MCP2030 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

 2005-2013 Microchip Technology Inc.

DS21981B-page 1

MCP2030

Device Features:

• Three input pins for analog input signals

• High input detection sensitivity (3 mV

PP

, typical)

• High modulation depth sensitivity (as low as 8%)

• Three output selections:

- Demodulated data

- Carrier clock

- RSSI

• Input carrier frequency: 125 kHz, typical

• Input data rate: 10 Kbps, maximum

• 8 internal Configuration registers

• Bidirectional transponder communication 

(LF talk back)

• Programmable antenna tuning capacitance 

(up to 63 pF, 1 pF/step)

• Programmable output enable filter

• Low standby current: 4

A (with 3 channels 

enabled), typical

• Low operating current: 13

A (with 3 channels 

enabled), typical

• Serial Peripheral Interface (SPI™) with external 

devices

• Supports Battery Back-Up mode and batteryless 

operation with external circuits

• Industrial and Extended Temperature Range: 

-40°C to +85°C (industrial)

Typical Applications:

• Automotive industry applications:

- Passive Keyless Entry (PKE) transponder 

- Remote door locks and gate openers

- Engine immobilizer

- LF initiator sensor for tire pressure monitoring 

systems

• Security Industry applications:

- Long range access control transponder

- Parking lot entry transponder

- Hands-free apartment door access

- Asset control and management 

Description:

The MCP2030 is a stand-alone Analog Front-End
(AFE) device for Low-Frequency (LF) sensing and bidi-
rectional communication applications. The device has
eight internal Configuration registers which are
readable and programmable, except the read-only
STATUS register, by an external device. 

The device has three low-frequency input channels.
Each input channel can be individually enabled or dis-
abled. The device can detect an input signal with ampli-
tude as low as ~1 mV

PP

 and can demodulate an

amplitude-modulated input signal with as low as 8%
modulation depth. The device can also transmit data by
clamping and unclamping the input LC antenna
voltage. 

The device can output demodulated data, carrier clock
or RSSI current depending on the register setting. The
demodulated data and carrier clock outputs are avail-
able on the LFDATA pin, while the RSSI output is avail-
able on the RSSI pin. The RSSI current output is
linearly proportional to the input signal strength. 

The device has programmable internal tuning capaci-
tors for each input channel. The user can program
these capacitors up to 63 pF, 1 pF per step. These
internal tuning capacitors can be used effectively for
fine-tuning of the external LC resonant circuit.

The device is optimized for very low current consump-
tion and has various battery-saving low-power modes
(Sleep, Standby, Active). The device can also be oper-
ated in Battery Back-up and Batteryless modes using a
few external components.

This device is available in 14-pin PDIP, SOIC, and
TSSOP packages. This device is also used as the AFE
in the PIC16F639.

Package Types:

1

2

3

4

5

6

7

14

13

12

 9

11

10

 8

NC

LCCOM

LCX

V

SS

LFDATA/

V

DD

LCZ

LCY

V

SS

CS

SCLK/ALERT

RSSI

NC

V

DD

CCLK/SDIO

MCP2030

PDIP, SOIC, TSSOP

Three-Channel Analog Front-End Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

MCP2030

DS21981B-page 2

 2005-2013 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

 2005-2013 Microchip Technology Inc.

DS21981B-page 3

MCP2030

1.0

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

(†)

Ambient temperature under bias...................-40°C to +125°C

Storage temperature .................................... -65°C to +150°C

Voltage on V

DD

 with respect to V

SS

  ...............  -0.3V to +6.5V

Voltage on all other pins with 
respect to V

SS

 ...................................... -0.3V to (V

DD

 + 0.3V)

Maximum current out of V

SS

 pin .................................300 mA

Maximum current into V

DD

 pin ....................................250 mA

Maximum LC Input Voltage
(LCX, LCY, LCZ) loaded, with device........................ 10.0 V

PP

Maximum LC Input Voltage
(LCX, LCY, LCZ) unloaded, without device............. 700.0 V

PP

Maximum Input Current (rms) into device 
per LC Channel .............................................................10 mA

Human Body ESD rating ....................................2000 (min.) V

Machine Model ESD rating ..................................200 (min.) V

  Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect
device reliability.

DC Characteristics

Electrical Specifications: Standard Operating Conditions (unless otherwise stated)
Operating temperature

-40

C  T

A

 

 +85C

LC Signal Input

Sinusoidal 300 mV

PP

Carrier Frequency

125 kHz

LCCOM connected to V

SS

Parameters

Sym.

Min.

Typ†

Max.

Units

Conditions

Supply Voltage

V

DD

2.0

3.0

3.6

V

V

DD

 Start Voltage to ensure internal 

Power-on Reset signal

V

POR

1.8

V

Modulation Transistor-on Resistance

R

M

50

100

V

DD

 = 3.0V

Active Current (detecting signal)
1 LC Input Channel Receiving Signal
3 LC Input Channel Receiving Signals

I

ACT


10
13

18

A

A

CS = V

DD

Input = Continuous Wave (CW);
Amplitude = 300 mV

PP

.

All channels enabled.

Standby Current (wait to detect signal)
1 LC Input Channel Enabled
2 LC Input Channels Enabled
3 LC Input Channels Enabled

I

STDBY



2
3
4

5
6
7

A

A

A

CS = V

DD

; ALERT = V

DD

Sleep Current

I

SLEEP

0.2

1

A

CS = V

DD

; ALERT = V

DD

Analog Input Leakage Current

LCX, LCY, LCZ

LCCOM

I

AIL



1

1

A

A

V

DD

 = 3.6V, V

SS

 

 V

IN

 

 1V with respect to 

ground. Internal tuning capacitors are switched 
off, tested in Sleep mode.

Digital Input Low Voltage

V

IL

V

SS

0.3 V

DD

V

SCLK, SDI, CS

Digital Input High Voltage

V

IH

0.8 V

DD

V

DD

V

SCLK, SDI, CS

Digital Input Leakage Current (Note 1)
SDI
SCLK, CS

I

IL



1

1

A

A

V

DD

 = 3.6V

V

SS

 

 V

PIN

 

 V

DD

V

PIN

 

 V

DD

Digital Output Low Voltage
ALERT, LFDATA/SDIO

V

OL

V

SS

 +

0.4

V

Analog Front-End section
I

OL

 = 1.0 mA, V

DD

 = 2.0V

Digital Output High Voltage
ALERT, LFDATA/SDIO

V

OH

V

DD

 - 0.5

V

I

OH

 = -400

A, V

DD

 = 2.0V

Digital Input Pull-Up Resistor
CS, SCLK

R

PU

50

200

350

k

V

DD

 = 3.6V

*

These parameters are characterized but not tested.

Data in “Typ” column is at 3.0V, +25

C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note

1:

Negative current is defined as current sourced by the pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

MCP2030

DS21981B-page 4

 2005-2013 Microchip Technology Inc.

AC Characteristics

Electrical Specifications: Standard Operating Conditions (unless otherwise stated)
Supply Voltage

2.0V 

V

DD

 

3.6V

Operating temperature

-40°C 

 T

A

 

 +85°C

LCCOM connected to V

SS

LC Signal Input

Sinusoidal 300 mV

PP

Carrier Frequency

125 kHz

LCCOM connected to V

SS

Parameters

Sym.

Min.

Typ†

Max.

Units

Conditions

Input Sensitivity

V

SENSE

1

3.0

6

mV

PP

V

DD

 = 3.0V

Output enable filter disabled 
AGCSIG = 0; MODMIN = 00 
(33% modulation depth setting)
Input = Continuous Wave (CW)
Output = Logic level transition from 
low-to-high at sensitivity level for CW input.

Coil de-Q’ing Voltage - 
RF Limiter (R

FLM

) must be active

V

DE_Q

3

5

V

V

DD

 = 3.0V, Force I

IN

 = 5

A (worst case)

RF Limiter Turn-on Resistance
(LCX, LCY, LCZ)

R

FLM

300

700

V

DD

 = 2.0V, V

IN

 = 8 V

DC

Sensitivity Reduction

S

ADJ


0

-30


dB
dB

V

DD

 = 3.0V

No sensitivity reduction selected
Max. reduction selected
Monotonic increment in attenuation value 
from setting = 0000 to 1111 by design

Minimum Modulation Depth
60% setting
33% setting
14% setting
8%

V

IN_MOD



60
33
14

8

84
49
26

%
%
%
%

V

DD

 = 3.0V

See Section 5.21 “Minimum Modulation 
Depth Requirement for Input Signal”
.
See Modulation Depth Definition in 
Figure 5-5.

Carrier frequency

F

CARRIER

125

kHz

Input modulation frequency

F

MOD

10

kHz

Input data rate with NRZ data format.
V

DD

 = 3.0V

Minimum modulation depth setting = 33%
Input conditions:
Amplitude = 300 mV

PP

Modulation depth = 100%

LCX Tuning Capacitor

C

TUNX

44

0

59

82

pF

pF

V

DD

 = 3.0V, 

Config. Reg. 1, bits <6:1> Setting = 000000
 
63 pF ±30%
Config. Reg. 1, bits <6:1> Setting = 111111
63 steps, approx. 1 pF/step
Monotonic increment in capacitor value from 
setting = 000000 to 111111 by design

LCY Tuning Capacitor

C

TUNY

44

0

59

82

pF

pF

V

DD

 = 3.0V, 

Config. Reg. 2, bits <6:1> Setting = 000000
 
63 pF ±30%
Config. Reg. 2, bits <6:1> Setting = 111111
63 steps, approx. 1 pF/step
Monotonic increment in capacitor value from 
setting = 000000 to 111111 by design

LCZ Tuning Capacitor

C

TUNZ

44

0

59

82

pF

pF

V

DD

 = 3.0V, 

Config. Reg. 3, bits<6:1> Setting = 000000

63 pF ±30%
Config. Reg. 3, bits<6:1> Setting = 111111
63 steps, approx. 1 pF/step
Monotonic increment in capacitor value from 
setting = 000000 to 111111 by design

Q of Internal Tuning Capacitors

Q_C

50 *

Demodulator Charge Time 
(delay time of demodulated output to rise)

T

DR

50

s

V

DD

 = 3.0V

Minimum modulation depth setting = 33%
Input conditions:
Amplitude = 300 mV

PP

Modulation depth = 100%

*

Parameter is characterized but not tested.

Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note

1:

Required output enable filter high time must account for input path analog delays (= T

OEH

 - T

DR

 + T

DF

).

2:

Required output enable filter low time must account for input path analog delays (= T

OEL

 + T

DR

 - T

DF

).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

 2005-2013 Microchip Technology Inc.

DS21981B-page 5

MCP2030

Demodulator Discharge Time (delay time 
of demodulated output to fall)

T

DF

50

s

V

DD

 = 3.0V

MOD depth setting = 33%
Input conditions:
Amplitude = 300 mV

PP

Modulation depth = 100%

Rise time of LFDATA

TR

LFDATA

0.5

s

V

DD

 

3.0V. Time is measured from 10% to 

90% of amplitude

Fall time of LFDATA

TF

LFDATA

0.5

s

V

DD

 

3.0V

Time is measured from 10% to 90% of 
amplitude

AGC stabilization time
(T

AGC + 

T

PAGC

)

T

STAB

4

ms

AGC initialization time

T

AGC

3.5

ms

High time after AGC initialization time

T

PAGC

62.5

s

Gap time after AGC stabilization time

T

GAP

200

s

Time element of pulse

T

E

100

s

Minimum pulse width

Time from exiting Sleep or POR to being 
ready to receive signal

T

RDY

50*

ms

Minimum time AGC level must be held 
after receiving AGC Preserve command

T

PRES

5*

ms

AGC level must not change more than 10% 
during T

PRES

.

Internal RC oscillator frequency

F

OSC

27

32

35.5

kHz

Internal clock trimmed at 32 kHz during test

Inactivity timer time-out

T

INACT

13.5

16

17.75

ms

512 cycles of RC oscillator @ F

OSC

Alarm timer time-out

T

ALARM

27

32

35.5

ms

1024 cycles of RC oscillator @ F

OSC

LC Pin Input Resistance for
LCX, LCY, LCZ pins

R

IN

800*

k

LCCOM grounded, V

DD

 = 3V,

F

CARRIER

 = 125 kHz.

LC Pin Input Parasitic Capacitance for
LCX, LCY, LCZ pins

C

IN

24*

pF

LCCOM grounded, V

DD

 = 3V,

F

CARRIER

 = 125 kHz.

Minimum output enable filter high time
OEH (Bits Config0<8:7>)

01

  =   1 ms

10

  =   2 ms

11

  =   4 ms

00

 =  Filter Disabled

T

OEH

32 (~1 ms)
64 (~2 ms)

128 (~4 ms)







clock 

count

RC oscillator = F

OSC

 (see F

OSC

 specification 

for variations).
Viewed from the pin input:
(Note 1)

Minimum output enable filter low time
OEL (Bits Config0<6:5>)

00

  =   1 ms

01

  =   1 ms

10

  =   2 ms

11

  =   4 ms

T

OEL

32 (~1 ms)
32 (~1 ms)
64 (~2 ms)

128 (~4 ms)







clock 

count

RC oscillator = F

OSC

Viewed from the pin input:
(Note 2)

Maximum output enable filter period

OEH

OEL

T

OEH

T

OEL

01

00

= 1 ms

1 ms (Filter 1)

01

01

= 1 ms

1 ms (Filter 1)

01

10

= 1 ms

2 ms (Filter 2)

01

11

= 1 ms

4 ms (Filter 3)

T

OET







96 (~3 ms)
96 (~3 ms)

128 (~4 ms)
192 (~6 ms)

clock 

count 

RC oscillator = F

OSC

10

00

= 2 ms

1 ms (Filter 4)

10

01

= 2 ms

1 ms (Filter 4)

10

10

= 2 ms

2 ms (Filter 5)

10

11

= 2 ms

4 ms (Filter 6)







128 (~4 ms)
128 (~4 ms)
160 (~5 ms)
250 (~8 ms)

11

00

= 4 ms

1 ms (Filter 7)

11

01

= 4 ms

1 ms (Filter 7)

11

10

= 4 ms

2 ms (Filter 8)

11

11

= 4 ms

4 ms (Filter 9)







192 (~6 ms)
192 (~6 ms)
256 (~8 ms)

320 (~10 ms)

00

XX

=  Filter Disabled

LFDATA output appears as long as input 
signal level is greater than V

SENSE

.

AC Characteristics (Continued)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated)
Supply Voltage

2.0V 

V

DD

 

3.6V

Operating temperature

-40°C 

 T

A

 

 +85°C

LCCOM connected to V

SS

LC Signal Input

Sinusoidal 300 mV

PP

Carrier Frequency

125 kHz

LCCOM connected to V

SS

Parameters

Sym.

Min.

Typ†

Max.

Units

Conditions

*

Parameter is characterized but not tested.

Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note

1:

Required output enable filter high time must account for input path analog delays (= T

OEH

 - T

DR

 + T

DF

).

2:

Required output enable filter low time must account for input path analog delays (= T

OEL

 + T

DR

 - T

DF

).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

MCP2030

DS21981B-page 6

 2005-2013 Microchip Technology Inc.

RSSI current output

I

RSSI

6

0.65

12

100

2

20.3

A

A

A

V

IN

 = 37 mV

PP

V

IN

 = 370 mV

PP

V

DD

 = 3.0V, V

IN

 = 0 to 4 V

PP

Linearly increases with input signal ampli-
tude. 
Tested at V

IN

 = 37 mV

PP

, 100 mV

PP

, and 

370 mV

PP

 at +25ºC.

RSSI current linearity

ILR

RSSI

-15

15

%

Tested at room temperature only (see 
Equation 5-1 and Figure 5-7 for test method).

AC Characteristics (Continued)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated)
Supply Voltage

2.0V 

V

DD

 

3.6V

Operating temperature

-40°C 

 T

A

 

 +85°C

LCCOM connected to V

SS

LC Signal Input

Sinusoidal 300 mV

PP

Carrier Frequency

125 kHz

LCCOM connected to V

SS

Parameters

Sym.

Min.

Typ†

Max.

Units

Conditions

*

Parameter is characterized but not tested.

Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note

1:

Required output enable filter high time must account for input path analog delays (= T

OEH

 - T

DR

 + T

DF

).

2:

Required output enable filter low time must account for input path analog delays (= T

OEL

 + T

DR

 - T

DF

).

SPI Timing

Electrical Specifications: Standard Operating Conditions (unless otherwise stated)
Supply Voltage

2.0V 

V

DD

 

3.6V

Operating temperature

-40°C 

 T

A

 

 +85°C

LC Signal Input

Sinusoidal 300 mV

PP

Carrier Frequency

125 kHz

LCCOM connected to V

SS

Parameters

Sym.

Min.

Typ†

Max.

Units

Conditions

SCLK Frequency

F

SCLK

3

MHz

CS fall to first SCLK edge setup time

T

CSSC

100

ns

SDI setup time

T

SU

30

ns

SDI hold time

T

HD

50

ns

SCLK high time

T

HI

150

ns

SCLK low time

T

LO

150

ns

SDO setup time

T

DO

150

ns

SCLK last edge to CS rise setup time

T

SCCS

100

ns

CS high time

T

CSH

500

ns

CS rise to SCLK edge setup time

T

CS1

50

ns

SCLK edge to CS fall setup time

T

CS0

50

ns

SCLK edge when CS is high

Rise time of SPI data
(SPI Read command)

TR

SPI

10

ns

V

DD

 

3.0V. Time is measured from 10% to 

90% of amplitude

Fall time of SPI data
(SPI Read command)

TF

SPI

10

ns

V

DD

 

3.0V. Time is measured from 90% to 

10% of amplitude

Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

 2005-2013 Microchip Technology Inc.

DS21981B-page 7

MCP2030

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Typical Standby Current.

FIGURE 2-2:

Typical Active Current.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Standby Current (3 Channels Enabled)

0

1

2

3

4

5

6

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

Standby Current (2 Channels Enabled)

0

0.5

1

1.5

2

2.5

3

3.5

4

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

Standby Current (1 Channel Enabled)

0

0.5

1

1.5

2

2.5

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

+85

C

+25

C

-40

C

+85

C

+25

C

-40

C

+85

C

+25

C

-40

C

Active Current (3 Channels Enabled)

0

2

4

6

8

10

12

14

16

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

Active Current (1 Channel Enabled)

0

1

2

3

4

5

6

7

8

9

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

Active Current (2 Channels Enabled)

0

2

4

6

8

10

12

2 V

3 V

3.6 V

V

DD

 (V)

Cu

rren

t Draw

 (

A)

+85

C

+25

C

-40

C

+85

C

+25

C

-40

C

+85

C

+25

C

-40

C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

MCP2030

DS21981B-page 8

 2005-2013 Microchip Technology Inc.

FIGURE 2-3:

Oscillator Frequency vs. 

Temperature, V

DD

 = 3.6V and 2.0V.

FIGURE 2-4:

Oscillator Frequency 

Histograms vs. Temperature, V

DD

 = 2V.

FIGURE 2-5:

Oscillator Frequency 

Histograms vs. Temperature at V

DD

 = 3V.

FIGURE 2-6:

De-Q’ed Voltage vs. 

Unloaded Coil Voltage.

FIGURE 2-7:

Modulation Transistor-on 

Resistance (+25°C).

FIGURE 2-8:

Channel Sensitivity vs. 

Bandwidth.

29

30

31

32

33

34

35

-50

-25

0

25

50

75

100

125

Temperature (°C)

Osci

llator

 Fr

equency (kH

z

.)

Osc. Freq. @ VDD = 3.6V

Osc. Freq. @ VDD = 2.0V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

27

28

29

30

31

32

33

34

35

Oscillator Frequency (kHz.)

Per

c

ent

a

ge of O

c

cur

e

nce

s

 (

%

)

-40C
25C
85C

V

DD

 = 2.0V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

27

28

29

30

31

32

33

34

35

Oscillator Frequency (kHz.)

Per

cent

a

ge of

 O

ccur

e

nces 

(%

)

-40C
25C
85C

V

DD

 = 3.6V

0

2

4

6

8

10

12

0

200

400

600

800

Unloaded Coil Voltage (V

PP

)

D

e

-Q

'e

d (

L

oa

d

e

d

) C

o

il

 Vo

lt

ag

e

 

(V

PP

)

0

10

20

30

40

50

60

70

80

0

2

4

6

V

DD

 (V)

Oh

m

s

Ch. X
Ch. Y
Ch. Z

0

5

10

15

2 0

2 5

0

2 0 0

4 0 0

6 0 0

F re que nc y ( k H z)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

 2005-2013 Microchip Technology Inc.

DS21981B-page 9

MCP2030

FIGURE 2-9:

Typical RSSI Output Current 

vs. Input Signal Strength.

FIGURE 2-10:

Typical Tuned Capacitance 

Value vs. Configuration Register Bit Setting 
(V

DD

= 3V, Temperature = +25°C.

FIGURE 2-11:

Typical Tuned Capacitance 

Value vs. Configuration Register Bit Setting 
(V

DD

= 3V,Temperature = -40°C.

FIGURE 2-12:

Typical Tuned Capacitance 

Value vs. Configuration Register Bit Setting 
(V

DD

= 3V,Temperature = +85°C.

0

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Input Voltage (V)

RS

SI (

µ

A)

-40°C

+85°C

+25°C

0

10

20

30

40

50

60

70

0

20

40

60

80

Bit Setting (Steps)

C

a

p

aci

ta

nce

 (p

F)

Ch. X
Ch. Y
Ch. Z

0

10

20

30

40

50

60

70

0

20

40

60

80

Bit Setting (steps)

C

a

pa

cit

a

nc

e (

pF)

Ch. X
Ch. Y
Ch. Z

0

10

20

30

40

50

60

70

0

20

40

60

80

Bit Setting (Steps)

C

a

p

acit

a

nce (pF

)

Ch. X
Ch. Y
Ch. Z

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21981B-html.html
background image

MCP2030

DS21981B-page 10

 2005-2013 Microchip Technology Inc.

FIGURE 2-13:

Examples of RSSI Output 

Current Variations Between Channel to Channel 
and Device to Device at Room Temperature.

FIGURE 2-14:

Example of Typical T

DR

 

Changes over Temperature.
Input Signal Condition:  Amplitude = 300 mV

PP

Modulation Depth = 100 %.

FIGURE 2-15:

Example of Typical T

DF

 

Changes over Temperature. 
Input Signal Condition:  Amplitude = 300 mV

PP

Modulation Depth = 100 %.

0

10

20

30

40

50

60

70

80

0

2

4

6

8

Input Voltage (V)

RSSI Cu

rr

e

n

t (

A)

Ch-X 
Ch-Y
Ch-Z

0

10

20

30

40

50

60

70

80

0

2

4

6

8

Input Voltage (V)

RSSI Cu

rr

e

n

t (

A)

Ch-X 
Ch-Y
Ch-Z

Device (a)

Device (b)

Device (c)

Note:

Equal amplitude is applied to each channel.

0

10

20

30

40

50

60

70

80

0

2

4

6

8

Input Voltage (V)

Curre

nt

 (

A)

Ch-X 
Ch-Y
Ch-Z

0

10

20

30

40

50

60

70

80

90

100

85C

25C

-20C

-40C

Temperature (°C)

T

DR

 (µs

)

8%

14%

33%

60%

0

10

20

30

40

50

60

85C

25C

-20C

-40C

Temperature (°C)

T

DF

 (µ

s

)

8%

14%

33%

60%

Maker
Microchip Technology Inc.