MCP2036 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

© 2009 Microchip Technology Inc.

DS22186C-page 1

MCP2036

Features:

• Complete Inductance Measurement System:

- Low-Impedance Current Driver
- Sensor/Reference Coil Multiplexer
- High-Frequency Detector

• Operating Voltage: 2.7 to 5.5V
• Low-Power Standby Mode
• Gain and Frequency set by external passive 

components 

Typical Applications:

• Harsh environment inductive keyboards
• Inductive rotational sensor interface
• Inductive displacement sensor interface
• Inductive force sensor interface

Description:

The MCP2036 Inductive Sensor Analog Front End
(AFE) combines all the necessary analog functions for
a complete inductance measurement system. 
The device includes:
• High-frequency, current-mode coil driver for 

exciting the sensor coil.

• Synchronous detector for converting AC sense 

voltages into DC levels.

• Output amplifier/filter to improve resolution and 

limit noise. 

• Virtual ground reference generator for single 

supply operation.

The device is available in 14-pin PDIP, SOIC and
16-pin QFN packages:

Package Types

1

2

3

6

7

4

5

14

13

8

9

10

11

12

V

REF

LREF

LBTN

V

DD

DRVOUT

DRVIN

CLK

V

DET+

V

DET-

V

DETOUT

V

SS

CS

REFSEL

ISOL

9

10

11

12

6

7

5

8

1

2

3

4

LREF

LBTN

V

DD

DRVOUT

16

15

14

13

DR

VIN

CL

K

REF

SEL

CS

V

DET-

V

DETOUT

V

SS

ISOL

V

DE

T

+

V

RE

F

NC

NC

MCP2036

 16-pin QFN

MCP2036

 14-pin PDIP, SOIC

Inductive Sensor Analog Front End Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

MCP2036

DS22186C-page 2

© 2009 Microchip Technology Inc.

1.0

FUNCTIONAL DESCRIPTION

The MCP2036 measures a sensor coil’s impedance by
exciting the coil with a pulsed DC current and
measuring the amplitude of the resulting AC voltage
waveform. The drive current is generated by the
on-chip current amplifier/driver which takes the
high-frequency triangular waveform present on the
DRVIN input, and amplifies it into the pulsed DC current
for exciting the series combination of the sensor coils.

The AC voltages generated across the coils, are then
capacitively coupled into the LBTN and LREF inputs.
An input resistance of 2K between the inputs and the
virtual ground offsets the AC input voltages up to the
signal ground generated by the reference voltage
generator, as shown in 

Figure 1-1

.

 

FIGURE 1-1:

MCP2036 Block Diagram

Voltage
Reference

REFSEL

V

DETOUT

DRVIN

CLK

DRVOUT

LBTN

LREF

V

REF

V

DD

V

SS

0

1

Input MUX

CS

Key Inductor Driver

Mixer

V

DET+

V

DET-

+

-

10K

10K

Op. Amp. Block

ISOL

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

© 2009 Microchip Technology Inc.

DS22186C-page 3

MCP2036

FIGURE 1-2:

MCP2036 Typical Application

The coil voltages are then multiplexed into the
Synchronous Detector section by the LBTN/LREF
multiplexer. This allows the microcontroller to select
which signal is sampled by the detector. The detector
converts the coil voltages into a DC level using a
frequency mixer, amplifier, and filter.
The mixer is composed of two switches driven by the
clock present on the CLK signal input. The switches
toggle the amplifier/filter between an inverting and
non-inverting topology, at a rate equal to the clock input
frequency. This inverts and amplifies the negative side
of the signal, while amplifying the positive side. The
result is a pulsed DC signal with a peak voltage,
proportional to the amplitude of the AC coil voltage.

The gain of the detector is set by two pairs of resistors;
one pair are the internal fixed series resistors between
the frequency mixer and the amplifier. The second
resistor pair are the two external gain set resistors
(R

GAIN

). The two capacitors (C

FILTER

) in parallel with

the external gain setting resistors form a low pass filter
which converts the pulsed DC output signal into a
smooth DC voltage which is proportional to the AC
sensor voltage input. The output of the system is
present on the V

DETOUT

 pin, which drives the

microcontroller’s ADC input for conversion into a digital
value.
The virtual ground reference for the detector/amplifier
is generated by a second internal op amp which
produces a virtual ground equal to ½ the supply
voltage. The virtual ground is available externally at the
V

REF

 output and used internally throughout the

detector circuit, allowing single supply operation. A
small external capacitance is required to stabilize this
output and limit noise.
The ISOL input is used to isolate the detector from
potential noise sources during the measurement of the
virtual ground reference during a button measurement.

MCP2036

LREF

LBTN

LREF

DRVOUT

10

Ω

10nF

REFSEL

10nF

I/O

I/O

I/O

0
1

2
3

0

1

3

2

CD4052

Key Coils

PIC

®

 Microcontroller

CS

I/O

V

DET-

V

DETOUT

V

DET+

V

REF

CLK

DRVIN

PWM

ADC

C

FILTER

C

FILTER

R

GAIN

R

GAIN

C

RGND

R

IN

C

IN

R

ADC

C

ADC

ISOL

I/O

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

MCP2036

DS22186C-page 4

© 2009 Microchip Technology Inc.

1.1

Coil Driver 

The coil driver produces the excitation current for the
sensor coils.
The coil driver input is derived from the digital clock
supplied to the CLK input. The digital signal is first
filtered through a low-pass filter, composed of R

IN

 and

C

IN

, and passed to the DRVIN input. The driver will

create a triangular current in phase and proportional
with the input voltage. Because the digital drive into the
R

IN

-C

IN

 filter has a 50% duty cycle, the voltage on the

DRVIN input will be centered at V

DD

/2. The relationship

between voltage, current, inductance and frequency is
shown in 

Equation 1-1

.

EQUATION 1-1:

1.2

Synchronous Detector and Output 
Amplifier

The Synchronous Detector has two inputs, LREF and
LBTN, selectable by REFSEL. This routes either signal
into the frequency mixer of the detector. The frequency
mixer then converts the AC waveform into a pulsed DC
signal which is amplified and filtered. 
The gain of the amplifier is user-settable, using an
external resistor, R

GAIN 

(see 

Equation 1-2

).

EQUATION 1-2:

An ADC plus firmware algorithm then digitizes the
detector output voltage and uses the resulting data to
detect a key press event.

1.3

Virtual Ground Voltage Reference 
Circuit

To create both an inverting and non-inverting amplifier
topology, a pseudo split supply design is required. To
generate the dual supplies required, a rail splitter is
included, which generates the virtual ground by creat-
ing a voltage output at V

DD

/2. The output is used by the

external passive network of the Detector/Amplifier sec-
tion as a reference on the non-inverting input. A bypass
capacitor of 0.1 uF is required to ensure the stability of
the output. For reference accuracy, no more than 3 mA
should be supplied to, or drawn from the reference
output pin.

ΔV

OUT

ΔI

DRV

L

COIL

2

F

DRV

(

)

=

V

OUT

Pulsed Output Voltage

=

ΔI

DR V

AC Drive Current Amplitude

=

F

DRV

AC Drive Current Frequency

=

L

COIL

Inductance of the Sensor Coil

=

Note:

These equations assume a 50% duty cycle.

Note:

The output amplifier/filter uses a
differential connection, so its output is
centered to V

REF

 (V

DD

/2). The amplitude

of the detected signal should be calculated
as the difference between voltages at the
output of the detector and the reference
voltage.

Gain

R

GAIN

10kOhm

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

© 2009 Microchip Technology Inc.

DS22186C-page 5

MCP2036

2.0

PIN DESCRIPTION

Descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

Chip Select (CS)

The circuit is fully enabled when a logic-low is applied
to the CS input. The circuit enters in Low-Power mode
when a logic-high is applied to this input. During
Low-Power mode, the detector output voltage falls to
V

REF

 and the supply current is reduced to 0.5 μA (typ.).

This pin has an internal pull-up resistor to ensure
proper selection of the circuit.

2.2

Voltage Reference (

V

REF

)

V

REF

 is a mid-scale reference output. It can source and

sink small currents and has low output impedance. A
load capacitor between 100 nF and 1 μF needs to be
located close to this pin.

2.3

Power Supply (V

DD

, V

SS

)

The V

DD

 pin is the power supply pin for the analog and

digital circuitry within the MCP2036. This pin requires
an appropriate bypass capacitor of 100 nF. The voltage
on this pin should be maintained in the 2.7V-5.5V range
for specified operation.
The V

SS

 pin is the ground pin and the current return

path for both analog and digital circuitry of the
MCP2036. If an analog ground plane is available, it is
recommended that this device be tied to the analog
ground plane of the PCB.

2.4

Inductor Inputs (LREF, LBTN)

These pins are inputs for the external coils (reference
and sensor). The inputs should be AC coupled to the
coils by a 10 nF ceramic capacitor.

2.5

Input Selection (REFSEL)

Digital input that is used to select between coil inputs
(reference and sensor).

2.6

Detector Isolate (ISOL)

Digital input that is used to isolate the detector circuit
while measuring the system virtual ground. Pulling the
input high disables the detector input multiplexers,
isolating the op amp circuitry from the coils inputs.
Pulling the input low reconnects the inputs for
measuring both reference and button coil inputs.

2.7

Clock (CLK)

The external clock input is used for synchronous
detection of the AC waveforms on the coils. The clock
signal is also used to generate a triangular waveform
applied to coil driver input.

Pad Name

Pin Number

I/O

Type

Description

14 Pins

16 Pins

V

REF

1

16

OUT

AN

Voltage Reference

LREF

2

1

IN

AN

Reference Inductor Input

LBTN

3

2

IN

AN

Active Inductor Input

V

DD

4

3

PWR

AN

Power Supply

DRVOUT

5

4

OUT

AN

Current Driver Output for Inductors

DRVIN

6

5

IN

AN

Current Driver Input

CLK

7

6

IN

CMOS

Clock Signal

REFSEL

8

7

IN

CMOS

Detector Select Input

CS

9

8

IN

CMOS

Chip Select, Active low

ISOL

10

9

IN

CMOS

Detector Isolation Control Input, 
high = isolate

V

SS

11

10

PWR

AN

Power Supply Return

V

DETOUT

12

11

OUT

AN

Detector Output Voltage

V

DET-

13

12

IN

AN

Negative Input for Output Detector

V

DET+

14

13

IN

AN

Positive Input for Output Detector

NC

14

No connect

NC

15

No connect

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

MCP2036

DS22186C-page 6

© 2009 Microchip Technology Inc.

2.8

Inductor Driver Input (DRVIN)

The analog input to the coil driver. The triangular
waveform applied to this input should be in phase with
the clock signal for best performance.

2.9

Inductor Driver Output (DRVOUT)

Driver output used to excite the sensor coils. It is a
current-mode output designed to drive small inductive
loads.

2.10

Detector Output Voltage (V

DETOUT

)

The amplifier/filter output from the detector. This is a
low-impedance analog output pin (V

OUT

) for driving the

microcontroller ADC. The detector output is rail-to-rail. 

2.11

Inputs for Output Detector (V

DET+

V

DET-

)

The non-inverting and inverting inputs for the
amplifier/filter op amp. The two inputs are connected to
the output of the mixer circuit through two internal
10K

Ω resistors.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

© 2009 Microchip Technology Inc.

DS22186C-page 7

MCP2036

3.0

APPLICATIONS 

The MCP2036 is an Analog Front End device that uses
the electromagnetic interaction between a conductive
target and a sensing coil to detect the pressure applied
by the user on the surface of a touch panel. The device
incorporates all analog blocks for a simple inductor
impedance measurement circuit.

For an inductive touch system, two methods are used
for switching the driver and measurement circuitry
between the different sensor coils: analog multiplexers
and GPIO grounding (see 

Figure 3-1

 and 

Figure 3-2

).

The MCP2036 is designed to work with both
configurations:

FIGURE 3-1:

Using Analog-Multiplexer for Key Selection (Example)

MCP2036

LREF

LBTN

LREF

DRVOUT

10

Ω

10nF

REFSEL

10nF

I/O

I/O

I/O

0
1

2
3

0

1

3

2

CD4052

Key Coils

 PIC

®

 Microcontroller

ISOL

I/O

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

MCP2036

DS22186C-page 8

© 2009 Microchip Technology Inc.

FIGURE 3-2:

Using NPN transistors for Key Selection (Example)

LREF

MCP2036

LBTN

LREF

DRVOUT

REFSEL

I/O

I/O

10

Ω

10nF

I/O

I/O

10nF

4K7

4K7

PIC

®

 Microcontroller

I/O

4K7

4K7

Key Coils

ISOL

I/O

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

© 2009 Microchip Technology Inc.

DS22186C-page 9

MCP2036

3.1

Application example

Figure 3-3

 shows an example for a 4-key Inductive

Touch keyboard with key controlled by the IO pins of
the PIC

®

 MCU. 

FIGURE 3-3:

MCP2036 Typical Application

The PIC

®

 microcontroller is used to generate a square

wave signal and to do all the necessary operations for
proper detection of the key press event.
Then, R

IN

-C

IN

 filter converts the square wave output of

the PWM into a quasi-triangular waveform.
To calculate the amplitude of the triangular signal, the
standard charging time equation for an RC network will
be used, as shown in 

Equation 3-1

EQUATION 3-1:

For the first half of the square wave, the capacitor C

IN

is charged through R

IN

, for the second half, it is

discharged through R

IN

, and assuming that clock

signal has a 50% duty cycle factor, we can consider:

EQUATION 3-2:

When the PWM signal switches from low-to-high or
from high-to-low, the step voltage applied to the
capacitor C

IN

 will be:

EQUATION 3-3:

MCP2036

LREF

LBTN

LREF

DRVOUT

10

Ω

10nF

REFSEL

10nF

I/O

I/O
I/O

0
1

2
3

0

1

3

2

CD4052

Key Coils

PIC

®

 Microcontroller

CS

I/O

V

DET-

V

DETOUT

V

DET+

V

REF

CLK

DRVIN

PWM

ADC

C

FILTER

C

FILTER

R

GAIN

R

GAIN

C

RGND

R

IN

C

IN

R

ADC

C

ADC

ISOL

I/O

V t

( ) V

step

1

t RC

(

)

exp

[

]

=

V

start

V

DD

2

⁄ -ΔV

=

V

stop

V

DD

2

⁄ +ΔV

=

V

step

V

DD

2

ΔV

+

(

)

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22186C-html.html
background image

MCP2036

DS22186C-page 10

© 2009 Microchip Technology Inc.

Substituting in the equation for an RC network:

EQUATION 3-4:

The peak-to-peak amplitude of the resulting triangular
waveform, at the coil driver input, is shown in

Equation 3-5

:

EQUATION 3-5:

From the previous equation, the designer should
choose values for V

PKPK

 and R

IN

. Using the equation

above, the value of C

IN

 will be:

EQUATION 3-6:

The amplitude of the pulsed current applied to key
inductors will be:

EQUATION 3-7:

This current produces a pulsed voltage to key inductors
ends. The amplitude of this voltage will be:

EQUATION 3-8:

The total voltage across both the reference and sensor
coils would be double (two series inductors). For a
specific power supply voltage, half of this power supply,
relative to the voltage reference, is available for output
amplifier/detector. Assuming a 30% margin, the
desired gain for the detector should be about:

EQUATION 3-9:

The gain of the amplifier is user-settable, using an
external resistor, R

GAIN. 

The value of that resistor will

be determined using the following equation:

EQUATION 3-10:

With a 10-bit ADC, using oversampling and averaging
techniques, the effective resolution is close to 11 bits.
As shown in AN1239, “Inductive Touch Sensor
Design

”, the typical shift in sensor impedance is typi-

cally 3-4%, so the actual number of counts per press is
typically between 20 and 40 counts. In this way, the
microcontroller firmware could easily detect press
event.

Note:

V

PKPK

 should not exceed specified value

(600mV) for best performance.

Note:

Assuming a power supply of 5V and
V

PKPK

=500mV, for R

IN

=3.9K

Ω, C

IN

 should

have about 320pF. A 330pF capacitor will
be used.

ΔV

V

DD

2

-----------

1

t

R

IN

C

IN

------------------

exp

1

t

R

IN

C

IN

------------------

exp

+

-------------------------------------------

=

2

ΔV

V

DD

2

ΔV

+

(

)

1

t RC

(

)

exp

[

]

=

V

PK PK

2

ΔV

=

V

PKPK

V

DD

1

t

R

IN

C

IN

------------------

exp

1

t

R

IN

C

IN

------------------

exp

+

-------------------------------------------

=

C

IN

t

R

IN

ln

V

DD

V

PKPK

V

DD

V

PKPK

+

----------------------------------------

-------------------------------------------------------------------

1

2

F

R

IN

V

DD

V

PKPK

V

DD

V

PKPK

+

----------------------------------------

ln

-------------------------------------------------------------------------------------

=

=

ΔI V

PK PK

G

DRV

=

G

DRV

Gain of Coil Driver

Note:

For a PWM frequency of 2 MHz and
inductor value of 2.7µH, the amplitude of
pulsed voltage will be:

Note:

For a power supply of 5V and 

ΔU = 10mV,

the resulted gain is 81. To obtain this gain,
R

GAIN

 = 820kOhm should be used.

ΔU L ΔI

Δt

------

L

V

PK PK

G

DRV

2F

=

=

F

 - PWM Frequency         

- Inductance of Key Inductor

Δ10.8mV

=

Gain

70%

V

DD

2

-----------

2

ΔU

---------------------------------

=

Gain

R

GAIN

/10kOhm

Maker
Microchip Technology Inc.
Datasheet PDF Download