MCP201 LIN Transceiver with Voltage Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

©

 2007 Microchip Technology Inc.

DS21730F-page 1

MCP201

Features 

• Supports baud rates up to 20 Kbaud

• 40V load dump protected

• Wide supply voltage, 6.0 – 18.0V, continuous

- Maximum input voltage of 30V

• Extended Temperature Range: -40°C to +125°C

• Interface to standard USARTs

• Compatible with LIN Spec 1.3

• Local Interconnect Network (LIN) Line pin:

- Internal pull-up resistor and diode

- Protected against ground shorts (LIN pin to 

ground)

- Protected against LIN pin loss of ground

- High current drive, 40 mA 

 I

OL

 

 200 mA

• Automatic thermal shutdown

• On-board Voltage Regulator:

- Output voltage of 5V with ±5% tolerances 

over temperature range

- Maximum output current of 50 mA

- Able to drive an external series-pass 

transistor for increased current supply 
capability

- Internal thermal overload protection

- Internal short-circuit current limit

- External components limited to filter capacitor 

only and load capacitor

Package Types 

Block Diagram

MCP201

PDIP, SOIC, DFN

8

7

6

5

1

2

3

4

RXD

CS/WAKE

V

REG

TXD

FAULT/SLPS

V

BAT

LIN

V

SS

Voltage

Regulator

Ratiometric

Reference

OC

Thermal

Protection

Internal Circuits

V

REG

FAULT/SLPS

RXD

TXD

V

BAT

LIN

Vss

approx.

CS/WAKE

Wake-Up

Logic

Slope

Control

POR

 30 k

Ω

LIN Transceiver with Voltage Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

MCP201

DS21730F-page 2

©

 2007 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

©

 2007 Microchip Technology Inc.

DS21730F-page 3

MCP201

1.0

DEVICE OVERVIEW

The MCP201 provides a physical interface between a
microcontroller and a LIN half-duplex bus. It is intended
for automotive and industrial applications with serial
bus speeds up to 20 Kbaud.

The MCP201 provides a half-duplex, bidirectional
communications interface between a microcontroller
and the serial network bus. This device will translate
the CMOS/TTL logic levels to LIN level logic, and vice
versa.

The LIN specification 1.3 requires that the transceiver
of all nodes in the system be connected via the LIN pin,
referenced to ground and with a maximum external
termination resistance of 510

Ω

 from LIN bus to battery

supply. The 510

Ω 

corresponds to 1 Master and 16

Slave nodes.

The MCP201 provides a +5V 50 mA regulated power
output. The regulator uses a LDO design, is short-
circuit-protected and will turn the regulator output off if
it falls below 3.5V. The MCP201 also includes thermal
shutdown protection. The regulator has been specifi-
cally designed to operate in the automotive environ-
ment and will survive reverse battery connections,
+40V load dump transients and double-battery jumps
(see Section 1.6 “Internal Voltage Regulator”).

1.1

Optional External Protection

1.1.1

TRANSIENT VOLTAGE 
PROTECTION (LOAD DUMP)

An external 27V transient suppressor (TVS) diode,
between V

BAT

 and ground, with a 50

Ω

 resistor in series

with the battery supply and the V

BAT

 pin, serves to pro-

tect the device from power transients (see Figure 1-2)
and ESD events. While this protection is optional, it
should be considered as good engineering practice.

1.1.2

REVERSE BATTERY PROTECTION

An external reverse-battery-blocking diode can be
used to provide polarity protection (see Figure 1-2).
This protection is optional, but should be considered as
good engineering practice.

1.2

Internal Protection

1.2.1

ESD PROTECTION

For component-level ESD ratings, please refer to the
maximum operation specifications.

1.2.2

GROUND LOSS PROTECTION

The LIN bus specification states that the LIN pin must
transition to the recessive state when ground is
disconnected. Therefore, a loss of ground effectively
forces the LIN line to a hi-impedance level.

1.2.3

THERMAL PROTECTION

The thermal protection circuit monitors the die
temperature and is able to shut down the

 

LIN

transmitter and voltage regulator. Refer to Table 1-1 for
details.

There are three causes for a thermal overload. A
thermal shut down can be triggered by any one, or a
combination of, the following thermal overload
conditions.

• Voltage regulator overload

• LIN bus output overload

• Increase in die temperature due to increase in 

environment temperature

Driving the TXD and checking the RXD pin makes it
possible to determine whether there is a bus contention
(Rx = low, Tx = high) or a thermal overload condition
(Rx = high, Tx = low).

TABLE 1-1:

SOURCES OF THERMAL OVERLOAD

(1,2)

Note:

After recovering from a thermal, bus or
voltage regulator overload condition, the
device will be in the Ready1 mode. In order
to go into Operational mode, the CS/
WAKE pin has to be toggled.

TXD

RXD

Comments

L

H

LIN transmitter shutdown, receiver and voltage regulator active, thermal overload 
condition.

H

L

Regulator shutdown, receiver active, bus contention.

Legend: x = Don’t care, L = Low, H = High

Note 1:

LIN transceiver overload current on the LIN pin is 200 mA.

2:

Voltage regulator overload current on voltage regulator greater than 50 mA.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

MCP201

DS21730F-page 4

©

 2007 Microchip Technology Inc.

1.3

Modes of Operation

For an overview of all operational modes, please refer
to Table 1-2.

1.3.1

POWER-DOWN MODE

In the Power-down mode, the transmitter and the
voltage regulator are both off. Only the receiver section
and the CS/WAKE pin wake-up circuits are in
operation. This is the lowest power mode.

If any bus activity (e.g., a BREAK character) should
occur during Power-down mode, the device will
immediately enable the voltage regulator. Once the
output has stabilized, the device will enter Ready
mode.

The part will enter the Operation mode, if the CS/WAKE
pin should become active-high (‘

1

’).

1.3.2

READY AND READY1 MODES

There are two states for the Ready mode. The only
difference between these states is the transition during
start-up. The state Ready1 mode ensures that the
transition from Ready to Operation mode (once a rising
edge of CS/WAKE) occurs without disrupting bus
traffic. 

Immediately upon entering either Ready1 or Ready
mode, the voltage regulator will turn on and provide
power. The transmitter portion of the circuit is off, with
all other circuits (including the receiver) of the MCP201
being fully operational. The LIN pin is kept in a
recessive state.

If a microcontroller is being driven by the voltage
regulator output, it will go through a power-on reset and
initialization sequence. All other circuits, other than the
transmitter, are fully operational. The LIN pin is held in
the recessive state.

The device will stay in Ready mode until the CS/WAKE
pin transitions high (‘

1

’). After CS/WAKE is active, the

transmitter is enabled and the device enters Operation
mode.

The device may only enter Power-down mode after
going through the Operation mode step.

At power-on of the V

BAT

 supply pin, the component is

in either Ready or Ready1 mode, waiting for a
CS/WAKE rising edge.

The MCP201 will stay in either mode for 600 µs as the
regulator powers its internal circuitry and waits until the
CS/WAKE pin transitions high. During the 600 µs
delay, the MCP201 will not recognize a CS/WAKE
event. The CS/WAKE transition from low to high should
not occur until after this delay.

• The CS input is edge, not level, sensitive.
• The CS pin is not monitored until approximately 

600 µs after V

REG

 has stabized.

• The transistion from Ready1 to Ready is made on 

the falling edge of CS.

• The transition from Ready mode to Operational 

mode is on the rising edge of CS.

1.3.3

OPERATION MODE

In this mode, all internal modules are operational.

The MCP201 will go into Power-down mode on the
falling edge of CS/WAKE.

FIGURE 1-1:

OPERATIONAL MODES 
STATE DIAGRAMS

1.3.4

DESCRIPTION OF BROWNOUT 
CONDITIONS

As V

BAT

 decreases V

REG

 is regulated to 5.0 VDC (see

V

REG

 in Section 2.2 “DC Specifications”) while V

BAT

is greater than 5.5 - 6.0 VDC.

As V

BAT

 decreases further V

REG

 tracks V

BAT

 (V

REG

 =

V

BAT

 - (0.5 to 1.0) VDC.

The MCP201 monitors V

REG

 and as long as V

REG

 does

not fall below V

SD

 (see V

SD

 in Section 2.2 “DC Spec-

ifications”), V

REG

 will remain powered.

As V

BAT

 increases V

REG

 will continue to track V

BAT

until V

REG

 reaches 5.0 VDC.

If V

REG

 falls below V

SD

, V

REG

 is turned off and the

MCP201 powers itself down.

The MCP201 will remain powered down until V

BAT

increases above V

ON

 (see V

ON

 in Section 2.2 “DC

Specifications”.

Note:

After power-on, CS will not be sampled
until V

REG

 has stabized and an additional

600 µs has elapsed. The microcontroller
should toggle CS approximately 1mS after
RESET to ensure that CS will be recog-
nized.

Note:

While the MCP201 is in shutdown, TXD
should not be actively driven high. If TXD
is driven high actively, it may power
internal logic.

Operation

Mode

Power-down

Mode

Ready

Mode

Bus Activity

CS/WAKE = true

CS/WAKE = true

POR

CS/WAKE = false

Ready1

Mode

CS/WAKE = true

CS/WAKE = false

C

S

/W

AK

E =

 f

a

ls

e

Start

FLT

FLT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

©

 2007 Microchip Technology Inc.

DS21730F-page 5

MCP201

TABLE 1-2:

OVERVIEW OF OPERATIONAL MODES

State

Transmitter

Voltage Regulator

Operation

Comments

POR

OFF

OFF

Read CS/WAKE.
If low, then READY.
If high, READY1 mode.

Sample FAULT/SLPS and 
select slope

Ready

OFF

ON

If CS/WAKE rising edge, then 
Operation mode.

Bus Off state

Ready1

OFF

ON

If CS/WAKE falling edge, 
then READY mode.

Bus Off state

Operation

ON

ON

If CS/WAKE falling edge, 
then Power down.

Normal Operation mode

Power-down

OFF

OFF

On LIN bus falling, go to 
READY mode.
On CS/WAKE rising edge, go 
to Operational mode

Low-Power mode

Note:

After power-on, CS will not be sampled until V

REG

 has stabized and an additional 600 µs has elapsed. The

microcontroller should toggle CS approximately 1mS after RESET to ensure that CS will be recognized.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

MCP201

DS21730F-page 6

©

 2007 Microchip Technology Inc.

1.4

Typical Applications

FIGURE 1-2:

 TYPICAL MCP201 APPLICATION

(1,2)

FIGURE 1-3:

TYPICAL LIN NETWORK CONFIGURATION

LIN bus

D2

(4)

V

BAT

LIN

V

REG

TXD

RXD

V

SS

V

DD

V

SS

TXD

RXD

+5V

PIC

®

+12V

10 uF

C

G

CS/WAKE

I/O

FAULT/SLPS

I/O

27V

1 k

Ω

+12V

Master Node Only

+12V

10 k

Ω

WAKE-UP

V

REG

 or V

SS

100 k

Ω

Optional components

(5)

Optional components

MCP201

C

F

D1

(3)

Note 1: The load capacitor, C

G

, should be a ceramic or tantalum rated for extended temperatures and be in

the range of 1.0 - 22 µF with an ESR 0.4

Ω 

- 5

Ω

.

.

2: C

F

 if the filter capacitor for the external voltage supply.

3: This diode is only needed if CS/WAKE is connected to 12V supply.

4: Transient suppressor diode. Vclamp L = 40V.

5: These components are for load dump protection.

24V

MCU

LIN bus

MCP201

Master

µC

1 k

Ω

V

BAT

Slave 1

µC

Slave 2

µC

Slave n <16

µC

40m

+ Return

LIN bus

LIN bus

MCP201

LIN bus

MCP201

LIN bus

MCP201

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

©

 2007 Microchip Technology Inc.

DS21730F-page 7

MCP201

1.5

Pin Descriptions

TABLE 1-3:

MCP201 PINOUT OVERVIEW

1.5.1

RECEIVE DATA OUTPUT (RXD)

The Receive Data Output pin is a standard CMOS
output and follows the state of the LIN pin.

The LIN receiver monitors the state of the LIN pin and
generates the output signal RXD.

1.5.2

CS/WAKE

Chip Select Input pin. This pin controls whether the part
goes into READY1 or READY mode at power-up. The
internal pull-down resistor will keep the CS/WAKE pin
low. This is done to ensure that no disruptive data will
be present on the bus while the microcontroller is
executing a Power-on Reset and I/O initialization
sequence. The pin must see a low-to-high transition to
activate the transmitter.

After CS/WAKE transitions to ‘

1

’, the transmitter is

enabled. If CS/WAKE = ‘

0

’, the device is in Ready1

mode on power-up or in Low-Power mode. In Low-
Power mode, the voltage regulator is shut down, the
transmitter driver is disabled and the receiver logic is
enabled.

An external switch (see Figure 1-2) can then wake up
both the transceiver and the microcontroller. An
external-blocking diode and current-limiting resistor are
necessary to protect the microcontroller I/O pin.

1.5.3

POWER OUTPUT (V

REG

)

Positive Supply Voltage Regulator Output pin.

1.5.4

TRANSMIT DATA INPUT (TXD)

The Transmit Data Input pin has an internal pull-up to
V

REG

. The LIN pin is low (dominant) when TXD is low,

and high (recessive) when TXD is high.

In case the thermal protection detects an over-temper-
ature condition while the signal TXD is low, the
transmitter is shutdown. The recovery from the thermal
shutdown is equal to adequate cooling time.

1.5.5

GROUND (V

SS

)

Ground pin.

1.5.6

LIN

The bidirectional LIN bus Interface pin is the driver unit
for the LIN pin and is controlled by the signal TXD. LIN
has an open collector output with a current limitation.
To reduce EMI, the edges during the signal changes
are slope-controlled.

1.5.7

BATTERY (V

BAT

)

Battery Positive Supply Voltage pin. This pin is also the
input for the internal voltage regulator.

1.5.8

FAULT/SLPS

FAULT Detect Output, Slope Select Input.

This pin is usually in Output mode. Its state is defined
as shown in Table 1-5.

The state of this pin is internally sampled during power-
on of V

BAT

. Once V

BAT

 has reached a stable level,

(approximately 6 VDC) and V

REG

 is stable at 4.75 to

5.25 VDC, the state of this pin selects which slew rate
profile to apply to the LIN output. It is only during this
time that the pin is used as an input (the output driver
is off during this time). The slope will stay selected until
the next V

BAT

 power-off/power-on sequence, regard-

less of any power-down, wake-up or SLEEP events.
Only a V

BAT

 rising state will cause a sampling of the

FAULT/SLPS pin. The Slope selection will be made
irrespective of the state of any other pin. 

The FAULT/SLPS pin is connected to either V

REG

 or

V

SS

 through a resistor (approximately 100 k

Ω

) to make

the slope selection. This large resistance allows the
FAULT indication function to overdrive the resistor in
normal operation mode.

If the FAULT/SLPS is high (‘

1

’), the normal slope shap-

ing is selected (dv/dt = 2 V/µs). If FAULT/SLPS is low
(‘

0

’) during this time, the alternate slope-shaping is

selected (dv/dt = 4 V/µs). This mode can be used if a
user desires to run at a faster slope. This mode is not
LIN compliant.

Devices

Bond Pad 

Name

Function

8-Pin PDIP/

SOIC/DFN

Normal Operation

1

RXD

Receive Data Output 
(CMOS output)

2

CS/WAKE

Chip Select (TTL-HV 
input)

3

V

REG

Power Output

4

TXD

Transmit Data Input 
(TTL)

5

V

SS

Ground

6

LIN

LIN bus (bidirectional-
HV)

7

V

BAT

Battery

8

FAULT/SLPS

Fault Detect Output, 
Slope Select Input

Legend: TTL = TTL input buffer, 

HV = High Voltage (V

BAT

)

Note:

On POR, the MCP201 enters Ready or
Ready1 mode (see Figure 1-1). In order to
enter Operational mode, the MCP201 has
to see one rising edge on CS/WAKE
600 µs after the voltage regulator reaches
5V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

MCP201

DS21730F-page 8

©

 2007 Microchip Technology Inc.

TABLE 1-4:

FAULT / SLPS SLOPE 
SELECTION DURING POR

TABLE 1-5:

FAULT / SLPS TRUTH TABLE

1.6

Internal Voltage Regulator

The MCP201 has a low drop-out voltage, positive
regulator capable of supplying 5.00 VDC ±5% at up to
50 mA of load current over the entire operating
temperature range. With a load current of 50 mA, the
minimum input-to-output voltage differential required
for the output to remain in regulation is typically +0.5V
(+1V maximum over the full operating temperature
range). Quiescent current is less than 1.0 mA, with a
full 50 mA load current, when the input-to-output
voltage differential is greater than +2V.

The regulator requires an external output bypass
capacitor for stability. The capacitor should be either a
ceramic or tantalum for stable operation over the
extended temperature range. The compensation
capacitor should range from 1.0 µf – 22 µf and have a
ESR or CSR of 0.4

Ω

 – 5.0

Ω

. The input capacitor, C

F

, in

Figure 1.4 should be on the order of 8 to 10 times larger
than the output capacitor, C

G

.

Designed for automotive applications, the regulator will
protect itself from reverse battery connections, double-
battery jumps and up to +40V load dump transients.
The voltage regulator has both short-circuit and
thermal shutdown protection built-in.

Regarding the correlation between V

BAT

, V

REG

 and I

DD

,

please refer to Figure 1-4 through 1-6. When the input
voltage (V

BAT

) drops below the differential needed to

provide stable regulation, the output V

REG

 will track the

input down to approximately 3.5V, at which point the
regulator will turn off. This will allow microcontrollers
with internal POR circuits to generate a clean arming of
the Power-on Reset trip point. The MCP201 will then
monitor V

BAT

 and turn on the regulator when V

BAT

 is

6.0V. The device will come up in either READY1 or
READY mode and will have to be transitioned to
Operational mode to re-enable data transmission.

In the start phase, V

BAT

 must be at least 6.0V

(Figure 1-4) to initiate operation during power-up. In
Power-down mode, the V

BAT

 monitor will be turned off.

The regulator has a thermal shutdown. If the thermal
protection circuit detects an overtemperature condition
caused by an overcurrent condition (Figure 1-6) of the
regulator, it will shut down.

The regulator has an overload current limiting. During
a short-circuit, V

REG

 is monitored. If V

REG

 is lower than

3.5V, the regulator will turn off. After a thermal recovery
time, the V

REG

 will be checked again. If there is no

short-circuit (V

REG

 > 3.5V), the regulator will be

switched back on. The MCP201 will come up in either
READY1 or READY mode and will have to be
transitioned to Operational mode to re-enable data
transmission.

The accuracy of the voltage regulator, when using a
pass transistor, will degrade due to the extra external
components needed. All performance characteristics
should be evaluated on every design.

FAULT/SLPS

Slope Shaping

H

Normal

L

Alternate

(1)

Note 1:

This mode does not conform to LIN bus 
specification version 1.3, but might be 
used for K-line applications.

Note:

This pin is ‘

0

’ whenever the internal circuits

have detected a short or thermal excursion
and have disabled the LIN output driver.

Note:

Every time TX is toggled, a Fault condition
will occur for the length of time, depending
on the bus load. The Fault time is equal to
the propagation delay.

TXD In

RXD Out

LIN Bus I/O

Thermal 

Override

FAULT / SLPS Out

Comments

L

H

V

BAT

OFF

L

Bus shorted to battery

H

H

V

BAT

OFF

H

Bus recessive

L

L

GND

OFF

H

Bus dominant

H

L

GND

OFF

L

Bus shorted to ground

x

x

V

BAT

ON

L

Thermal excursion

Legend: x = don’t care

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

©

 2007 Microchip Technology Inc.

DS21730F-page 9

MCP201

FIGURE 1-4:

VOLTAGE REGULATOR OUTPUT ON POWER-ON RESET

Note 1:

Start-up, V

BAT

 < 6.0V, regulator off.

2:

V

BAT

 > 6.0V, regulator on.

3:

V

BAT

 

≤ 

5.5V, regulator tracks V

BAT

, regulator will turn 

off when V

REG

 < 3.5V.

5.5

3.5

3

0

V

REG

V

---------------

(1)

(2)

(3)

t

0

t

6

2

8

4

V

BAT

V

--------------

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21730F-html.html
background image

MCP201

DS21730F-page 10

©

 2007 Microchip Technology Inc.

FIGURE 1-5:

VOLTAGE REGULATOR OUTPUT ON POWER DIP

Note 1:

Voltage regulator on.

2:

V

REG

 

 5.5V, regulator tracks V

BAT

 until V

REG

 < 3.5V.

3:

V

REG

 < 3.5V, regulator is off. If the voltage regulator should shut 

off due to V

REG

 falling below 3.5V, the V

BAT

 must rise to 6.0V to 

turn V

REG

 back on.

4:

V

REG

 > 4.0V, voltage regulator tracks V

DD

, when V

REG

 > 4.0V.

5

3.5

3

0

V

REG

V

---------------

(1)

(2) (3)

t

0

t

6

2

8

4

3.5

V

BAT

V

--------------

12

(4)

4

Maker
Microchip Technology Inc.
Datasheet PDF Download