MCP254XWFD Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

 2016 Microchip Technology Inc.

DS20005514A-page  1

MCP2542FD/4FD, 

MCP2542WFD/4WFD

Features

• Supports CAN 2.0 and CAN with Flexible Data Rate 

(CAN FD) Physical Layer Transceiver Requirements

• Optimized for CAN FD at 2, 5 and 8 Mbps Operation

- Maximum propagation delay: 120 ns
- Loop delay symmetry: -10%/+10% (2 Mbps)

• MCP2542FD/4FD:

- Wake-up on CAN activity, 3.6 µs filter time

• MCP2542WFD/4WFD:

- Wake-up on Pattern (WUP), as specified in 

ISO11898-2:2015, 3.6 µs activity filter time

• Implements ISO11898-2:2003, ISO11898-5:2007, and 

ISO/DIS11898-2:2015

• Qualification: AEC-Q100 Rev. G, Grade 0 (-40°C to 

+150°C)

• Very Low Standby Current (4 µA, typical)
• V

IO

 Supply Pin to Interface Directly to CAN Controllers 

and Microcontrollers with 1.8V to 5V I/O

• CAN Bus Pins are Disconnected when Device is 

Unpowered
- An unpowered node or brown-out event will not 

load the CAN bus

- Device is unpowered if V

DD

 or V

IO

 drop below its 

POR level

• Detection of Ground Fault:

- Permanent Dominant detection on T

XD

- Permanent Dominant detection on bus

• Automatic Thermal Shutdown Protection
• Suitable for 12V and 24V Systems
• Meets or Exceeds Stringent Automotive Design 

Requirements Including “Hardware Requirements for 
LIN, CAN and FlexRay Interfaces in Automotive 
Applications
”, Version 1.3, May 2012
- Conducted emissions @ 2 Mbps with 

Common-Mode Choke (CMC)

- Direct Power Injection (DPI) @ 2 Mbps with CMC

• Meets SAE J2962/2 “Communication Transceiver Quali-

fication Requirements - CAN
- Radiated emissions @ 2 Mbps without a CMC

• High Electrostatic Discharge (ESD) Protection on CANH 

and CANL, meeting IEC61000-4-2 up to ±13 kV

• Temperature ranges:

- Extended (E): -40°C to +125°C
- High (H): -40°C to +150°C

Description

The MCP2542FD/4FD and MCP2542WFD/4WFD CAN 
transceiver family is designed for high-speed CAN FD 
applications up to 8 Mbps communication speed. The 
maximum propagation delay was improved to support longer 
bus length.
The device meets the automotive requirements for CAN FD bit 
rates exceeding 2 Mbps, low quiescent current, 
electromagnetic compatibility (EMC) and electrostatic 
discharge (ESD).

Applications

CAN 2.0 and CAN FD networks in Automotive, Industrial, 
Aerospace, Medical, and Consumer applications.

Package Types   

MCP2542FD/4FD, MCP2542WFD/4WFD Family Members

MCP2542FD

MCP2542WFD

8-Lead SOIC

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 V

IO

STBY

T

XD

MCP2544FD

MCP2544WFD

8-Lead SOIC

VDD

VSS

RXD

CANH

CANL

1

2

3

4

8

7

6

5 NC

STBY

TXD

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 NC

STBY

T

XD

EP

9

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5 V

IO

STBY

T

XD

EP

9

* Includes Exposed Thermal Pad (EP); see 

Table 1-1

.

MCP2544FD

MCP2544WFD

3x3 DFN*

 

MCP2542FD

MCP2542WFD

3x3 DFN*

 

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5

V

IO

STBY

T

XD

EP

9

V

DD

V

SS

R

XD

CANH

CANL

1

2

3

4

8

7

6

5

NC

STBY

T

XD

EP

9

MCP2542FD

MCP2542WFD

2x3 TDFN*

MCP2544FD

MCP2544WFD

2x3 TDFN*

Device

V

IO

 pin

WUP

Description

MCP2542FD

Yes

No

MCP2544FD

No

No

Internal level shifter on digital I/O pins

MCP2542WFD

Yes

Yes

Wake-Up on Pattern (see 

Section 1.6.5

)

MCP2544WFD

No

Yes

Internal level shifter on digital I/O pins; Wake-Up on Pattern

Note: For ordering information, see the 

Product Identification System

 section.

CAN FD Transceiver with Wake-Up Pattern (WUP) Option

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

MCP2542FD/4FD, MCP2542WFD/4WFD

DS20005514A-page  2

 2016 Microchip Technology Inc.

Block Diagram

Note 1: There is one receiver implemented. The receiver can operate in Low-Power or High-Speed mode.

2: Only MCP2542FD and MCP2542WFD have the V

IO

 pin.

3: In the MCP2544FD and MCP2544WFD, the supply for the digital I/O is internally connected to V

DD

.

V

DD

CANH

CANL

T

XD

R

XD

Driver

and

Slope Control

Thermal

Protection

POR

UVLO

Digital I/O

Supply

V

IO

V

SS

STBY

Permanent Dominant 

Detect

V

IO

V

IO

Mode Control

Wake-Up 

Filter

CANH

CANL

CANH

CANL

LP_RX

HS_RX

V

DD

V

DD

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

 2016 Microchip Technology Inc.

DS20005514A-page  3

MCP2542FD/4FD, MCP2542WFD/4WFD

1.0

DEVICE OVERVIEW

The MCP2542FD/4FD and MCP2542WFD/4WFD
devices serve as the interface between a CAN protocol 
controller and the physical bus. The devices provide
differential transmit and receive capability for the CAN 
protocol controller. The devices are fully compatible 
with the ISO11898-2 and ISO11898-5 standards, and 
with the ISO/DIS11898-2:2015 working draft.

Excellent Loop Delay Symmetry supports data rates up 
to 8 Mbps for CAN FD. The maximum propagation 
delay was improved to support longer bus length.

Typically, each node in a CAN system must have a 
device to convert the digital signals generated by a 
CAN controller to signals suitable for transmission over 
the bus cabling (differential output). It also provides a 
buffer between the CAN controller and the high-voltage 
spikes that can be generated on the CAN bus by 
outside sources.

The MCP2542FD/4FD wakes up on CAN activity (basic 
wake-up). The CAN activity filter time is 3.6 µs maximum.

The MCP2542WFD/4WFD wakes up after receiving 
two consecutive dominant states separated by a reces-
sive state: WUP. The minimum duration of each domi-
nant and recessive state is t

FILTER

. The complete WUP 

has to be detected within t

WAKE

(

TO

).

1.1

Transmitter Function

The CAN bus has two states: Dominant and 
Recessive. A Dominant state occurs when the 
differential voltage between CANH and CANL is 
greater than V

DIFF

(

D

)(

I

). A Recessive state occurs 

when the differential voltage is less than V

DIFF

(

R

)(

I

). 

The Dominant and Recessive states correspond to the 
Low and High states of the T

XD

 input pin, respectively. 

However, a Dominant state initiated by another CAN 
node will override a Recessive state on the CAN bus.

1.2

Receiver Function

In Normal mode, the R

XD

 output pin reflects the 

differential bus voltage between CANH and CANL. The 
Low and High states of the R

XD

 output pin correspond 

to the Dominant and Recessive states of the CAN bus, 
respectively.

1.3

Internal Protection

CANH and CANL are protected against battery short
circuits and electrical transients that can occur on the 
CAN bus. This feature prevents destruction of the 
transmitter output stage during such a fault condition.

The device is further protected from excessive current 
loading by thermal shutdown circuitry that disables the 
output drivers when the junction temperature exceeds 
a nominal limit of +175°C. 

All other parts of the chip remain operational, and the 
chip temperature is lowered due to the decreased 
power dissipation in the transmitter outputs. This 
protection is essential to protect against bus line 
short-circuit-induced damage. Thermal protection is 
only active during Normal mode.

1.4

 Permanent Dominant Detection 

The MCP2542FD/4FD and MCP2542WFD/4WFD
device prevents two conditions:

• Permanent Dominant condition on T

XD

• Permanent Dominant condition on the bus

In Normal mode, if the MCP2542FD/4FD and 
MCP2542WFD/4WFD detects an extended Low state 
on the T

XD

 input, it will disable the CANH and CANL 

output drivers in order to prevent the corruption of data 
on the CAN bus. The drivers will remain disabled until 
T

XD

 goes High. The high-speed receiver is active and 

data on the CAN bus is received on R

XD

.

In Standby mode, if the MCP2542FD/4FD and 
MCP2542WFD/4WFD detects an extended dominant 
condition on the bus, it will set the R

XD

 pin to a 

Recessive state. This allows the attached controller to 
go to Low-Power mode until the dominant issue is 
corrected. R

XD

 is latched High until a Recessive state 

is detected on the bus and the Wake-Up function is 
enabled again.

1.5

Power-On Reset (POR) and 
Undervoltage Detection

The MCP2542FD/4FD and MCP2542WFD/4WFD
have POR detection on both supply pins: V

DD

 and V

IO

Typical POR thresholds to deassert the reset are 1.2V
and 3.0V for V

IO

 and V

DD

, respectively. 

When the device is powered on, CANH and CANL 
remain in a high-impedance state until V

DD

 exceeds its 

undervoltage level. Once powered on, CANH and 
CANL will enter a high-impedance state if the voltage 
level at V

DD

 drops below the undervoltage level, 

providing voltage brown-out protection during normal 
operation.

In Normal mode, the receiver output is forced to 
Recessive state during an undervoltage condition on 
V

DD

. In Standby mode, the low-power receiver is 

designed to work down to 1.7V V

IO

. Therefore, the 

low-power receiver remains operational down to V

PORL

on V

DD

 (MCP2544FD and MCP2544WFD). The 

MCP2542FD and MCP2542WFD transfers data to the 
R

XD

 pin down to 1.7V on the V

IO

 supply.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

MCP2542FD/4FD, MCP2542WFD/4WFD

DS20005514A-page  4

 2016 Microchip Technology Inc.

1.6

Mode Control

The main difference between the MCP2542FD/4FD
and MCP2542WFD/4WFD is the wake-up method.

Figure 1-1

 shows the state diagram of the 

MCP2542FD/4FD. The devices wake up on CAN activity.

Figure 1-2

 shows the state diagram of the 

MCP2542WFD/4WFD. The devices wake up on a 
WUP.

1.6.1

UNPOWERED MODE (POR)

The MCP2542FD/4FD and MCP2542WFD/4WFD
enter Unpowered mode under the following conditions:

• After powering up the device, or

• If  V

DD

 drops below V

PORL

, or 

• If  V

IO

 drops below V

PORL

_V

IO

In Unpowered mode, the CAN bus will be biased to 
ground using a high impedance. The 
MCP2542FD/4FD and MCP2542WFD/4WFD are not 
able to communicate on the bus or detect a wake-up 
event.

1.6.2

WAKE MODE

The MCP2542FD/4FD and MCP2542WFD/4WFD 
transitions from Unpowered mode to Wake mode 
when V

DD

 and V

IO

 are above their PORH levels. From 

Normal mode, the device will also enter Wake mode if 
V

DD

 is smaller than V

UVL

, or if the band gap output 

voltage is not within valid range. Additionally, the 
device will transition from Standby mode to Wake 
mode if STBY is pulled Low.

In Wake mode, the CAN bus is biased to ground and 
R

XD

 is always high.

1.6.3

NORMAL MODE

When V

DD

 exceeds V

UVH

, the band gap is within valid 

range and T

XD

 is High, the device transitions into 

Normal mode. During POR, when the microcontroller 
powers up, the T

XD

 pin could be unintentionally pulled 

down by the microcontroller powering up. To avoid 
driving the bus during a POR of the microcontroller, 
the transceiver proceeds to Normal mode only after 
T

XD

 is high.

In Normal mode, the driver block is operational and 
can drive the bus pins. The slopes of the output 
signals on CANH and CANL are optimized to reduce 
Electromagnetic Emissions (EME). The CAN bus is 
biased to V

DD

/2.

The high-speed differential receiver is active.

1.6.4

STANDBY MODE

The device may be placed in Standby mode by 
applying a high level to the STBY pin. In Standby 
mode, the transmitter and the high-speed part of the 
receiver are switched off to minimize power 
consumption. 

The low-power receiver and the wake-up block are 
enabled in order to monitor the bus for activity. The 
CAN bus is biased to ground.

The R

XD

 pin remains HIGH until a wake-up event has 

occurred.

The MCP2542FD/4FD uses Basic Wake-Up: one 
dominant phase for a minimum time of t

FILTER

 will 

wake up the device.

The MCP2542WFD/4WFD will only wake up if it 
detects a complete WUP. The WUP method is 
described in the next section.

After a wake-up event was detected, the CAN 
controller gets interrupted by a negative edge on the 
R

XD

 pin. 

The CAN controller must put the MCP2542FD/4FD and 
MCP2542WFD/4WFD back into Normal mode by 
deasserting the STBY pin in order to enable 
high-speed data communication.

The CAN bus Wake-Up function requires both supply 
voltages, V

DD

 and V

IO

, to be in valid range.

1.6.5

REMOTE WAKE-UP VIA CAN BUS (WUP)

The MCP2542WFD/4WFD wakes up from 
Standby/Silent mode when a dedicated wake-up pat-
tern (WUP) is detected on the CAN bus. The wake-up 
pattern is specified in ISO11898-6 and 
ISO/DIS11898-2:2015 (see 

Figure 1-2

 and 

Figure 2-11

).

The Wake-Up Pattern consists of three events:

• a Dominant phase of at least t

FILTER

, followed by

• a Recessive phase of at least t

FILTER

, followed by

• a Dominant phase of at least t

FILTER

The complete pattern must be received within 
t

WAKE

(

TO

). Otherwise, the internal wake-up logic is 

reset and the complete wake-up pattern must be 
retransmitted in order to trigger a wake-up event.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

 2016 Microchip Technology Inc.

DS20005514A-page  5

MCP2542FD/4FD, MCP2542WFD/4WFD

FIGURE 1-1:

MCP2542FD/4FD STATE DIAGRAM: BASIC WAKE-UP

V

DD

> V

PORH

And

V

IO

> V

PORH

_V

IO

And

STBY High

Bandgap not OK

Or

V

DD

< V

UVL

T

XD

High

And

Bandgap OK 

And

V

DD

> V

UVH

Bus Recessive

Bus Dominant > t

PDT

STBY Low

T

XD

 High

And

T < TJ(SD)-TJ(HYST)

T

XD

 Low > T

PDT

Or

T > TJ(SD)

V

DD

> V

PORH

And

V

IO

> V

PORH

_V

IO

And

STBY Low

Normal

CAN Driven

Common mode V

DD

/2

HS RX ON

Wake-Up Disabled

R

XD

= f(HS  RX)

T

XD

Time Out

CAN Recessive

Common mode V

DD

/2

HS RX ON

Wake-Up Disabled

5

;'

 I+65;

Un

Sowered (POR)

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

High

Bandgap OFF

From any 

Vtate

Standby

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Enabled

R

XD

= f(LP  RX)

Stop Bandgap

Bus Dominant 

Time Out

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

 High

Wake

Start Bandgap

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

 High

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

MCP2542FD/4FD, MCP2542WFD/4WFD

DS20005514A-page  6

 2016 Microchip Technology Inc.

FIGURE 1-2:

MCP2542WFD/4WFD STATE DIAGRAM: WAKE-UP PATTERN 

t

WAKE

(

TO

)

Expired

Bus Recessive

Bus Dominant > t

FILTER

Bus Recessive > t

FILTER

Bus Dominant > t

FILTER

Bandgap Not Ok

Or

V

DD

 < V

UVL

T

XD

 High

 

And

Bandgap OK 

And

V

DD

 > V

UVH

Bus Dominant > t

PDT

STBY High

T

XD

 High

And

T < TJ(SD)-TJ(HYST)

T

XD

 Low > T

PDT

Or

T > TJ(SD)

V

DD

 > V

PORH

And

V

IO

 > V

PORH

_V

IO

And

STBY Low

Normal

CAN Driven

Common mode V

DD

/2

HS RX ON

Wake-Up Disabled

R

XD

 = f(HS RX)

TXD Time Out

CAN Recessive

Common mode V

DD

/2

HS RX ON

Wake-Up Disabled

R

XD

 = f(HS RX)

UnPowered (POR)

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

 High

Bandgap OFF

From any 

State

Standby Init

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Enabled

R

XD

 High

Stop Bandgap

Wake

Start Bandgap

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

 High

Standby 1

Start t

WAKE

 

TIME

 

OUT

R

XD

 High

Standby 2

R

XD

 High

Standby/Receiving

CAN High Impedance

Common mode tied to GND

HS RX OFF

R

XD

 = f(LP RX)

Standby

Bus Dominant 

Time Out

CAN High Impedance

Common mode tied to GND

HS RX OFF

Wake-Up Disabled

R

XD

 High

Standby 3

R

XD

 High

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

 2016 Microchip Technology Inc.

DS20005514A-page  7

MCP2542FD/4FD, MCP2542WFD/4WFD

1.7

Pin Descriptions

The description of the pins are listed in 

Table 1-1

.

1.7.1

TRANSMITTER DATA 

INPUT PIN (T

XD

)

The CAN transceiver drives the differential output pins 
CANH and CANL according to T

XD

. It is usually 

connected to the transmitter data output of the CAN 
controller device. When T

XD

 is Low, CANH and CANL 

are in the Dominant state. When T

XD

 is High, CANH 

and CANL are in the Recessive state, provided that 
another CAN node is not driving the CAN bus with a 
Dominant state. T

XD

 is connected from an internal 

pull-up resistor (nominal 33 k

) to V

IO

 in the 

MCP2542FD and MCP2542WFD, and to V

DD

 in the 

MCP2544FD and MCP2544WFD.

1.7.2

GROUND SUPPLY PIN (V

SS

)

Ground supply pin.

1.7.3

SUPPLY VOLTAGE PIN (V

DD

)

Positive supply voltage pin. Supplies transmitter and 
receiver, including the wake-up receiver.

1.7.4

RECEIVER DATA OUTPUT PIN (R

XD

)

R

XD

 is a CMOS-compatible output that drives High or 

Low depending on the differential signals on the CANH 
and CANL pins, and is usually connected to the 
receiver data input of the CAN controller device. R

XD

 is 

High when the CAN bus is Recessive, and Low in the 
Dominant state. R

XD

 is supplied by V

IO

 in the 

MCP2542FD and MCP2542WFD and by V

DD

 in the 

MCP2544FD and MCP2544WFD.

1.7.5

NC PIN (MCP2544FD AND 
MCP2544WFD)

No Connect. This pin can be left open or connected to 
V

SS

.

1.7.6

V

IO

 PIN (MCP2542FD AND 

MCP2542WFD)

Supply for digital I/O pins. In the MCP2544FD and 
MCP2544WFD, the supply for the digital I/O (T

XD

, R

XD

and STBY) is internally connected to V

DD

.

1.7.7

DIGITAL I/O

The MCP2542FD/4FD and MCP2542WFD/4WFD
enable easy interfacing to MCU with I/O ranges from 
1.8V to 5V.

1.7.7.1

MCP2544FD and MCP2544WFD

The V

IH

(

MIN

) and V

IL

(

MAX

) for STBY and T

XD

 are 

independent of V

DD

. They are set at levels that are 

compatible with 3V and 5V microcontrollers.

The R

XD

 pin is always driven to V

DD

, therefore a 3V 

microcontroller will need a 5V tolerant input.

1.7.7.2

MCP2542FD and MCP2542WFD

V

IH

 and V

IL

 for STBY and T

XD

 depend on V

IO

. The 

R

XD

 pin is driven to V

IO

.

1.7.8

CAN LOW PIN (CANL)

The CANL output drives the Low side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator. CANL disconnects from the 
bus when MCP2542FD/4FD and 
MCP2542WFD/4WFD are not powered.

1.7.9

CAN HIGH PIN (CANH)

The CANH output drives the high side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator. CANH disconnects from the 
bus when MCP2542FD/4FD and 
MCP2542WFD/4WFD are not powered.

TABLE 1-1:

MCP2542/4FD AND MCP2542/4WFD PIN DESCRIPTIONS

MCP2542FD 

MCP2542WFD

3x3 DFN, 

2x3TDFN

MCP2542FD 

MCP2542WFD

SOIC

MCP2544FD 

MCP2544WFD

3x3 DFN, 

2x3TDFN

MCP2544FD 

MCP2544WFD

SOIC

Symbol

Pin Function

1

1

1

1

T

XD

Transmit Data Input

2

2

2

2

V

SS

Ground

3

3

3

3

V

DD

Supply Voltage

4

4

4

4

R

XD

Receive Data Output

5

5

NC

No Connect 

5

5

V

IO

Digital I/O Supply Pin

6

6

6

6

CANL

CAN Low-Level Voltage I/O

7

7

7

7

CANH

CAN High-Level Voltage I/O

8

8

8

8

STBY

Standby Mode Input

9

9

EP

Exposed Thermal Pad

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

MCP2542FD/4FD, MCP2542WFD/4WFD

DS20005514A-page  8

 2016 Microchip Technology Inc.

1.7.10

STANDBY MODE INPUT PIN (STBY)

This pin selects between Normal or Standby mode. In 
Standby mode, the transmitter and high-speed receiver 
are turned off, only the low-power receiver and wake-up 
filter are active. STBY is connected from an internal 
MOS pull-up resistor to V

IO

 in the MCP2542FD and 

MCP2542WFD, and to V

DD

 in the MCP2544FD and 

MCP2544WFD. The value of the MOS pull-up resistor 
depends on the supply voltage. Typical values are 
660 k

 for 5V, 1.1 M for 3.3V and 4.4 M for 1.8V.

1.7.11

EXPOSED THERMAL PAD (EP)

It is recommended to connect this pad to V

SS

 to 

enhance electromagnetic immunity and thermal 
resistance.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

 2016 Microchip Technology Inc.

DS20005514A-page  9

MCP2542FD/4FD, MCP2542WFD/4WFD

1.8

Typical Applications

In order to meet the EMC/EMI requirements, a 
Common Mode Choke (CMC) may be required for data 
rates greater than 1 Mbps. 

Figure 1-3

 and 

Figure 1-4

 

illustrate examples of typical applications of the 
devices.

FIGURE 1-3:

MCP2544WFD WITH NC AND SPLIT TERMINATION

FIGURE 1-4:

MCP2542FD WITH V

IO

 PIN

5V LDO

V

BAT

V

DD

V

DD

T

XD

R

XD

STBY

CANTX

CANRX

RBX

V

SS

V

SS

PI

C

®

 MC

U

MC

P

2

544

W

F

D

NC

CANH

CANL

0.1 µF

CANH

CANL

4700 pF

60

60

3.3V LDO

V

DD

V

DD

TXD

RXD

STBY

CANTX

CANRX

RBX

V

SS

V

SS

PI

C

®

 MC

U

MC

P

2542

F

D

CANH

CANL

5V LDO

V

BAT

V

IO

0.1 µF

0.1 µF

CANH

CANL

120

EN

RBX

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005514A-html.html
background image

MCP2542FD/4FD, MCP2542WFD/4WFD

DS20005514A-page  10

 2016 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download