
+125°C (Extended)
All parameters apply across the specified operating ranges unless noted.
V
DD
= +2.7V to 5.5V, V
REF
= +2.048V to V
DD
, V
SS
= 0V,
Gx = ‘0’, R
L
= 5 k
from V
OUT
to GND, C
L
= 100 pF.
Typical specifications represent values for V
DD
= 5.5V, T
A
= +25°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Supply Current
I
DD
—
—
500
µA
Single Serial Interface Active
(Not High-Voltage Command),
VRxB:VRxA = ‘01’
(
6
)
,
V
OUT
is unloaded, V
DD
= 5.5V
volatile DAC register = 000h
I
2
C™: F
SCL
= 3.4 MHz
—
—
700
µA
Dual
—
—
400
µA
Single Serial Interface Active
(
2
)
(Not High-Voltage Command),
VRxB:VRxA = ‘10’
(
4
)
,
V
OUT
is unloaded, V
REF
= V
DD
= 5.5V
volatile DAC register = 000h
I
2
C: F
SCL
= 3.4 MHz
—
—
550
µA
Dual
—
—
180
µA
Single Serial Interface Inactive
(
2
)
(Not High-Voltage Command),
VRxB:VRxA = ‘00’,
SCL = SDA = V
SS
, V
OUT
is unloaded,
volatile DAC register = 000h
—
—
380
µA
Dual
—
—
180
µA
Single Serial Interface Inactive
(
2
)
(Not High-Voltage Command),
VRxB:VRxA = ‘11’, V
REF
= V
DD
,
SCL = SDA = V
SS
, V
OUT
is unloaded,
volatile DAC register = 000h
—
—
380
µA
Dual
—
145
180
µA
Single HVC = 12.5V (High-Voltage
Command), Serial Interface Inactive
V
REF
= V
DD
= 5.5V, LAT/HVC = V
IHH
,
DAC registers = 000h,
V
OUT
pins are unloaded.
—
260
400
µA
Dual
Power-Down
Current
I
DDP
—
0.65
3.8
µA
PDxB:PDxA = ‘01’
(
5
)
,
V
OUT
not connected
Note 2
This parameter is ensured by characterization.
Note 4
Supply current is independent of current through the resistor ladder in mode VRxB:VRxA = ‘10’.
Note 5
The PDxB:PDxA = ‘01’, ‘10’, and ‘11’ configurations should have the same current.
Note 6
By design, this is worst-case Current mode.
MCP47FVBXX
DS20005405A-page 8
2015 Microchip Technology Inc.
DC CHARACTERISTICS (CONTINUED)
DC Characteristics
Standard Operating Conditions (unless otherwise specified)
Operating Temperature
–40°C
T
A
+125°C (Extended)
All parameters apply across the specified operating ranges unless noted.
V
DD
= +2.7V to 5.5V, V
REF
= +2.048V to V
DD
, V
SS
= 0V,
Gx = ‘0’, R
L
= 5 k
from V
OUT
to GND, C
L
= 100 pF.
Typical specifications represent values for V
DD
= 5.5V, T
A
= +25°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Resistor Ladder
Resistance
R
L
100
140
180
k
1.8V
V
DD
5.5V,
V
REF
1.0V
(
7
)
Resolution
(# of Resistors
and # of Taps) (see
C.1 “Resolution”
)
N
256
Taps
8-bit No Missing Codes
1024
Taps
10-bit No Missing Codes
4096
Taps
12-bit No Missing Codes
Nominal V
OUT
Match
(
12
)
|V
OUT
- V
OUTMEAN
|
/V
OUTMEAN
—
0.5
1.0
%
2.7V
V
DD
5.5V
(
2
)
—
—
1.2
%
1.8V
(
2
)
V
OUT
Tempco (see
C.19 “V
OUT
Temperature
Coefficient”
)
V
OUT
/
T
—
15
—
ppm/°C Code = Mid-scale
(7Fh, 1FFh or 7FFh)
V
REF
Pin Input
Voltage Range
V
REF
V
SS
—
V
DD
V
1.8V
V
DD
5.5V
(
1
)
Note 1
This parameter is ensured by design.
Note 2
This parameter is ensured by characterization.
Note 7
Resistance is defined as the resistance between the V
REF
pin (mode VRxB:VRxA = ‘10’) to V
SS
pin. For
dual-channel devices (MCP47FVBX2), this is the effective resistance of the each resistor ladder. The
resistance measurement is of the two resistor ladders measured in parallel.
Note 12
Variation of one output voltage to mean output voltage.
2015 Microchip Technology Inc.
DS20005405A-page 9
MCP47FVBXX
DC CHARACTERISTICS (CONTINUED)
DC Characteristics
Standard Operating Conditions (unless otherwise specified)
Operating Temperature
–40°C
T
A
+125°C (Extended)
All parameters apply across the specified operating ranges unless noted.
V
DD
= +2.7V to 5.5V, V
REF
= +2.048V to V
DD
, V
SS
= 0V,
Gx = ‘0’, R
L
= 5 k
from V
OUT
to GND, C
L
= 100 pF.
Typical specifications represent values for V
DD
= 5.5V, T
A
= +25°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Zero-Scale Error
(see
C.5
“Zero-Scale
Error (EZS)”
)
(Code = 000h)
E
ZS
—
—
0.75
LSb
8-bit
VRxB:VRxA = ‘11’, Gx = ‘0’,
V
REF
= V
DD
, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘00’, Gx = ‘0’,
V
DD
= 5.5V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘10’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘11’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘01’, Gx = ‘0’, No Load
—
—
3
LSb
10-bit VRxB:VRxA = ‘11’, Gx = ‘0’,
V
REF
= V
DD
, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘00’, Gx = ‘0’,
V
DD
= 5.5V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘10’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘11’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘01’, Gx = ‘0’, No Load
—
—
12
LSb
12-bit VRxB:VRxA = ‘11’, Gx = ‘0’,
V
REF
= V
DD
, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘00’, Gx = ‘0’,
V
DD
= 5.5V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘10’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
V
DD
= 1.8V, V
REF
= 1.0V
VRxB:VRxA = ‘11’, Gx = ‘0’. No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
VRxB:VRxA = ‘01’, Gx = ‘0’, No Load
Offset Error
(see
C.7 “Offset
Error (EOS)”
)
E
OS
-15
±1.5
+15
mV
VRxB:VRxA
=
‘00’, Gx = ‘0’, No Load
Offset Voltage
Temperature
Coefficient
V
OSTC
—
±10
—
µV/°C
Note 2
This parameter is ensured by characterization.
MCP47FVBXX
DS20005405A-page 10
2015 Microchip Technology Inc.
DC CHARACTERISTICS (CONTINUED)
DC Characteristics
Standard Operating Conditions (unless otherwise specified)
Operating Temperature
–40°C
T
A
+125°C (Extended)
All parameters apply across the specified operating ranges unless noted.
V
DD
= +2.7V to 5.5V, V
REF
= +2.048V to V
DD
, V
SS
= 0V,
Gx = ‘0’, R
L
= 5 k
from V
OUT
to GND, C
L
= 100 pF.
Typical specifications represent values for V
DD
= 5.5V, T
A
= +25°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Full-Scale Error
(see
C.4
“Full-Scale
Error (EFS)”
)
E
FS
—
—
4.5
LSb
8-bit
Code = FFh, VRxB:VRxA = ‘11’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFh, VRxB:VRxA = ‘10’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFh, VRxB:VRxA = ‘01’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFh, VRxB:VRxA = ‘00’,
No Load
—
—
18
LSb
10-bit Code = 3FFh, VRxB:VRxA = ‘11’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = 3FFh, VRxB:VRxA = ‘10’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = 3FFh, VRxB:VRxA = ‘01’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = 3FFh, VRxB:VRxA = ‘00’,
No Load
—
—
70
LSb
12-bit Code = FFFh, VRxB:VRxA = ‘11’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFFh, VRxB:VRxA = ‘10’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFFh, VRxB:VRxA = ‘01’,
Gx = ‘0’, V
REF
= 2.048V, No Load
See
Section 2.0 “Typical
Performance Curves”
(
2
)
LSb
Code = FFFh, VRxB:VRxA = ‘00’,
No Load
Note 2
This parameter is ensured by characterization.