MCP2561/2 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005167C-page  1

MCP2561/2

Features: 

• Supports 1 Mb/s Operation

• Implements ISO-11898-2 and ISO-11898-5 

Standard Physical Layer Requirements

• Very Low Standby Current (5 µA, typical)

• V

IO

 Supply Pin to Interface Directly to 

CAN Controllers and Microcontrollers with 

1.8V to 5.5V I/O

• SPLIT Output Pin to Stabilize Common Mode in 

Biased Split Termination Schemes 

• CAN Bus Pins are Disconnected when Device is 

Unpowered:

- An Unpowered Node or Brown-Out Event will 

Not Load the CAN Bus

• Detection of Ground Fault:

- Permanent Dominant Detection on T

XD

- Permanent Dominant Detection on Bus

• Power-on Reset and Voltage Brown-Out 

Protection on V

DD

 Pin

• Protection Against Damage Due to Short-Circuit 

Conditions (Positive or Negative Battery Voltage)

• Protection Against High-Voltage Transients in 

Automotive Environments

• Automatic Thermal Shutdown Protection

• Suitable for 12V and 24V Systems

• Meets or exceeds stringent automotive design 

requirements including “Hardware Requirements 
for LIN, CAN and FlexRay Interfaces in Automo-
tive Applications”, Version 1.3, May 2012

• High-Noise Immunity Due to Differential Bus        

Implementation

• High Electrostatic Discharge (ESD) Protection on 

CANH and CANL, meeting the IEC61000-4-2 up 
to ±14 kV

• Available in PDIP-8L, SOIC-8L and 3x3 DFN-8L

• Temperature ranges:

- Extended (E): -40°C to +125°C

- High (H): -40°C to +150°C

Description:

The MCP2561/2 is a Microchip Technology Inc. second 
generation high-speed CAN transceiver. It serves as an 
interface between a CAN protocol controller and the 
physical two-wire CAN bus.

The device meets the automotive requirements for 
high-speed (up to 1 Mb/s), low quiescent current, 
electromagnetic compatibility (EMC) and electrostatic 
discharge (ESD).

Package Types   

MCP2562

PDIP, SOIC

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 V

IO

STBY

T

XD

MCP2561

PDIP, SOIC

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 SPLIT

STBY

T

XD

MCP2561

3x3 DFN*

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 SPLIT

STBY

T

XD

EP

9

MCP2562

3x3 DFN*

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 V

IO

STBY

T

XD

EP

9

* Includes Exposed Thermal Pad (EP); see 

Table 1-2

.

MCP2561/2 Family Members

Device

Feature

Description

MCP2561

Split pin

Common mode stabilization

MCP2562

V

IO

 pin

Internal level shifter on digital I/O pins

Note:

For ordering information, see the

 “Product Identification System”

 section on page 27.

High-Speed CAN Transceiver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

MCP2561/2

DS20005167C-page  2

 2013-2014 Microchip Technology Inc.

Block Diagram

Note 1: There is only one receiver implemented. The receiver can operate in Low-Power or High-Speed mode.

2: Only MCP2561 has the SPLIT pin.

3: Only MCP2562 has the V

IO

 pin. In MCP2561, the supply for the digital I/O is internally connected to V

DD

.

V

DD

CANH

CANL

T

XD

R

XD

Driver

and

Slope Control

Thermal

Protection

POR

UVLO

Digital I/O

Supply

V

IO

(3)

V

SS

STBY

Permanent

Dominant Detect

V

IO

V

IO

Mode

Control

V

DD

/2

SPLIT

(2 )

Wake-Up

Filter

CANH

CANL

CANH

CANL

Receiver

LP_RX

(1)

HS_RX

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005167C-page  3

MCP2561/2

1.0

DEVICE OVERVIEW

The MCP2561/2 is a high-speed CAN, fault-tolerant 
device that serves as the interface between a CAN 
protocol controller and the physical bus. The 
MCP2561/2 device provides differential transmit and 
receive capability for the CAN protocol controller, and 
is fully compatible with the ISO-11898-2 and 
ISO-11898-5 standards. It will operate at speeds of up 
to 1 Mb/s.

Typically, each node in a CAN system must have a 
device to convert the digital signals generated by a 
CAN controller to signals suitable for transmission over 
the bus cabling (differential output). It also provides a 
buffer between the CAN controller and the high-voltage 
spikes that can be generated on the CAN bus by 
outside sources.

1.1

Mode Control Block

The MCP2561/2 supports two modes of operation:

• Normal

• Standby

These modes are summarized in 

Table 1-1

.

1.1.1

NORMAL MODE

Normal mode is selected by applying a low-level to the 
STBY pin. The driver block is operational and can drive 
the bus pins. The slopes of the output signals on CANH 
and CANL are optimized to produce minimal 
electromagnetic emissions (EME).

The high-speed differential receiver is active. 

1.1.2

STANDBY MODE

The device may be placed in Standby mode by 
applying a high-level to the STBY pin. In Standby 
mode, the transmitter and the high-speed part of the 
receiver are switched off to minimize power 
consumption. The low-power receiver and the wake-up 
filter blocks are enabled in order to monitor the bus for 
activity. The receive pin (R

XD

) will show a delayed 

representation of the CAN bus, due to the wake-up 
filter.

The CAN controller gets interrupted by a negative edge 
on the R

XD

 pin (dominant state on the CAN bus). The 

CAN controller must put the MCP2561/2 back into 
Normal mode using the STBY pin, in order to enable 
high-speed data communication.

The CAN bus wake-up function requires both supply 
voltages, V

DD

 and V

IO

, to be in valid range.

1.2

 Transmitter Function

The CAN bus has two states: Dominant and 
Recessive. A Dominant state occurs when the 
differential voltage between CANH and CANL is 
greater than V

DIFF

(

D

)(

I

). A Recessive state occurs 

when the differential voltage is less than V

DIFF

(

R

)(

I

). 

The Dominant and Recessive states correspond to the 
Low and High state of the T

XD

 input pin, respectively. 

However, a Dominant state initiated by another CAN 
node will override a Recessive state on the CAN bus.

1.3

Receiver Function

In Normal mode, the R

XD

 output pin reflects the differ-

ential bus voltage between CANH and CANL. The Low 
and High states of the R

XD

 output pin correspond to the 

Dominant and Recessive states of the CAN bus, 
respectively.

1.4

Internal Protection

CANH and CANL are protected against battery short-
circuits and electrical transients that can occur on the 
CAN bus. This feature prevents destruction of the 
transmitter output stage during such a Fault condition.

The device is further protected from excessive current 
loading by thermal shutdown circuitry that disables the 
output drivers when the junction temperature exceeds 
a nominal limit of +175°C. All other parts of the chip 
remain operational, and the chip temperature is low-
ered due to the decreased power dissipation in the 
transmitter outputs. This protection is essential to 
protect against bus line short-circuit-induced damage.

TABLE 1-1:

MODES OF OPERATION

Mode

STBY Pin

R

XD

 Pin

LOW

HIGH

Normal

LOW

Bus is dominant

Bus is recessive

Standby

HIGH

Wake-up request is detected

No wake-up request detected

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

MCP2561/2

DS20005167C-page  4

 2013-2014 Microchip Technology Inc.

1.5

Permanent Dominant Detection 

The MCP2561/2 device prevents two conditions:

• Permanent dominant condition on T

XD

• Permanent dominant condition on the bus

In Normal mode, if the MCP2561/2 detects an 
extended Low state on the T

XD

 input, it will disable the 

CANH and CANL output drivers in order to prevent the 
corruption of data on the CAN bus. The drivers will 
remain disabled until T

XD

 goes High.

In Standby mode, if the MCP2561/2 detects an 
extended dominant condition on the bus, it will set the 
R

XD

 pin to Recessive state. This allows the attached 

controller to go to Low-Power mode until the dominant 
issue is corrected. R

XD

 is latched High until a 

Recessive state is detected on the bus, and the 
wake-up function is enabled again.

Both conditions have a time-out of 1.25 ms (typical). 
This implies a maximum bit time of 69.44 µs 
(14.4 kHz), allowing up to 18 consecutive dominant bits 
on the bus.

1.6

Power-On Reset (POR) and 

Undervoltage Detection

The MCP2561/2 has undervoltage detection on both 
supply pins: V

DD

 and V

IO

. Typical undervoltage 

thresholds are 1.2V for V

IO

 and 4V for V

DD

When the device is powered on, CANH and CANL 
remain in a high-impedance state until both V

DD

 and 

V

IO

 exceed their undervoltage levels. Once powered 

on, CANH and CANL will enter a high-impedance state 
if the voltage level at V

DD

 drops below the undervoltage 

level, providing voltage brown-out protection during 
normal operation.

In Normal mode, the receiver output is forced to 
Recessive state during an undervoltage condition on 
V

DD

. In Standby mode, the low-power receiver is only 

enabled when both V

DD

 and V

IO

 supply voltages rise 

above their respective undervoltage thresholds. Once 
these threshold voltages are reached, the low-power 
receiver is no longer controlled by the POR comparator 
and remains operational down to about 2.5V on the 
V

DD

 supply (MCP2561/2). The MCP2562 transfers 

data to the R

XD

 pin down to 1.8V on the V

IO

 supply.

1.7

Pin Descriptions

Table 1-2

 describes the pinout.

TABLE 1-2:

MCP2561/2 PINOUT

MCP2561

3x3 DFN

MCP2561

PDIP, SOIC

MCP2562

3x3 DFN

MCP2562

PDIP, SOIC

Symbol

Pin Function

1

1

1

1

T

XD

Transmit Data Input

2

2

2

2

V

SS

Ground

3

3

3

3

V

DD

Supply Voltage

4

4

4

4

R

XD

Receive Data Output

5

5

SPLIT

Common Mode Stabilization – MCP2561 only

5

5

V

IO

Digital I/O Supply Pin – MCP2562 only

6

6

6

6

CANL

CAN Low-Level Voltage I/O

7

7

7

7

CANH

CAN High-Level Voltage I/O

8

8

8

8

STBY

Standby Mode Input

9

9

EP

Exposed Thermal Pad

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005167C-page  5

MCP2561/2

1.7.1

TRANSMITTER DATA 

INPUT PIN (T

XD

)

The CAN transceiver drives the differential output pins 
CANH and CANL according to T

XD

. It is usually 

connected to the transmitter data output of the CAN 
controller device. When T

XD

 is Low, CANH and CANL 

are in the Dominant state. When T

XD

 is High, CANH 

and CANL are in the Recessive state, provided that 
another CAN node is not driving the CAN bus with a 
Dominant state. T

XD

 is connected to an internal pull-up 

resistor (nominal 33 k

) to V

DD

 or V

IO

, in the MCP2561 

or MCP2562, respectively.

1.7.2

GROUND SUPPLY PIN (V

SS

)

Ground supply pin.

1.7.3

SUPPLY VOLTAGE PIN (V

DD

)

Positive supply voltage pin. Supplies transmitter and 
receiver, including the wake-up receiver.

1.7.4

RECEIVER DATA 

OUTPUT PIN (R

XD

)

R

XD

 is a CMOS-compatible output that drives High or 

Low depending on the differential signals on the CANH 
and CANL pins, and is usually connected to the 
receiver data input of the CAN controller device. R

XD

 is 

High when the CAN bus is Recessive, and Low in the 
Dominant state. R

XD

 is supplied by V

DD

 or V

IO

, in the 

MCP2561 or MCP2562, respectively.

1.7.5

SPLIT PIN (MCP2561 ONLY)

Reference Voltage Output (defined as V

DD

/2). The pin 

is only active in Normal mode. In Standby mode, or 
when V

DD

 is off, SPLIT floats.

1.7.6

V

IO

 PIN (MCP2562 ONLY)

Supply for digital I/O pins. In the MCP2561, the supply 
for the digital I/O (T

XD

, R

XD

 and STBY) is internally 

connected to V

DD

.

1.7.7

CAN LOW PIN (CANL)

The CANL output drives the Low side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator. CANL disconnects from the 
bus when MCP2561/2 is not powered.

1.7.8

CAN HIGH PIN (CANH)

The CANH output drives the high-side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator. CANH disconnects from the 
bus when MCP2561/2 is not powered.

1.7.9

STANDBY MODE INPUT PIN (STBY)

This pin selects between Normal or Standby mode. In 
Standby mode, the transmitter, high speed receiver and 
SPLIT are turned off, only the low power receiver and 
wake-up filter are active. STBY is connected to an 
internal MOS pull-up resistor to V

DD

 or V

IO

, in the 

MCP2561 or MCP2562, respectively. The value of the 
MOS pull-up resistor depends on the supply voltage. 
Typical values are 660 k

 for 5V, 1.1 M for 3.3V and 

4.4 M

 for 1.8V

1.7.10

EXPOSED THERMAL PAD (EP)

It is recommended to connect this pad to V

SS

 to 

enhance electromagnetic immunity and thermal 
resistance.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

MCP2561/2

DS20005167C-page  6

 2013-2014 Microchip Technology Inc.

1.8

Typical Applications

FIGURE 1-1:

MCP2561 WITH SPLIT PIN

FIGURE 1-2:

MCP2562 WITH V

IO

 PIN

5V LDO

V

DD

V

DD

T

XD

R

XD

STBY

CANTX

CANRX

RBX

V

SS

V

SS

PIC

®

MCU

MCP2561

SPLIT

CANH

CANL

4700 pF

0.1 μF

CANH

CANL

60

:

60

:

300

:

Optional

(

1

)

V

BAT

Note 1:

Optional resistor to allow communication during bus failure (CANL shorted to ground).

1.8V LDO

V

DD

V

DD

T

XD

R

XD

STBY

CANTX

CANRX

RBX

V

SS

Vss

PIC

®

MCU

MCP2562

CANH

CANL

5V LDO

V

IO

0.1 μF

CANH

CANL

0.1 μF

120

:

V

BAT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005167C-page  7

MCP2561/2

2.0

ELECTRICAL 
CHARACTERISTICS

2.1

Terms and Definitions

A number of terms are defined in ISO-11898 that are 
used to describe the electrical characteristics of a CAN 
transceiver device. These terms and definitions are 
summarized in this section.

2.1.1

BUS VOLTAGE

V

CANL

 and V

CANH

 denote the voltages of the bus line 

wires CANL and CANH relative to ground of each 
individual CAN node.

2.1.2

COMMON MODE BUS VOLTAGE 
RANGE

Boundary voltage levels of V

CANL

 and V

CANH

 with 

respect to ground, for which proper operation will occur, 
if up to the maximum number of CAN nodes are 
connected to the bus.

2.1.3

DIFFERENTIAL INTERNAL 
CAPACITANCE, C

DIFF

 

(OF A CAN NODE)

Capacitance seen between CANL and CANH during 
the Recessive state, when the CAN node is 
disconnected from the bus (see 

Figure 2-1

).

2.1.4

DIFFERENTIAL INTERNAL 
RESISTANCE, R

DIFF

 

(OF A CAN NODE)

Resistance seen between CANL and CANH during the 
Recessive state when the CAN node is disconnected 
from the bus (see 

Figure 2-1

).

2.1.5

DIFFERENTIAL VOLTAGE, V

DIFF

 

(OF CAN BUS)

Differential voltage of the two-wire CAN bus, value 
V

DIFF

 = V

CANH

 – V

CANL

.

2.1.6

INTERNAL CAPACITANCE, C

IN

 

(OF A CAN NODE)

Capacitance seen between CANL (or CANH) and 
ground during the Recessive state, when the CAN 
node is disconnected from the bus (see 

Figure 2-1

).

2.1.7

INTERNAL RESISTANCE, R

IN

 

(OF A CAN NODE)

Resistance seen between CANL (or CANH) and 
ground during the Recessive state, when the CAN 
node is disconnected from the bus (see 

Figure 2-1

).

FIGURE 2-1:

PHYSICAL LAYER 
DEFINITIONS 

R

IN

R

IN

R

DIFF

C

IN

C

IN

C

DIFF

CANL

CANH

GROUND

ECU

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

MCP2561/2

DS20005167C-page  8

 2013-2014 Microchip Technology Inc.

Absolute Maximum Ratings†

V

DD

.............................................................................................................................................................................7.0V

V

IO

..............................................................................................................................................................................7.0V

DC Voltage at T

XD

, R

XD

, STBY and V

SS

.............................................................................................-0.3V to V

IO

 + 0.3V

DC Voltage at CANH, CANL and SPLIT ...................................................................................................... -58V to +58V

Transient Voltage on CANH, CANL (ISO-7637) (

Figure 2-5

) ................................................................... -150V to +100V

Storage temperature ...............................................................................................................................-55°C to +150°C

Operating ambient temperature ..............................................................................................................-40°C to +150°C

Virtual Junction Temperature, T

VJ

 (IEC60747-1) ....................................................................................-40°C to +190°C

Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C

ESD protection on CANH and CANL pins for MCP2561 (IEC 61000-4-2)............................................................. ±14 kV

ESD protection on CANH and CANL pins for MCP2562 (IEC 61000-4-2)............................................................... ±8 kV

ESD protection on CANH and CANL pins (IEC 801; Human Body Model).............................................................. ±8 kV

ESD protection on all other pins (IEC 801; Human Body Model)............................................................................. ±4 kV

ESD protection on all pins (IEC 801; Machine Model) ............................................................................................±300V

ESD protection on all pins (IEC 801; Charge Device Model) ..................................................................................±750V

† NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This 
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in 
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods 
may affect device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005167C-page  9

MCP2561/2

2.2

DC Characteristics 

Electrical Characteristics: Extended (E): T

AMB

 = -40°C to +125°C and High (H): T

AMB

 = -40°C to +150°C; 

V

DD

 = 4.5V to 5.5V, V

IO

 = 1.8V to 5.5V (

Note 2

), R

L

 = 60

; unless otherwise specified. 

Characteristic

Sym.

Min.

Typ.

Max.

Units

Conditions

SUPPLY

V

DD

 Pin

Voltage Range

V

DD

4.5

5.5

Supply Current

I

DD

5

10

mA

Recessive; V

TXD

 = V

DD

45

70

Dominant; V

TXD

 = 0V

Standby Current

I

DDS

5

15

µA

MCP2561

5

15

MCP2562; Includes I

IO

High Level of the POR 

Comparator

V

PORH

3.8

4.3

V

Low Level of the POR 

Comparator

V

PORL

3.4

4.0

V

Hysteresis of POR 

Comparator

V

PORD

0.3

0.8

V

V

IO

 Pin

Digital Supply Voltage Range

V

IO

1.8

5.5

V

Supply Current on V

IO

I

IO

4

30

µA

Recessive; V

TXD

 = V

IO

85

500

Dominant; V

TXD

 = 0V

Standby Current

I

DDS

0.3

1

µA

(

Note 1

)

Undervoltage detection on V

IO

V

UVD

(

IO

)

1.2

V

(

Note 1

)

BUS LINE (CANH; CANL) TRANSMITTER

CANH; CANL: 

Recessive Bus Output Voltage

V

O

(

R

)

2.0

0.5V

DD

3.0

V

V

TXD

 = V

DD

; No load

CANH; CANL: 

Bus Output Voltage in Standby

V

O

(

S

)

-0.1

0.0

+0.1

V

STBY = V

TXD

 = V

DD

; No load

Recessive Output Current

I

O

(

R

)

-5

+5

mA

-24V < V

CAN

 < +24V

CANH: Dominant 

Output Voltage

V

O

(

D

)

2.75

3.50

4.50

V

T

XD

 = 0; R

L

 = 50 to 65

CANL: Dominant 

Output Voltage

0.50

1.50

2.25

R

L

 = 50 to 65

Symmetry of Dominant 

Output Voltage 
(V

DD

 – V

CANH

 – V

CANL

)

V

O

(

D

)(

M

)

-400

0

+400

mV

 V

TXD

 = V

SS

 (

Note 1

)

Dominant: Differential 

Output Voltage

V

O

(

DIFF

)

1.5

2.0

3.0

V

V

TXD

 = V

SS

; R

L

 = 50 to 65



Figure 2-2

Figure 2-4

Recessive: 

Differential Output Voltage

-120

0

12

mV

V

TXD

 = V

DD

Figure 2-2

Figure 2-4

-500

0

50

mV

V

TXD

 = V

DD,

no load.

Figure 2-2

Figure 2-4

Note 1:

Characterized; not 100% tested.

2:

Only MCP2562 has V

IO

 pin. For the MCP2561, V

IO

 is internally connected to V

DD

3:

-12V to 12V is ensured by characterization, tested from -2V to 7V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005167C-html.html
background image

MCP2561/2

DS20005167C-page  10

 2013-2014 Microchip Technology Inc.

CANH: Short Circuit 

Output Current

I

O

(

SC

)

-120

-85

mA

V

TXD

 = V

SS

; V

CANH

 = 0V;

CANL: floating

-100

mA

same as above, but
V

DD

=5V, T

AMB

 = +25°C (

Note 1

)

CANL: Short Circuit 

Output Current

75

+120

mA

V

TXD

 = V

SS

; V

CANL

 = 18V; 

CANH: floating

+100

mA

same as above, but
V

DD

=5V, T

AMB

 = +25°C (

Note 1

)

BUS LINE (CANH; CANL) RECEIVER

Recessive Differential 

Input Voltage

V

DIFF

(

R

)(

I

)

-1.0

+0.5

V

Normal Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

-1.0

+0.4

Standby Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

Dominant Differential 

Input Voltage

V

DIFF

(

D

)(

I

)

0.9

V

DD

V

Normal Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

1.0

V

DD

Standby Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

Differential 

Receiver Threshold

V

TH

(

DIFF

)

0.5

0.7

0.9

V

Normal Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

0.4

1.15

Standby Mode;
-12V < V(

CANH

CANL

) < +12V;

See 

Figure 2-6

 (

Note 3

)

Differential 

Input Hysteresis

V

HYS

(

DIFF

)

50

200

mV

Normal mode, see 

Figure 2-6

(

Note 1

)

Common Mode 

Input Resistance

R

IN

10

30

k

(

Note 1

)

Common Mode 

Resistance Matching

R

IN

(

M

)

-1

0

+1

%

V

CANH

 = V

CANL

, (

Note 1

)

Differential Input 

Resistance

R

IN

(

DIFF

)

10

100

k

(

Note 1

)

Common Mode 

Input Capacitance

C

IN

(

CM

)

20

pF

V

TXD

 = V

DD

; (

Note 1

)

Differential 

Input Capacitance

C

IN

(

DIFF

)

10

V

TXD

 = V

DD

; (

Note 1

)

CANH, CANL: 

Input Leakage

I

LI

-5

+5

µA

V

DD

 = V

TXD

 = V

STBY

 = 0V.

For MCP2562, V

IO

 = 0V.

V

CANH

 = V

CANL

 = 5 V.

2.2

DC Characteristics (Continued)

Electrical Characteristics: Extended (E): T

AMB

 = -40°C to +125°C and High (H): T

AMB

 = -40°C to +150°C; 

V

DD

 = 4.5V to 5.5V, V

IO

 = 1.8V to 5.5V (

Note 2

), R

L

 = 60

; unless otherwise specified. 

Characteristic

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

Characterized; not 100% tested.

2:

Only MCP2562 has V

IO

 pin. For the MCP2561, V

IO

 is internally connected to V

DD

3:

-12V to 12V is ensured by characterization, tested from -2V to 7V.

Maker
Microchip Technology Inc.
Datasheet PDF Download