MCP25612FD Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

 2015 Microchip Technology Inc.

DS20005409A-page 1

MCP25612FD

Features

• Supports both “classic” CAN 2.0 and CAN FD 

physical layer requirements

• Optimized for CAN FD (Flexible Data-Rate) at 

2, 5 and 8 Mbps Operation:
- Maximum Propagation Delay: 120 ns
- Loop Delay Symmetry: -10%/+10% (2 Mbps)

• Implements ISO-11898-2 and ISO-11898-5 

Standard Physical Layer Requirements

• Very Low Standby Current (5 µA per transceiver, 

typical)

• Two Fully Independent V

DDX

 and V

SSX

 Pins per CAN 

FD Transceiver for Added Flexibility and Reliability:
- Optimal for redundant CAN networks

• Compatible to 5V MCUs
• Functional Behavior Predictable Under All Supply 

Conditions:
- Device is in Unpowered mode if V

DDX

 drops 

below undervoltage level

- An unpowered node or brown-out event will 

not load the CAN bus

• Detection of Ground Fault:

- Permanent dominant detection on T

XDX

- Permanent dominant detection on bus

• Power-on Reset and Undervoltage Lock-out on 

V

DDX

 Pin

• Protection against Damage due to Short-Circuit 

Conditions (positive or negative battery voltage)

• Protection against High-Voltage Transients in 

Automotive Environments

• Automatic Thermal Shutdown Protection
• Suitable for 12V and 24V Systems
• Meets or exceeds Stringent Automotive Design 

Requirements, including “Hardware Requirements 
for LIN, CAN and FlexRay™ Interfaces in 
Automotive Applications”

, Version 1.3, May 2012:

- Conducted emissions @ 2 Mbps with 

Common-Mode Choke (CMC)

- Direct Power Injection (DPI) @ 2 Mbps with CMC

• Meets SAE J2962/2 “Communication 

Transceivers Qualification Requirements – CAN”

:

- Passes radiated emissions at 2 Mbps without 

a CMC

• High Noise Immunity due to Differential Bus        

Implementation

• High ESD Protection on CANHx and CANLx, 

Meets IEC61000-4-2, up to ±6 kV

• Available in 14-Lead SOIC

• Temperature Ranges:

- Extended (E): -40°C to +125°C
- High (H): -40°C to +150°C

Description

The MCP25612FD is a second generation, dual CAN
FD transceiver from Microchip Technology Inc. It offers
all of the features from two fully independent
MCP2561FD CAN transceivers, except for the SPLIT
pin. It ensures Loop Delay Symmetry in order to support
the higher data rates required for CAN FD. The maxi-
mum propagation delay is improved to support a longer
bus length.
The device meets the automotive requirements for CAN
FD bit rates, low quiescent current, robust
Electromagnetic Compatibility (EMC) and Electrostatic
Discharge (ESD).

Package Types

Typical Applications

Automotive
• Powertrain
• Body Control
• Gateway
• Chassis and Safety
• Infotainment
Industrial
• Factory Automation
• Gateway
• Server Backplanes
• Elevators
• Robotics

CANL1

CANH1

STBY1

T

XD1

MCP25612FD

SOIC

1

2

3

4

5

6

7

14

13

12

11

10

9

8

STBY2

R

XD1

T

XD2

V

SS2

V

DD2

R

XD2

CANL2

CANH2

V

DD1

V

SS1

Dual CAN Flexible Data-Rate Transceiver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

MCP25612FD

DS20005409A-page 2

 2015 Microchip Technology Inc.

Device Block Diagram

Note 1:

There is only one receiver implemented. The receiver can operate in either Low-Power or High-Speed mode.

V

DD1

CANH1

CANL1

T

XD1

R

XD1

Driver

and

Slope Control

Thermal

Protection

POR

UVLO

Digital I/O

Supply

V

SS1

STBY1

Permanent 

Dominant Detect

V

DD1

V

DD1

Mode 

Control

Wake-up 

Filter

CANH1

CANL1

CANH1

CANL1

Receiver

LP_RX

HS_RX

V

DD2

CANH2

CANL2

T

XD2

R

XD2

Driver

and

Slope Control

Thermal

Protection

POR

UVLO

Digital I/O

Supply

V

SS2

STBY2

Permanent 

Dominant Detect

V

DD2

V

DD2

Mode 

Control

Wake-up 

Filter

CANH1

CANL1

CANH1

CANL1

Receiver

LP_RX

HS_RX

(

Note 1

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

 2015 Microchip Technology Inc.

DS20005409A-page 3

MCP25612FD

1.0

DEVICE OVERVIEW

The MCP25612FD is a dual fully independent, CAN
FD transceiver Fault tolerant device that serves as the
interface between a CAN protocol controller and the
physical bus. The MCP25612FD device provides differ-
ential transmit and receive capability for the CAN pro-
tocol controller, and is fully compatible with the ISO
11898-2 and ISO 11898-5 standards.
The Loop Delay Symmetry is ensured to support data
rates up to 8 Mbps for CAN FD (Flexible Data-Rate).
The maximum propagation delay was improved to
support longer bus length.
Typically, each node in a CAN system must have a
device to convert the digital signals generated by a
CAN controller to signals suitable for transmission over
the bus cabling (differential output). It also provides a
buffer between the CAN controller and the high-voltage
spikes that can be generated on the CAN bus by
outside sources.

1.1

Mode Control Block

The MCP25612FD supports two modes of operation
between the two CAN transceivers independently:
• Normal Mode
• Standby Mode
These modes are summarized in 

Table 1-1

.

1.1.1

NORMAL MODE

Normal mode is selected by applying low-level voltage
to the STBYx pin. The driver block is operational and
can drive the bus pins. The slopes of the output signals
on CANHx and CANLx are optimized to produce
minimal Electromagnetic Emissions (EME).
The high-speed differential receiver is active. 

1.1.2

STANDBY MODE

The device may be placed in Standby mode by apply-
ing a high-level voltage to the STBYx pin. In Standby
mode, the transmitter and the high-speed part of the
receiver are switched off to minimize power consump-
tion. The low-power receiver and the wake-up filter
blocks are enabled to monitor the bus for activity. The
Receive pin (R

XDX

) will show a delayed representation

of the CAN bus due to the wake-up filter.
The CAN controller gets interrupted by a negative edge
on the R

XDX

 pin (Dominant state on the CAN bus). The

CAN controller must put the MCP25612FD back into
Normal mode, using the STBYx pin, in order to enable
high-speed data communication.
The CAN bus wake-up function requires V

DDX

 to be in

valid range.

TABLE 1-1:

MODES OF OPERATION

Mode

STBYx Pin

R

XDX

 Pin

Low

High

Normal

Low

Bus is dominant

Bus is recessive

Standby

High

Wake-up request is detected

No wake-up request detected

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

MCP25612FD

DS20005409A-page 4

 2015 Microchip Technology Inc.

1.2

 Transmitter Function

The CAN bus has two states: 
• Dominant state
• Recessive state
A Dominant state occurs when the differential voltage
between CANHx and CANLx is greater than
V

DIFFX(D)(I)

. A Recessive state occurs when the differ-

ential voltage is less than V

DIFFX(R)(I)

. The Dominant

and Recessive states correspond to the Low and High
state of the T

XDX

 input pin, respectively. However, a

Dominant state initiated by another CAN node will
override a Recessive state on the CAN bus.

1.3

Receiver Function

In Normal mode, the R

XDX

 output pin reflects the

differential bus voltage between CANHx and CANLx.
The Low and High states of the R

XDX

 output pin

correspond to the Dominant and Recessive states of
the CAN bus, respectively.

1.4

Internal Protection

CANHx and CANLx are protected against battery short
circuits and electrical transients that can occur on the
CAN bus. This feature prevents destruction of the
transmitter output stage during such a Fault condition.
The device is further protected from excessive current
loading by thermal shutdown circuitry that disables the
output drivers when the junction temperature exceeds
a nominal limit of +175°C. All other parts of the chip
remain operational and the chip temperature is lowered
due to the decreased power dissipation in the transmitter
outputs. This protection is essential to protect against
bus line short-circuit induced damage. The activation of
the internal protection in one of the transceivers will not
affect the other one since these are fully independent.

1.5

Permanent Dominant Detection 

The MCP25612FD device prevents two conditions:
• Permanent dominant condition on T

XDX

• Permanent dominant condition on the bus
In Normal mode, if the MCP25612FD detects an
extended Low state on the T

XDX

 input, it will disable the

CANHx and CANLx output drivers in order to prevent
the corruption of data on the CAN bus. The drivers will
remain disabled until T

XDX

 goes to the High state.

In Standby mode, if the MCP25612FD detects an
extended Dominant condition on the bus, it will set the
R

XDX

 pin to the Recessive state. This allows the

attached controller to go to Low-Power mode until the
dominant issue is corrected. R

XDX

 is latched high until

a Recessive state is detected on the bus and the
wake-up function is enabled again.
Both conditions have a time-out of 1.25 ms (typical).
This implies a maximum bit time of 69.44 µs (14.4 kHz),
allowing up to 18 consecutive dominant bits on the bus.
The permanent dominant detection in one of the
transceivers will not affect the other one since these
are fully independent.

1.6

Power-on Reset (POR) and 
Undervoltage Detection

The MCP25612FD has undervoltage detection on
the V

DDX

 supply pin. The typical undervoltage

threshold is 4V. 
When the device is powered on, CANHx and CANLx
remain in a High-Impedance state until V

DDX

 exceeds

its undervoltage level. Once powered on, CANHx and
CANLx will enter a High-Impedance state if the voltage
level at V

DDX

 drops below the undervoltage level,

providing voltage brown-out protection during normal
operation.
In Normal mode, the receiver output is forced to the
Recessive state during an undervoltage condition on
V

DDX

. In Standby mode, the low-power receiver is only

enabled when the V

DDX

 supply voltage rises above its

undervoltage threshold. Once the threshold voltage is
reached, the low-power receiver is no longer controlled
by the POR comparator and remains operational down
to about 2.5V on the V

DDX

 supply. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

 2015 Microchip Technology Inc.

DS20005409A-page 5

MCP25612FD

2.0

ELECTRICAL 
CHARACTERISTICS

2.1

Absolute Maximum Ratings

V

DDX

...........................................................................................................................................................................7.0V

DC Voltage at T

XDX

, R

XDX

, STBYx and V

SSX

..................................................................................-0.3V to V

DDX

 + 0.3V

DC Voltage at CANHx and CANLx............................................................................................................... -58V to +58V
Transient Voltage on CANHx, CANLx (ISO-7637) (see 

Figure 2-4

)......................................................... -150V to +100V

Storage Temperature ..............................................................................................................................-55°C to +150°C
Operating Ambient Temperature.............................................................................................................-40°C to +150°C
Virtual Junction Temperature, T

VJ

 (IEC60747-1) ....................................................................................-40°C to +190°C

Soldering Temperature of Leads (10 seconds) ..................................................................................................... +300°C
ESD Protection on CANHx and CANLx Pins (IEC 61000-4-2); 330Ω/150 pF; Unpowered; Contact Discharge...... ±6 kV
ESD Protection on CANHx and CANLx Pins (IEC 801; Human Body Model); 1500Ω/100 pF ................................ ±8 kV
ESD Protection on All Other Pins (IEC 801; Human Body Model); 1500Ω/100 pF.................................................. ±4 kV
ESD Protection on All Pins (IEC 801; Machine Model); 0Ω/200 pF........................................................................±300V
ESD Protection on All Pins (IEC 801; Charge Device Model).................................................................................±750V

2.2

Specifications

† NOTICE:

 Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This 

is a stress rating only and functional operation of the device at those or any other conditions above those indicated 
in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended 
periods may affect device reliability.

TABLE 2-1:

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics:

 Extended (E): T

AMB

 = -40°C to +125°C; High (H): T

AMB

 = -40°C to +150°C; 

V

DDX

 = 4.5V to 5.5V, R

LX

 = 60Ω, C

LX

 = 100 pF; unless otherwise specified. 

Characteristic

Sym

Min

Typ

Max

Units

Conditions

Supply (V

DDX

 Pin)

Voltage Range

V

DDX

4.5

5.5

Supply Current 
(per transceiver)

I

DD

5

10

mA Recessive; V

TXDX

 = V

DDX

45

70

Dominant; V

TXDX

 = 0V

Standby Current
(per transceiver)

I

DDS

5

15

µA

High Level of the POR 
Comparator

V

PORH

3.8

4.3

V

Low Level of the POR 
Comparator

V

PORL

3.4

4.0

V

Hysteresis of the POR 
Comparator

V

PORD

0.3

0.8

V

Note 1:

Characterized; not 100% tested.

2:

-12V to 12V is ensured by characterization, tested from -2V to 7V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

MCP25612FD

DS20005409A-page 6

 2015 Microchip Technology Inc.

Bus Line Transmitter (CANHx, CANLx)
CANHx, CANLx: 
Recessive Bus Output Voltage

V

O(R)

2.0

0.5 V

DDX

3.0

V

V

TXDX

 = V

DDX

; no load

CANHx, CANLx: 
Bus Output Voltage in Standby

V

O(S)

-0.1

0.0

+0.1

V

STBYx = V

TXDX

= V

DDX

; no load

Recessive Output Current

I

O(R)

-5

+5

mA -24V < V

CAN

 < +24V

CANHx: Dominant 
Output Voltage

V

O(D)

2.75

3.50

4.50

V

T

TXDX

 = 0; R

LX

 = 50 to 65Ω

CANLx: Dominant 
Output Voltage

0.50

1.50

2.25

R

LX

 = 50 to 65Ω

Symmetry of Dominant 
Output Voltage
(V

DDX

 – V

CANHX

 – V

CANLX

)

V

O(D)(M)

-400

0

+400

mV  V

TXDX

 = V

SSX

 (

Note 1

)

Dominant: Differential 
Output Voltage

V

O(DIFF)

1.5

2.0

3.0

V

V

TXDX

 = V

SSX

; R

LX

 = 50 to 65Ω

(see 

Figure 2-1

 and 

Figure 2-3

)

Recessive: 
Differential Output Voltage

-120

0

12

mV V

TXDX

 = V

DDX

(see 

Figure 2-1

 and 

Figure 2-3

)

-500

0

50

mV V

TXDX

 = V

DDX

; no load

(see 

Figure 2-1

 and 

Figure 2-3

)

CANHx: Short-Circuit 
Output Current

I

O(SC)

-120

85

mA V

TXDX

 = V

SSX

; V

CANHX

 = 0V;

CANLx: Floating

-100

mA Same as above, but V

DDX

 = 5V; 

T

AMB

 = +25°C (

Note 1

)

CANLx: Short-Circuit 
Output Current

75

+120

mA V

TXDX

 = V

SSX

; V

CANLX

 = 18V; 

CANHx: Floating

+100

mA Same as above, but V

DDX

 = 5V; 

T

AMB

 = +25°C (

Note 1

)

Bus Line Receiver (CANHx, CANLx)
Recessive Differential 
Input Voltage

V

DIFFX(R)(I)

-1.0

+0.5

V

Normal mode;
-12V < V

(CANHX

CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

-1.0

+0.4

Standby mode;
-12V < V

(CANHX

CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

Dominant Differential 
Input Voltage

V

DIFFX(D)(I)

0.9

V

DDX

V

Normal mode;
-12V < V

(CANHX

CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

1.0

V

DDX

Standby mode;
-12V < V

(CANHX

CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

TABLE 2-1:

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics:

 Extended (E): T

AMB

 = -40°C to +125°C; High (H): T

AMB

 = -40°C to +150°C; 

V

DDX

 = 4.5V to 5.5V, R

LX

 = 60Ω, C

LX

 = 100 pF; unless otherwise specified. 

Characteristic

Sym

Min

Typ

Max

Units

Conditions

Note 1:

Characterized; not 100% tested.

2:

-12V to 12V is ensured by characterization, tested from -2V to 7V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

 2015 Microchip Technology Inc.

DS20005409A-page 7

MCP25612FD

Bus Line Receiver (CANHx, CANLx) (Continued)
Differential 
Receiver Threshold

V

TH(DIFF)

0.5

0.7

0.9

V

Normal mode;
-12V < V

(CANHX, CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

0.4

1.0

Standby mode;
-12V < V

(CANHX, CANLX)

 < +12V

(see 

Figure 2-5

(

Note 2

)

Differential 
Input Hysteresis

V

HYS(DIFF)

50

200

mV Normal mode (see 

Figure 2-5

)

(

Note 1

)

Common-Mode 
Input Resistance

R

IN

10

30

kΩ

(

Note 1

)

Common-Mode 
Resistance Matching

R

IN(M)

-1

0

+1

%

V

CANHX

 = V

CANLX

 (

Note 1

)

Differential Input Resistance

R

IN(DIFF)

10

100

kΩ

(

Note 1

)

Common-Mode 
Input Capacitance

C

IN(CM)

20

pF

V

TXDX

 = V

DDX

 (

Note 1

)

Differential 
Input Capacitance

C

IN(DIFF)

10

V

TXDX

 = V

DDX

 (

Note 1

)

CANHx, CANLx: 
Input Leakage

I

LI

-5

+5

µA

V

DDX

= V

TXDX

= V

STBYX

= 0V;

V

CANHX

 = V

CANLX

 = 5V

Digital Input Pins (T

XDX

, STBYx)

High-Level Input Voltage

V

IH

0.7 V

DDX

V

DDX

+ 0.3

V

Low-Level Input Voltage

V

IL

-0.3

0.3 V

DDX

V

High-Level Input Current

I

IH

-1

+1

µA

T

XDX

: Low-Level Input Current

I

IL(TXDX)

-270

-150

-30

µA

STBYx: Low-Level Input 
Current

I

IL(STBYX)

-30

-1

µA

Receive Data Output (R

XDX

)

High-Level Output Voltage

V

OHX

V

DDX

 – 0.4

V

I

OH

 = -2 mA; typical -4 mA

Low-Level Output Voltage

V

OLX

0.4

V

I

OL

 = 4 mA; typical 8 mA

Thermal Shutdown
Shutdown 
Junction Temperature

T

J(SD)

165

175

185

°C

-12V < V

(CANHX, CANLX)

 < +12V

(

Note 1

)

Shutdown 
Temperature Hysteresis

T

J(HYST)

20

30

°C

-12V < V

(CANHX, CANLX)

 < +12V

(

Note 1

)

TABLE 2-1:

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics:

 Extended (E): T

AMB

 = -40°C to +125°C; High (H): T

AMB

 = -40°C to +150°C; 

V

DDX

 = 4.5V to 5.5V, R

LX

 = 60Ω, C

LX

 = 100 pF; unless otherwise specified. 

Characteristic

Sym

Min

Typ

Max

Units

Conditions

Note 1:

Characterized; not 100% tested.

2:

-12V to 12V is ensured by characterization, tested from -2V to 7V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

MCP25612FD

DS20005409A-page 8

 2015 Microchip Technology Inc.

FIGURE 2-1:

Physical Bit Representation and Simplified Bias Implementation.

CA

N

H

X

,

C

AN

L

X

Time

CANH

X

CANL

X

Normal Mode

Standby Mode

Recessive

Recessive

Dominant

CANL

X

CANH

X

V

DDX

/2

R

XDX

V

DDX

Normal

Standby

Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

 2015 Microchip Technology Inc.

DS20005409A-page 9

MCP25612FD

FIGURE 2-2:

Test Load Conditions.

TABLE 2-2:

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics:

 Extended (E): T

AMB

 = -40°C to +125°C; High (H): T

AMB

 = -40°C to +150°C; 

V

DDX

 = 4.5V to 5.5V, R

LX

 = 60Ω

C

LX

 = 100 pF; unless otherwise specified. 

Param. 

No.

Sym

Characteristic

Min

Typ

Max

Units

Conditions

1

t

BIT

Bit Time

0.125

69.44

µs

2

f

BIT

Bit Frequency

14.4

8000

kHz

3

t

TXDX-BUSON

Delay T

XDX

 Low to Bus Dominant

65

ns

(

Note 1

)

4

t

TXDX-BUSOFF

Delay T

XDX

 High to Bus Recessive

90

ns

(

Note 1

)

5

t

BUSON-RXDX

Delay Bus Dominant to R

XDX

60

ns

(

Note 1

)

6

t

BUSOFF-RXDX

Delay Bus Recessive to R

XDX

65

ns

(

Note 1

)

7

t

TXDX-RXDX

Propagation Delay T

XDX

 to R

XDX

90

120

ns

120

180

ns

R

LX

 = 120Ω,

C

LX

 = 200 pF (

Note 1

)

8a

t

BIT(RXDX),2M

Recessive Bit Time on R

XDX

 – 2 Mbps, 

Loop Delay Symmetry

450

485

550

ns

t

BIT(TXDX)

 = 500 ns

(see 

Figure 2-10

)

400

460

550

ns

t

BIT(TXDX)

 = 500 ns

(see 

Figure 2-10

);

R

LX

 = 120Ω,

C

LX

 = 200 pF (

Note 1

)

8b

t

BIT(RXDX),5M

Recessive Bit Time on R

XDX

 – 5 Mbps, 

Loop Delay Symmetry

160

185

220

ns

t

BIT(TXDX)

 = 200 ns

(see 

Figure 2-10

)

8c

t

BIT(RXDX),8M

Recessive Bit Time on R

XDX

 – 8 Mbps, 

Loop Delay Symmetry

85

105

140

ns

t

BIT(TXDX)

 = 120 ns

(see 

Figure 2-10

)

(

Note 1

)

9

t

FLTR(WAKE)

Delay Bus Dominant to R

XDX

 

(Standby mode)

0.5

1

4

µs

Standby mode

10

t

WAKE

Delay Standby to Normal Mode

5

25

40

µs

Negative edge on STBYx

11

t

PDT

Permanent Dominant Detect Time

1.25

ms

T

XDX

 = 0V

12

t

PDTR

Permanent Dominant Timer Reset

100

ns

The shortest Recessive 
pulse on T

XDX

 or CAN 

bus to reset Permanent 
Dominant Timer

Note 1:

Characterized, not 100% tested.

V

DDX

/2

C

LX

R

LX

Pin

Pin

V

SSX

V

SSX

C

LX

R

LX

= 464Ω

C

LX

= 50 pF for all digital pins

Load Condition 1

Load Condition 2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005409A-html.html
background image

MCP25612FD

DS20005409A-page 10

 2015 Microchip Technology Inc.

FIGURE 2-3:

Test Circuit for Electrical Characteristics.

FIGURE 2-4:

Test Circuit for Automotive Transients.

FIGURE 2-5:

Hysteresis of the Receiver.

GNDx

R

XDX

T

XDX

R

LX

C

LX

15 pF

CANHx

CANLx

CAN

Transceiver

0.1 µF

V

DDX

STBYx

GNDx

R

XDX

T

XDX

R

LX

1000 pF

1000 pF

Note 1:

The waveforms of the applied transients shall be in accordance with ISO-7637, Part 1, 
Test Pulses 1, 2, 3a and 3b.

CANHx

CANLx

CAN

Transceiver

Transient

Generator

STBYx

(

Note 1

)

V

OHX

V

OLX

0.5

0.9

V

DIFFX

 (V)

R

XDX

 (Receive Data

Output Voltage)

V

DIFFX(R)(I)

V

DIFFX(H)(I)

V

DIFFX(D)(I)

Maker
Microchip Technology Inc.
Datasheet PDF Download