MCP2557FD/8FD Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

 2016 Microchip Technology Inc.

DS20005533A-page 1

MCP2557FD/8FD

Features

•  Silent Mode is Useful in the Following 

Applications:

- Disables transmitter in redundant systems

- Implements babbling idiot protection

- Tests connection of bus medium

- Prevents a faulty CAN controller from

disrupting all network communications

• Optimized for CAN FD at 2, 5 and 8 Mbps 

Operation:

- Maximum propagation delay: 120 ns

- Loop delay symmetry: ±10%(2 Mbps)

• Meets or Exceeds Stringent Automotive Design 

Requirements Including “Hardware Require-
ments for LIN, CAN and FlexRay Interfaces in 
Automotive Applications”, Version 1.3, May 2012:

- Conducted emissions at 2 Mbps with 

Common-Mode Choke (CMC)

- DPI at 2 Mbps with

 

CMC

• Meets SAE J2962/2 “Communication Transceiv-

ers Qualification Requirements – CAN”

- Passes radiated emissions at 2 Mbps without 

a CMC

• Meets Latest ISO/DIS-11898-2:2015

• Meets Latest SAE J2284-4 and -5 Working Drafts

• Digital Inputs of the MCP2557FD are Compatible 

to 3.3V and 5V Microcontrollers. R

XD

 Output 

Requires a 5V Tolerant Microcontroller Input

• Functional Behavior Predictable Under all Supply 

Conditions:

- Device is in Unpowered mode if V

DD

 drops 

below Power-on Reset (POR) level

- Device is in Unpowered mode if V

IO

 drops 

below POR level

Applications

CAN 2.0 and CAN FD networks in Automotive,
Industrial, Aerospace, Medical, and Consumer
applications.

Description

The MCP2557FD/8FD CAN transceiver family is
designed for high-speed CAN FD applications with up
to 8 Mbps communication speed. The maximum prop-
agation delay was improved to support longer bus
length.

The device meets automotive requirements for CAN
FD bit rates exceeding 2 Mbps, low quiescent current,
electromagnetic compatibility (EMC) and electrostatic
discharge (ESD).

Package Types

MCP2557FD/8FD Family Members

MCP2558FD

SOIC

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 V

IO

S

T

XD

MCP2557FD

SOIC

V

DD

V

SS

R

XD

CANH

CANL

NC

S

T

XD

MCP2557FD

2x3 TDFN*

MCP2558FD

2x3 TDFN*

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 NC

S

T

XD

V

DD

V

SS

R

XD

CANH

CANL

V

IO

S

T

XD

MCP2558FD

3x3 DFN*

MCP2557FD

3x3 DFN*

V

DD

V

SS

R

XD

CANH

CANL

NC

S

T

XD

V

DD

V

SS

R

XD

CANH

CANL

V

IO

S

T

XD

1

2

3

4

8

7

6

5

EP

9

1

2

3

4

8

7

6

5

EP

9

1

2

3

4

8

7

6

5

EP

9

1

2

3

4

8

7

6

5

EP

9

*Includes Exposed Thermal Pad (EP); see 

Table 1-1

.

Device

V

IO

 Pin

NC

TTL I/O

V

IO

 I/O

Description

MCP2557FD

N/A

Yes

Yes

N/A

MCP2558FD

Yes

N/A

N/A

Yes

Internal level shifter on digital I/O pins. 

Note:

For ordering information, see the 

Product Identification System

 section.

CAN FD Transceiver with Silent Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

MCP2557FD/8FD

DS20005533A-page 2

 2016 Microchip Technology Inc.

Block Diagram

Note:

Only the MCP2558FD has the V

IO

 pin. In the MCP2557FD, the supply for the digital I/O is internally

connected to V

DD

.

V

DD

CANH

CANL

T

XD

R

XD

DRIVER

AND

SLOPE CONTROL

THERMAL

PROTECTION

POR

UVLO

DIGITAL I/O

SUPPLY

V

IO

V

SS

S

PERMANENT 

DOMINANT DETECT

V

IO

V

IO

MODE 

CONTROL

CANH

CANL

HS_RX

V

DD

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

 2016 Microchip Technology Inc.

DS20005533A-page 3

MCP2557FD/8FD

1.0

DEVICE OVERVIEW

The MCP2557FD/8FD CAN transceiver family is
designed for high-speed CAN FD applications with up
to 8 Mbps communication speed. The product offers a
Silent mode controlled by the Silent mode pin. The
Silent mode is used to disable the CAN transmitter.
This ensures that the device doesn’t drive the CAN
bus. The MCP2557FD/8FD device provides
differential transmit and receive capability for the CAN
protocol controller, and is fully compatible with
specification ISO/DIS-11898-2:2015. 

The loop delay symmetry is tested to support data rates
that are up to 8 Mbps for CAN FD (Flexible Data rate).
The maximum propagation delay was improved to
support longer bus length.

Typically, each node in a CAN system must have a
device convert the digital signals generated by a CAN
controller to signals suitable for transmission over the
bus cabling (differential output). It also provides a buffer
between the CAN controller and the high-voltage
spikes that can be generated on the CAN bus by
outside sources.

1.1

Transmitter Function

The CAN bus has two states: Dominant and
Recessive. A Dominant state occurs when the
differential voltage between CANH and CANL is
greater than V

DIFF

(

D

)(

I

). A Recessive state occurs

when the differential voltage is less than V

DIFF

(

R

)(

I

).

The Dominant and Recessive states correspond to the
Low and High states of the T

XD

 input pin, respectively.

However, a Dominant state initiated by another CAN
node will override a Recessive state on the CAN bus.

1.2

Receiver Function

The R

XD

 output pin reflects the differential bus voltage

between CANH and CANL. The Low and High states of
the R

XD

 output pin correspond to the Dominant and

Recessive states of the CAN bus, respectively.

1.3

Internal Protection

CANH and CANL are protected against battery short
circuits and electrical transients that can occur on the
CAN bus. This feature prevents destruction of the
transmitter output stage during such a fault condition.

The device is further protected from excessive current
loading by thermal shutdown circuitry that disables the
output drivers when the junction temperature exceeds
a nominal limit of +175°C. 

All other parts of the chip remain operational, and the
chip temperature is lowered due to the decreased
power dissipation in the transmitter outputs. This
protection is essential to guard against bus line short-
circuit-induced damage. Thermal protection is only
active during Normal mode.

1.4

 Permanent Dominant Detection 

The MCP2557FD/8FD device prevents a permanent
dominant condition on T

XD

.

In Normal mode, if the MCP2557FD/8FD detects an
extended Low state on the T

XD

 input, it will disable the

CANH and CANL output drivers in order to prevent
data corruption on the CAN bus. The drivers will remain
disabled until T

XD

 goes High. The high-speed receiver

is active, and data on the CAN bus is received on R

XD

.

The condition has a time-out of 1.9 ms (typical). This
implies a maximum bit time of 128 µs (7.8 kHz),
allowing up to 18 consecutive dominant bits on the bus.

1.5

Power-on Reset (POR) and 
Undervoltage Detection

The MCP2557FD/8FD have POR detection on both
supply pins, V

DD

 and V

IO

. Typical POR thresholds to

deassert the reset are 1.2V and 3.0V for V

IO

 and V

DD

,

respectively. 

When the device is powered on, CANH and CANL
remain in a high-impedance state until V

DD

 exceeds its

undervoltage level. Once powered on, CANH and
CANL will enter a high-impedance state if the voltage
level at V

DD

 drops below the undervoltage level,

providing voltage brown-out protection during normal
operation.

The receiver output is forced to a Recessive state
during an undervoltage condition on V

DD

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

MCP2557FD/8FD

DS20005533A-page 4

 2016 Microchip Technology Inc.

1.6

Mode Control

Figure 1-1

 shows the state diagram of the MCP2557FD/

8FD. 

1.6.1

UNPOWERED MODE (POR)

The MCP2557FD/8FD enters Unpowered mode if any
of the following conditions occur:

• After powering up the device

• If  V

DD

 drops below V

PORL

• If  V

IO

 drops below V

PORL

_V

IO

In Unpowered mode, the CAN bus will be biased to
ground using a high impedance. The MCP2557FD/
8FD is not able to communicate on the bus.

1.6.2

WAKE MODE

The MCP2557FD/8FD transitions from Unpowered
mode to Wake mode when V

DD

 and V

IO

 are above

their PORH levels. From Normal mode, if V

DD

 is

smaller than V

UVL

, or if the bandgap output voltage is

not within valid range, the device will also enter Wake
mode.

In Wake mode, the CAN bus is biased to ground and
R

XD

 is always high.

1.6.3

NORMAL MODE

When V

DD

 exceeds V

UVH

, the band gap is within valid

range and T

XD

 is High, the device transitions into

Normal mode. During POR, when the microcontroller
powers up, the T

XD

 pin could be unintentionally pulled

down by the microcontroller powering up. To avoid
driving the bus during a POR of the microcontroller,
the transceiver proceeds to Normal mode only after
T

XD

 is high.

In Normal mode, the driver block is operational and
can drive the bus pins. The slopes of the output
signals on CANH and CANL are optimized to reduce
Electromagnetic Emissions (EME). The CAN bus is
biased to V

DD

/2.

The high-speed differential receiver is active.

1.6.4

SILENT MODE

The device may be placed in Silent mode by applying
a high level to the ‘S’ pin (pin 8). In Silent mode, the
transmitter is disabled and the CAN bus is biased to
V

DD

/2. The high-speed differential receiver is active.

The CAN controller must put the MCP2557FD/8FD
back into Normal mode to enable the transmitter. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

 2016 Microchip Technology Inc.

DS20005533A-page 5

MCP2557FD/8FD

FIGURE 1-1:

MCP2557FD/8FD STATE DIAGRAM

SILENT High

Bandgap Not Ok

Or

V

DD

< V

UVL

And

Bandgap Not Ok

Or

V

DD

< V

UVL

TXD High

And

Bandgap ok 

And

V

DD

> V

UVH

And

Silent Low

SILENT Low

SILENT High

T

XD

High

And

T < TJ(SD)-TJ(HYST)

T

XD

Low > Tpdt

Or

T > TJ(SD)

V

DD

< V

PORL

Or

V

IO

< V

PORL

_V

IO

V

DD

>  V

PORH

And

V

IO

>  V

PORH

_V

IO

Normal

CAN Driven

Common Mode V

DD

/2

HS RX ON

R

XD

= f(HS RX)

T

XD

Time-Out

CAN Recessive

Common Mode V

DD

/2

HS RX ON

R

XD

= f(HS RX)

UnPowered (POR)

CAN High Impedance

Common Mode Tied to 

GND

HS RX OFF

R

XD

High

Bandgap OFF

From any 

State

Wake

Start Bandgap

CAN High Impedance

Common Mode Tied to 

GND

HS RX OFF

RXD High

Silent

CAN Recessive (TX OFF)

Common Mode V

DD

/2

HS RX ON

RX

D

= f(HS RX)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

MCP2557FD/8FD

DS20005533A-page 6

 2016 Microchip Technology Inc.

1.7

Pin Descriptions

The descriptions of the pins are listed in 

Table 1-1

.

1.7.1

TRANSMITTER DATA 
INPUT PIN (T

XD

)

The CAN transceiver drives the differential output pins
CANH and CANL according to T

XD

. It is usually

connected to the transmitter data output of the CAN
controller device. When T

XD

 is Low, CANH and CANL

are in the Dominant state. When T

XD

 is High, CANH

and CANL are in the Recessive state, provided that
another CAN node is not driving the CAN bus with a
Dominant state. T

XD

 is connected from an internal pull-

up resistor (nominal 33 k

) to V

DD

 or V

IO

, in the

MCP2557FD or MCP2558FD, respectively.

1.7.2

GROUND SUPPLY PIN (V

SS

)

Ground supply pin.

1.7.3

SUPPLY VOLTAGE PIN (V

DD

)

Positive supply voltage pin. Supplies transmitter and
receiver.

1.7.4

RECEIVER DATA OUTPUT PIN (R

XD

)

R

XD

 is a CMOS-compatible output that drives High or

Low depending on the differential signals on the CANH
and CANL pins, and is usually connected to the
receiver data input of the CAN controller device. R

XD

 is

High when the CAN bus is Recessive, and Low in the
Dominant state. R

XD

 is supplied by V

DD

 or V

IO

, in the

MCP2557FD or MCP2558FD, respectively.

1.7.5

NC PIN (MCP2557FD)

No Connect. This pin can be left open or connected to
V

SS

.

1.7.6

V

IO

 PIN (MCP2557FD)

Supply for digital I/O pins. In the MCP2557FD, the
supply for the digital I/O (T

XD

, R

XD

 and S) is internally

connected to V

DD

.

1.7.7

DIGITAL I/O

The MCP2557FD/8FD enable easy interfacing to
MCUs with I/O ranges from 1.8V to 5V.

1.7.7.1

MCP2557FD

The V

IH

(

MIN

) and V

IL

(

MAX

) for T

XD

 are independent of

V

DD

. They are set at levels that are compatible with 3V

and 5V microcontrollers.

The R

XD

 pin is always driven to V

DD

; therefore, a 3V

microcontroller will need a 5V tolerant input.

1.7.7.2

MCP2558FD

V

IH

 and V

IL

 for S and T

XD

 depend on V

IO

. The R

XD

 pin

is driven to V

IO

.

1.7.8

CAN LOW PIN (CANL)

The CANL output drives the Low side of the CAN
differential bus. This pin is also tied internally to the
receive input comparator. CANL disconnects from the
bus when the MCP2557FD/8FD devices are not
powered.

1.7.9

CAN HIGH PIN (CANH)

The CANH output drives the high side of the CAN
differential bus. This pin is also tied internally to the
receive input comparator. CANH disconnects from the
bus when the MCP2557FD/8FD devices are not
powered.

TABLE 1-1:

MCP2557FD/8FD PIN DESCRIPTIONS

MCP2557FD 

3 x 3 DFN, 

2 x 3 TDFN

MCP2557FD 

SOIC

MCP2558FD 

3 x 3 DFN, 

2 x 3 TDFN

MCP2558FD 

SOIC

Symbol

Pin Function

1

1

1

1

T

XD

Transmit Data Input

2

2

2

2

V

SS

Ground

3

3

3

3

V

DD

Supply Voltage

4

4

4

4

R

XD

Receive Data Output

5

5

NC

No Connect (MCP2557FD only) 

5

5

V

IO

Digital I/O Supply Pin 
(MCP2558FD only)

6

6

6

6

CANL

CAN  Low-Level  Voltage  I/O

7

7

7

7

CANH

CAN  High-Level  Voltage  I/O

8

8

8

8

S

Silent  Mode  Input

9

9

EP

Exposed Thermal Pad

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

 2016 Microchip Technology Inc.

DS20005533A-page 7

MCP2557FD/8FD

1.7.10

SILENT MODE INPUT PIN (S)

This pin sets Normal or Silent mode. In Silent mode, the
transmitter is off and the high-speed receiver is active.
The CAN bus common mode voltage is V

DD

/2 when in

Silent mode. 

The ‘S’ pin (pin 8) is connected to an internal MOS pull-
up resistor to V

DD

 or V

IO

, in the MCP2557FD or

MCP2558FD, respectively. The value of the MOS pull-
up resistor depends on the supply voltage. Typical val-
ues are 660 k

 for 5V, 1.1 M for 3.3V and 4.4 M for

1.8V

1.7.11

EXPOSED THERMAL PAD (EP)

It is recommended to connect this pad to V

SS

 to

enhance electromagnetic immunity and thermal
resistance.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

MCP2557FD/8FD

DS20005533A-page 8

 2016 Microchip Technology Inc.

1.8

TYPICAL APPLICATION

Figure 1-2

 shows a typical application for the

MCP2557FD with the NC pin and a split termination.

Figure 1-3

 illustrates a typical application for the

MCP2558FD.

FIGURE 1-2:

MCP2557FD WITH NC AND SPLIT TERMINATION

FIGURE 1-3:

MCP2558FD WITH V

IO

 PIN

5V LDO

V

BAT

V

DD

V

DD

T

XD

R

XD

S

CANTX

CANRX

RBX

V

SS

V

SS

PIC

®

MC

U

MC

P

2

5

5

7

F

D

NC

CANH

CANL

0.1 μF

CANH

CANL

4700 pF

60 

60 

3.3V LDO

V

DD

V

DD

T

XD

R

XD

S

CANTX

CANRX

RBX

V

SS

V

SS

PIC

®

MC

U

MC

P

2

5

5

8

F

D

CANH

CANL

5V LDO

V

BAT

V

IO

0.1 µF

0.1 µF

CANH

CANL

120 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

 2016 Microchip Technology Inc.

DS20005533A-page 9

MCP2557FD/8FD

2.0

ELECTRICAL 
CHARACTERISTICS

2.1

Terms and Definitions

A number of terms are defined in ISO/DIS-11898 that
are used to describe the electrical characteristics of a
CAN transceiver device. These terms and definitions
are summarized in this section.

2.1.1

BUS VOLTAGE

V

CANL

 and V

CANH

 denote the voltages of the bus line

wires CANL and CANH relative to the ground of each
individual CAN node.

2.1.2

COMMON MODE BUS VOLTAGE 
RANGE

Boundary voltage levels of V

CANL

 and V

CANH

 with

respect to ground, for which proper operation will occur,
if the maximum number of CAN nodes are connected
to the bus.

2.1.3

DIFFERENTIAL INTERNAL 
CAPACITANCE, C

DIFF

 

(OF A CAN NODE)

Capacitance seen between CANL and CANH during
the Recessive state when the CAN node is
disconnected from the bus (see 

Figure 2-1

).

2.1.4

DIFFERENTIAL INTERNAL 
RESISTANCE, R

DIFF

 

(OF A CAN NODE)

Resistance seen between CANL and CANH during the
Recessive state when the CAN node is disconnected
from the bus (see 

Figure 2-1

).

2.1.5

DIFFERENTIAL VOLTAGE, V

DIFF

 

(OF CAN BUS)

Differential voltage of the two-wire CAN bus, with value
equal to V

DIFF

= V

CANH

– V

CANL

.

2.1.6

INTERNAL CAPACITANCE, C

IN

 

(OF A CAN NODE)

Capacitance seen between CANL (or CANH) and
ground during the Recessive state when the CAN node
is disconnected from the bus (see 

Figure 2-1

).

2.1.7

INTERNAL RESISTANCE, R

IN

 

(OF A CAN NODE)

Resistance seen between CANL (or CANH) and
ground during the Recessive state when the CAN node
is disconnected from the bus (see 

Figure 2-1

).

FIGURE 2-1:

PHYSICAL LAYER 
DEFINITIONS

R

IN

R

IN

R

DIFF

C

IN

C

IN

C

DIFF

CANL

CANH

GROUND

ECU

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005533A-html.html
background image

MCP2557FD/8FD

DS20005533A-page 10

 2016 Microchip Technology Inc.

2.2

Absolute Maximum Ratings†

V

DD

.............................................................................................................................................................................7.0V

V

IO

..............................................................................................................................................................................7.0V

DC Voltage at T

XD

, R

XD

, S and V

SS

....................................................................................................-0.3V to V

IO

 + 0.3V

DC Voltage at CANH, and CANL ................................................................................................................. -58V to +58V

Transient Voltage on CANH, and CANL (ISO/DIS-7637) (

Figure 2-5

) ..................................................... -150V to +100V

Differential Bus Input Voltage V

DIFF

(I) (t = 60 days, continuous)....................................................................-5V to +10V

Differential Bus Input Voltage V

DIFF

(I) (1000 pulses, t = 0.1 ms, V

CANH

 = +18V).....................................................+17V

Dominant State Detection V

DIFF

(I) (10000 pulses, t = 1 ms).......................................................................................+9V

Storage temperature ...............................................................................................................................-55°C to +150°C

Operating ambient temperature ..............................................................................................................-40°C to +150°C

Virtual Junction Temperature, T

VJ

 (IEC60747-1) ....................................................................................-40°C to +190°C

Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C

ESD protection on CANH and CANL pins (IEC 61000-4-2) ................................................................................... ±13 kV 

ESD protection on CANH and CANL pins (IEC 801; Human Body Model).............................................................. ±8 kV

ESD protection on all other pins (IEC 801; Human Body Model)............................................................................. ±4 kV

ESD protection on all pins (IEC 801; Machine Model) ............................................................................................±400V

ESD protection on all pins (IEC 801; Charge Device Model) ..................................................................................±750V

† Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at those or any other conditions above those indicated in
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods
may affect device reliability.

Maker
Microchip Technology Inc.
Datasheet PDF Download