MCP3202 - 2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

 1999-2011 Microchip Technology Inc.

DS21034F-page 1

MCP3202

Features

• 12-bit resolution
• ±1 LSB maximum DNL
• ±1 LSB maximum INL (MCP3202-B)
• ±2 LSB maximum INL (MCP3202-C)
• Analog inputs programmable as single-ended or 

pseudo-differential pairs

• On-chip sample and hold
• SPI Serial Interface (Modes 0,0 and 1,1)
• Single supply operation: 2.7V-5.5V
• 100 ksps maximum sampling rate at V

DD

= 5V

• 50 ksps maximum sampling rate at V

DD

= 2.7V

• Low power CMOS technology
• 500 nA typical standby current, 5 µA maximum
• 550 µA maximum active current at 5V
• Industrial temp range: -40°C to +85°C 
• 8-pin MSOP, PDIP, SOIC and TSSOP packages

Applications

• Sensor Interface
• Process Control
• Data Acquisition
• Battery Operated Systems

Functional Block Diagram

Description

The MCP3202 is a successive approximation 12-bit
analog-to-digital (A/D) converter with on-board sample
and hold circuitry. 
The MCP3202 is programmable to provide a single
pseudo-differential input pair or dual single-ended
inputs. Differential Nonlinearity (DNL) is specified at
±1 LSB, and Integral Nonlinearity (INL) is offered in
±1 LSB (MCP3202-B) and ±2 LSB (MCP3202-C)
versions. 
Communication with the device is done using a simple
serial interface compatible with the SPI protocol. The
device is capable of conversion rates of up to 100 ksps
at 5V and 50 ksps at 2.7V.
The MCP3202 operates over a broad voltage range,
2.7V to 5.5V. Low-current design permits operation with
typical standby and active currents of only 500 nA and
375 µA, respectively. 
The MCP3202 is offered in 8-pin MSOP, PDIP, TSSOP
and 150 mil SOIC packages.

Package Types

Comparator

Sample

and

 

Hold

12-Bit SAR

DAC

Control Logic

CS/SHDN

V

SS

V

DD

CLK

D

OUT

Shift

Register

CH0

Channel

Mux

Input

CH1

D

IN

MC
P3
202

1

2
3
4

8
7
6
5

CH0
CH1

V

SS

CS/SHDN

V

DD

/V

REF

CLK

D

OUT

D

IN

PDIP, MSOP, SOIC, TSSOP

2.7V Dual Channel 12-Bit A/D Converter

 with SPI Serial Interface

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

MCP3202

DS21034F-page 2

 1999-2011 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

- V

SS

.........................................................................7.0V

All Inputs and Outputs w.r.t. V

SS

............. -0.6V to V

DD

+ 0.6V

Storage Temperature.....................................-65°C to +150°C
Ambient temperature with power applied.......-65°C to +150°C
Maximum Junction Temperature (T

J

) ......................... .+150°C

ESD Protection On All Pins (HBM)

  4 kV

† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise noted, all parameters apply at V

DD

 = 5.5V, V

SS

 = 0V,

T

A

 = -40°C to +85°C, f

SAMPLE

 = 100 ksps and f

CLK

 = 18*f

SAMPLE

.

Parameter

Sym

Min.

Typ.

Max.

Units

Conditions

Conversion Rate:
Conversion Time

t

CONV

12

clock 

cycles

Analog Input Sample Time

t

SAMPLE

1.5

clock 

cycles

Throughput Rate

f

SAMPL



100

50

ksps
ksps

V

DD

 = V

REF

 = 5V

V

DD

 = V

REF 

= 2.7V

DC Accuracy:

Resolution

12

bits

Integral Nonlinearity

INL


±0.75

±1

±1
±2

LSB
LSB

MCP3202-B
MCP3202-C

Differential Nonlinearity 

DNL

±0.5

±1

LSB

No missing codes over
temperature

Offset Error

±1.25

±3

LSB

Gain Error

±1.25

±5

LSB

Dynamic Performance:

Total Harmonic Distortion

THD

-82

dB

V

IN

 = 0.1V to 4.9V@1 kHz

Signal-to-Noise and Distortion 
(SINAD)

SINAD

72

dB

V

IN

 = 0.1V to 4.9V@1 kHz

Spurious Free Dynamic Range

SFDR

86

dB

V

IN

 = 0.1V to 4.9V@1 kHz

Analog Inputs:

Input Voltage Range for CH0 or 
CH1 in Single-Ended Mode 

V

SS

V

DD

V

Input Voltage Range for IN+ in 
Pseudo-Differential Mode

IN+

IN-

V

DD

+IN-

See Sections 

3.1

 and 

4.1

Input Voltage Range for IN- in 
Pseudo-Differential Mode

IN-

V

SS

-100

V

SS

+100

mV

See Sections 

3.1

 and 

4.1

Leakage Current

.001

±1

A

Switch Resistance

R

SS

1 k

See 

Figure 4-1

Sample Capacitor

C

SAMPLE

20

pF

See 

Figure 4-1

Digital Input/Output:

Data Coding Format

Straight Binary

High Level Input Voltage

V

IH

0.7 V

DD

V

Low Level Input Voltage

V

IL

0.3 V

DD

V

Note 1: This parameter is established by characterization and not 100% tested.

2: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, 

especially at elevated temperatures. See 

Section 6.2 “Maintaining Minimum Clock Speed”

 for more information.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

 1999-2011 Microchip Technology Inc.

DS21034F-page 3

MCP3202

TEMPERATURE CHARACTERISTICS    

High Level Output Voltage

V

OH

4.1

V

I

OH

 = -1 mA, V

DD

 = 4.5V

Low Level Output Voltage

V

OL

0.4

V

I

OL

 = 1 mA, V

DD

 = 4.5V

Input Leakage Current

I

LI

-10

10

µA

V

IN

 = V

SS

 or V

DD

Output Leakage Current

I

LO

-10

10

µA

V

OUT

 = V

SS

 or V

DD

Pin Capacitance
(All Inputs/Outputs)

C

IN

, C

OUT

10

pF

V

DD

 = 5.0V (

Note 1

)

T

A

 = +25°C, f = 1 MHz

Timing Parameters:
Clock Frequency

f

CLK

1.8
0.9

MHz
MHz

V

DD

 = 5V (

Note 2

)

V

DD

 = 2.7V (

Note 2

)

Clock High Time

t

HI

2

MHz

Clock Low Time

t

LO

2

MHz

CS Fall To First Rising CLK 
Edge

t

SUCS

100

ns

Data Input Setup Time

t

SU

50

ns

Data Input Hold Time

t

HD

50

ns

CLK Fall To Output Data Valid

t

DO

200

ns

See Test Circuits, 

Figure 1-2

CLK Fall To Output Enable

t

EN

200

ns

See Test Circuits, 

Figure 1-2

CS Rise To Output Disable

t

DIS

100

ns

See Test Circuits, 

Figure 1-2

Note 1

CS Disable Time

t

CSH

500

ns

D

OUT

 Rise Time

t

R

100

ns

See Test Circuits, 

Figure 1-2

Note 1

D

OUT

 Fall Time

t

F

100

ns

See Test Circuits, 

Figure 1-2

Note 1

Power Requirements:
Operating Voltage

V

DD

2.7

5.5

V

Operating Current

I

DD

375

550

µA

V

DD

 = 5.0V, D

OUT

 unloaded

Standby Current

I

DDS

0.5

5

µA

CS = V

DD

 = 5.0V 

Electrical Specifications: Unless otherwise indicated, V

DD

= +2.7V to +5.5V, V

SS

= GND.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges
Specified Temperature Range

T

A

-40

+85

°C

Operating Temperature Range

T

A

-40

+85

°C

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances
Thermal Resistance, 8L-MSOP

JA

211

°C/W

Thermal Resistance, 8L-PDIP

JA

89.5

°C/W

Thermal Resistance, 8L-SOIC

JA

149.5

°C/W

Thermal Resistance, 8L-TSSOP

JA

139

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise noted, all parameters apply at V

DD

 = 5.5V, V

SS

 = 0V,

T

A

 = -40°C to +85°C, f

SAMPLE

 = 100 ksps and f

CLK

 = 18*f

SAMPLE

.

Parameter

Sym

Min.

Typ.

Max.

Units

Conditions

Note 1: This parameter is established by characterization and not 100% tested.

2: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, 

especially at elevated temperatures. See 

Section 6.2 “Maintaining Minimum Clock Speed”

 for more information.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

MCP3202

DS21034F-page 4

 1999-2011 Microchip Technology Inc.

FIGURE 1-1:

Serial Timing.

CS

CLK

D

IN

MSB IN

t

SU

t

HD

t

SUCS

t

CSH

t

HI

t

LO

D

OUT

t

EN

t

DO

t

R

t

F

LSB

MSB OUT

t

DIS

NULL BIT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

 1999-2011 Microchip Technology Inc.

DS21034F-page 5

MCP3202

FIGURE 1-2:

Test Circuits.

V

IH

T

DIS

CS

D

OUT

Waveform 1*

D

OUT

Waveform 2†

90%

10%

* Waveform 1 is for an output with internal conditions

such that the output is high, unless disabled by the
output control.

† Waveform 2 is for an output with internal conditions

such that the output is low, unless disabled by the
output control.

Voltage Waveforms for t

DIS

Test Point

1.4V

D

OUT

Load Circuit for t

R

, t

F

, t

DO

3 kΩ

C

L

 = 100 pF

Test Point

D

OUT

Load Circuit for t

DIS

 and t

EN

3 kΩ

100 pF

t

DIS

 Waveform 2

t

DIS

 Waveform 1

CS

CLK

D

OUT

t

EN

1

2

B11

Voltage Waveforms for t

EN

 t

EN

 Waveform

V

DD

V

DD

/2

V

SS

3

4

D

OUT

t

R

Voltage Waveforms for t

R

, t

F

CLK

D

OUT

t

DO

Voltage Waveforms for t

DO

t

F

V

OH

V

OL

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

MCP3202

DS21034F-page 6

 1999-2011 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CHARACTERISTICS

Note: Unless otherwise indicated, V

DD

 = 5V, V

SS

 = 0V, f

SAMPLE = 

100 ksps,

 

f

CLK

 = 18* f

SAMPLE

, T

A

 = +25°C.

FIGURE 2-1:

Integral Nonlinearity (INL) 

vs. Sample Rate.

FIGURE 2-2:

Integral Nonlinearity (INL) 

vs. V

DD

.

FIGURE 2-3:

Integral Nonlinearity (INL) 

vs. Code (Representative Part).

FIGURE 2-4:

Integral Nonlinearity (INL) 

vs. Sample Rate (V

DD

 = 2.7V).

FIGURE 2-5:

Integral Nonlinearity (INL) 

vs. V

DD

.

FIGURE 2-6:

Integral Nonlinearity (INL) 

vs. Code (Representative Part, V

DD

 = 2.7V).

Note:

The graphs provided following this note are a statistical summary based on a limited number of samples
and are provided for informational purposes only. The performance characteristics listed herein are not
tested or guaranteed. In some graphs, the data presented may be outside the specified operating range
(e.g., outside specified power supply range) and therefore outside the warranted range.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

25

50

75

100

125

150

IN

L

 (L

S

B

)

Sample Rate (ksps)

Positive INL

Negative INL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

IN

L

 (

L

S

B

)

Positive INL

Negative INL

f

SAMPLE

 = 100 ksps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

512

1024 1536 2048 2560 3072 3584 4096

Digital Code

INL (

L

SB)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0

20

40

60

80

100

Sample Rate (ksps)

INL (

L

S

B

)

V

DD

 = 2.7V

Positive INL

Negative INL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

2.5

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

IN

L

 (

L

S

B

)

Positive INL

Negative INL

f

SAMPLE

 = 50 ksps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

512

1024

1536

2048 2560

3072 3584

4096

Digital Code

IN

L

 (

L

S

B

)

V

DD

 = 2.7V

F

SAMPLE

 = 50 ksps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

 1999-2011 Microchip Technology Inc.

DS21034F-page 7

MCP3202

Note: Unless otherwise indicated, V

DD

 = 5V, V

SS

 = 0V, f

SAMPLE = 

100 ksps,

 

f

CLK

 = 18* f

SAMPLE

, T

A

 = +25°C.

FIGURE 2-7:

Integral Nonlinearity (INL) 

vs. Temperature.

FIGURE 2-8:

Differential Nonlinearity 

(DNL) vs. Sample Rate.

FIGURE 2-9:

Differential Nonlinearity 

(DNL) vs. V

DD

.

FIGURE 2-10:

Integral Nonlinearity (INL) 

vs. Temperature (V

DD

 = 2.7V).

FIGURE 2-11:

Differential Nonlinearity 

(DNL) vs. Sample Rate (V

DD

 = 2.7V).

FIGURE 2-12:

Differential Nonlinearity 

(DNL) vs. V

DD

.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50

-25

0

25

50

75

100

Temperature (°C)

INL

 (

L

SB)

Positive INL

Negative INL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

25

50

75

100

125

150

Sample Rate (ksps)

D

N

L

 (L

SB

)

Positive DNL

Negative DNL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

DN

L

 (

L

S

B

)

Positive DNL

Negative DNL

f

SAMPLE

 = 100 ksps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50

-25

0

25

50

75

100

Temperature (°C)

IN

L

 (

L

S

B

)

Positive INL

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

Negative INL

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0

20

40

60

80

100

Sample Rate (ksps)

DNL (

L

S

B

)

V

DD

  = 2.7V

Positive DNL

Negative DNL

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

2.5

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

DN

L

 (

L

S

B

)

Positive DNL

Negative DNL

f

SAMPLE

 = 50 ksps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

MCP3202

DS21034F-page 8

 1999-2011 Microchip Technology Inc.

Note: Unless otherwise indicated, V

DD

 = 5V, V

SS

 = 0V, f

SAMPLE = 

100 ksps,

 

f

CLK

 = 18* f

SAMPLE

, T

A

 = +25°C.

FIGURE 2-13:

Differential Nonlinearity 

(DNL) vs. Code (Representative Part).

FIGURE 2-14:

Differential Nonlinearity 

(DNL) vs. Temperature.

FIGURE 2-15:

Gain Error vs. V

DD

.

FIGURE 2-16:

Differential Nonlinearity 

(DNL) vs. Code (Representative Part, V

DD

 = 

2.7V).

FIGURE 2-17:

Differential Nonlinearity 

(DNL) vs. Temperature (V

DD

 = 2.7V).

FIGURE 2-18:

Offset Error vs. V

DD

.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

512

1024 1536

2048

2560

3072

3584

4096

Digital Code

DNL

 (

L

S

B

)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50

-25

0

25

50

75

100

Temperature (°C)

DNL (

L

S

B

)

Positive DNL

Negative DNL

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

Ga

in E

rror 

(L

S

B

)

f

SAMPLE

 = 50 ksps

f

SAMPLE

 = 100 ksps

f

SAMPLE

 = 10 ksps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

512

1024 1536

2048

2560

3072

3584

4096

Digital Code

DNL

 (

L

S

B

)

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50

-25

0

25

50

75

100

Temperature (°C)

DNL (

L

S

B

)

Positive DNL

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

Negative DNL

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

DD

(V)

Of

fs

et

 E

rro

r (

L

S

B

)

f

SAMPLE

 = 10 ksps

f

SAMPLE

 = 50 ksps

f

SAMPLE

 = 100 ksps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

 1999-2011 Microchip Technology Inc.

DS21034F-page 9

MCP3202

Note: Unless otherwise indicated, V

DD

 = 5V, V

SS

 = 0V, f

SAMPLE = 

100 ksps,

 

f

CLK

 = 18* f

SAMPLE

, T

A

 = +25°C.

FIGURE 2-19:

Gain Error vs. Temperature.

FIGURE 2-20:

 Signal-to-Noise Ratio 

(SNR) vs. Input Frequency.

FIGURE 2-21:

 Total Harmonic Distortion 

(THD) vs. Input Frequency.

FIGURE 2-22:

Offset Error vs. 

Temperature.

FIGURE 2-23:

 Signal-to-Noise and 

Distortion (SINAD) vs. Input Frequency.

FIGURE 2-24:

 Signal-to-Noise and 

Distortion (SINAD) vs. Signal Level.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-50

-25

0

25

50

75

100

Temperature (°C)

G

ai

n

 Error

 (

L

S

B

)

V

DD

 = 5V

f

SAMPLE

 = 100 

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

0

10

20

30

40

50

60

70

80

90

100

1

10

100

Input Frequency (kHz)

S

NR (dB)

V

DD 

= 2.7V

f

SAMPLE

 = 50 ksps

V

DD 

= 5V

f

SAMPLE

 = 100 ksps

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

10

100

Input Frequency (kHz)

TH

D (

d

B)

V

DD 

= 2.7V

f

SAMPLE

 = 50 ksps

V

DD

 = 5V

f

SAMPLE

 = 100 ksps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-50

-25

0

25

50

75

100

Temperature (°C)

O

ffs

et Er

ro

(L

S

B

)

V

DD

 = 5V

f

SAMPLE

 = 100 ksps

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

0

10

20

30

40

50

60

70

80

90

100

1

10

100

Input Frequency (kHz)

S

INAD (

d

B)

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

V

DD 

= 5V

f

SAMPLE

 = 100 ksps

0

10

20

30

40

50

60

70

80

-40

-35

-30

-25

-20

-15

-10

-5

0

Input Signal Level (dB) 

S

INA

D (

d

B)

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

V

DD

 = 5V

f

SAMPLE

 = 100 ksps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21034F-html.html
background image

MCP3202

DS21034F-page 10

 1999-2011 Microchip Technology Inc.

Note: Unless otherwise indicated, V

DD

 = 5V, V

SS

 = 0V, f

SAMPLE = 

100 ksps,

 

f

CLK

 = 18* f

SAMPLE

, T

A

 = +25°C.

FIGURE 2-25:

Effective Number of Bits 

(ENOB) vs. V

DD

.

FIGURE 2-26:

Spurious Free Dynamic 

Range (SFDR) vs. Input Frequency.

FIGURE 2-27:

Frequency Spectrum of 

10 kHz input (Representative Part).

FIGURE 2-28:

Effective Number of Bits 

(ENOB) vs. Input Frequency.

FIGURE 2-29:

Power Supply Rejection 

(PSR) vs. Ripple Frequency.

FIGURE 2-30:

Frequency Spectrum of 

1 kHz input (Representative Part, V

DD

 = 2.7V).

9.0

9.5

10.0

10.5

11.0

11.5

12.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

DD

 (V)

EN

O

B

 (

rm

s)

f

SAMPLE

 = 50ksps

f

SAMPLE

 = 100 ksps

0

10

20

30

40

50

60

70

80

90

100

1

10

100

Input Frequency (kHz)

SF

D

R

 (

d

B

)

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

V

DD

 = 5V

f

SAMPLE

 = 100 ksps

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0

10000

20000

30000

40000

50000

Frequency (Hz)

Am

pl

itude

 (

d

B)

V

DD

 = 5V

f

SAMPLE

 = 100 ksps

f

INPUT

 = 9.985 kHz

4096 points

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

1

10

100

Input Frequency (kHz)

EN

O

B

 (

rm

s)

V

DD

 = 5V

F

SAMPLE

 = 100 ksps

V

DD

 = 2.7V

F

SAMPLE

 = 50 ksps

-80

-70

-60

-50

-40

-30

-20

-10

0

1

10

100

1000

10000

 Ripple Frequency (kHz)

P

o

we

r S

uppl

y Re

je

ct

ion (dB)

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0

5000

10000

15000

20000

25000

Frequency (Hz)

A

m

pl

it

ude

 (d

B

)

V

DD

 = 2.7V

f

SAMPLE

 = 50 ksps

f

INPUT

 = 998.76 Hz

4096 points

Maker
Microchip Technology Inc.