MCP1810 Ultra-Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

 2016-2018 Microchip Technology Inc.

DS20005623B-page 1

Features

• Ultra-Low Quiescent Current: 20 nA (typical)
• Ultra-Low Shutdown Supply Current: 

1 nA (typical) 

• 150 mA Output Current Capability for V

R

≤ 3.5V

• 100 mA Output Current Capability for V

R

 3.5V

• Input Operating Voltage Range: 2.5V to 5.5V
• Standard Output Voltages (V

R

): 1.2V, 1.5V, 1.8V, 

2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V, 4.2V

• Low Dropout Voltage: 380 mV maximum at 

150 mA

• Stable with 1.0 µF Ceramic Output Capacitor
• Overcurrent Protection 
• Available in the following packages:

- 2 x 2 mm No Lead VDFN
- 3 Lead SOT-23 (V

R

< 4.0V)

- 5 Lead SOT-23 (V

R

< 4.0V)

Applications

• Energy Harvesting
• Long-Life, Battery-Powered Applications
• Smart Cards
• Ultra-Low Consumption “Green” Products
• Portable Electronics

Description

The MCP1810 is a 150 mA (for V

R

≤ 3.5V), 100 mA (for

V

R

 3.5V) low dropout (LDO) linear regulator that

provides high-current and low-output voltages, while
maintaining an ultra-low 20 nA of quiescent current
during device operation. In addition, the MCP1810 can
be shut down for an even lower 1 nA (typical) supply
current draw. 
The MCP1810 comes in 11 standard fixed
output-voltage versions: 1.2V, 1.5V, 1.8V, 2.0V, 2.2V,
2.5V, 2.8V, 3.0V, 3.3V, 3.5V and 4.2V. 
The 150 mA output current capability, combined with
the low output-voltage capability, make the MCP1810 a
good choice for new ultra-long-life LDO applications
that have high-current demands, but require ultra-low
power consumption during sleep states.
The MCP1810 is stable with ceramic output capacitors
that inherently provide lower output noise and reduce
the size and cost of the entire regulator solution. Only
1 µF (2.2 µF recommended) of output capacitance is
needed to stabilize the LDO.
The MCP1810 ultra-low quiescent and shutdown
current allows it to be paired with other ultra-low current
draw devices, such as Microchip’s nanoWatt eXtreme
Low Power (XLP) technology devices, for a complete
ultra-low-power solution.

Package Types

MCP1810

2x2 VDFN*

NC

V

OUT

NC

V

IN

FB

1

2

3
4

8

7

6
5 NC

SHDN

GND

* Includes Exposed Thermal Pad (EP); see

Table 3-1

.

EP

9

1

2

4

3

5

1

2

3

V

OUT

V

OUT

V

IN

V

IN

GND

NC

GND

SHDN

3 Lead-SOT23

5 Lead-SOT23

 

.

Ultra-Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

DS20005623B-page 2

 2016-2018 Microchip Technology Inc.

Typical Application

Functional Block Diagram

V

IN

V

OUT

FB

GND

MCP1810

LOAD

C

IN

C

OUT

SHDN

+

-

ESR

V

IN

SHDN

Voltage 

Reference 

V

OUT

FB

+

-

GND

Overcurrent

SHDN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

 2016-2018 Microchip Technology Inc.

DS20005623B-page 3

MCP1810

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input voltage, V

IN

.....................................................................................................................................................+6.0V

Maximum Voltage on any pin - ......................................................................................................(GND - 0.3V) to +6.0V
Output Short-Circuit Duration................................................................................................. ............................Unlimited
Storage Temperature ............................................................................................................................  –65°C to +150°C
Maximum Junction Temperature, T

J

..................................................................................................................... +150°C

Operating Junction Temperature, T

J

........................................................................................................ –40°C to +85°C

ESD protection on all pins (HBM) ..........................................................................................................................  ≥ 4 kV

† Notice:

 Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for
extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications:

 Unless otherwise noted, V

IN

= V

R

+ 800 mV (

Note 1

)

, I

OUT

= 1 mA,  C

IN

= C

OUT

= 2.2 µF 

ceramic (X7R), T

A

= +25°C. Boldface type applies for junction temperatures T

of –40°C to +85°C (

Note 2

)

.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Operating Voltage

V

IN

2.7

5.5

V

2.5

5.5

V

V

R

 1.8V, I

OUT

 < 50 mA

Output Voltage Range

V

OUT

1.2

4.2

V

Input Quiescent Current

I

Q

20

50

nA

V

IN

= V

R

 + 800 mV or 2.7V 

(whichever is greater)
I

OUT

= 0

Input Quiescent Current 
for SHDN Mode

I

SHDN

1

nA

SHDN = GND

Ground Current

I

GND

200

290

µA

V

IN

= V

R

 + 800 mV or 2.7V 

(whichever is greater)
I

OUT

= 150 mA, V

R

 

 3.5V

I

OUT

= 100 mA, V

R

 > 3.5V

Maximum Continuous 
Output Current

I

OUT

150

mA

V

R

≤ 3.5V

100

mA

V

R

 3.5V

Current Limit

I

OUT

350

mA

V

OUT

= 0.9 x V

R

V

R

≤ 3.5V

250

mA

V

OUT

= 0.9 x V

R

V

R

 3.5V

Output Voltage Regulation 

V

OUT

V

R

- 4%

V

R

+ 4%

V

V

R

< 1.8V (

Note 3

)

V

R

- 2%

V

R

+ 2%

V

V

R

≥ 1.8V (

Note 3

)

Line Regulation

V

OUT

/

(V

OUT

x

V

IN

)

–4

+4

%/V

V

IN

 = V

IN(min.)

to 5.5V

I

OUT

= 50 mA (

Note 1

)

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 V

IN(MIN)

 and V

IN

 V

R

 V

DROPOUT(MAX).

2:

The junction temperature is approximated by soaking the device under test at an ambient temperature 
equal to the desired junction temperature. The test time is short enough such that the rise in junction 
temperature over the ambient temperature is not significant.

3:

V

R

 is the nominal regulator output voltage. V

R

= 1.2V, 1.5V, 1.8V, 2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V 

or 4.2V. 

4:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% 
below its nominal value that was measured with an input voltage of V

IN

= V

OUT(MAX)

+ V

DROPOUT(MAX)

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

DS20005623B-page 4

 2016-2018 Microchip Technology Inc.

Load Regulation

V

OUT

/V

OUT

–3

1

+3

%

V

IN

= (V

IN(MIN)

+ V

IN(MAX)

)/2

I

OUT

= 0.02 mA to 150 mA 

(

Note 1

)

Dropout Voltage

V

DROPOUT

380

mV

I

OUT

= 150 mA

V

R

≤ 3.5V (

Note 4

)

280

mV

I

OUT

= 100 mA

V

R

> 3.5V (

Note 4

)

Shutdown Input

Logic High Input 

V

SHDN-HIGH

70

%V

IN

V

IN

= V

R

 + 800 mV or 2.7V 

(whichever is greater)
I

OUT

= 1  mA  (

Note 3

)

Logic Low Input 

V

SHDN-LOW

30

%V

IN

V

IN

= V

R

 + 800 mV or 2.7V 

(whichever is greater)
I

OUT

= 1  mA  (

Note 3

)

AC Performance

Output Delay from SHDN

T

OR

20

ms

SHDN = GND to V

IN

V

OUT

= GND to 95% V

R

 

Output Noise

e

N

0.48

µV/

Hz

V

IN

 = 3.3V

C

IN

 = C

OUT

 = 2.2 µF ceramic 

(X7R)
V

R

 = 2.5V, I

OUT

 = 50 mA

f = 1 kHz

48

µVrms

V

IN

 = 3.3V

C

IN

 = C

OUT

 = 2.2 µF ceramic 

(X7R)
V

R

 = 2.5V, I

OUT

 = 50 mA

f = 100 Hz to 1 MHz

Power Supply Ripple
Rejection Ratio

PSRR

40

dB

f = 100 Hz, I

OUT

= 10 mA

V

INAC

= 200 mV  pk-pk

C

IN

= 0 µF

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications:

 Unless otherwise noted, V

IN

= V

R

+ 800 mV (

Note 1

)

, I

OUT

= 1 mA,  C

IN

= C

OUT

= 2.2 µF 

ceramic (X7R), T

A

= +25°C. Boldface type applies for junction temperatures T

of –40°C to +85°C (

Note 2

)

.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 V

IN(MIN)

 and V

IN

 V

R

 V

DROPOUT(MAX).

2:

The junction temperature is approximated by soaking the device under test at an ambient temperature 
equal to the desired junction temperature. The test time is short enough such that the rise in junction 
temperature over the ambient temperature is not significant.

3:

V

R

 is the nominal regulator output voltage. V

R

= 1.2V, 1.5V, 1.8V, 2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V 

or 4.2V. 

4:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% 
below its nominal value that was measured with an input voltage of V

IN

= V

OUT(MAX)

+ V

DROPOUT(MAX)

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

 2016-2018 Microchip Technology Inc.

DS20005623B-page 5

MCP1810

TEMPERATURE SPECIFICATIONS

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction 
Temperature Range

T

J

-40

+85

°C

Steady State

Maximum Junction 
Temperature

T

J

+150

°C

Transient

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances
Thermal Resistance, 
2 x 2 mm VDFN-8LD

JA

73.1

°C/W

JEDEC

®

 standard FR4 board with 

1 oz. copper and thermal vias

JC

10.7

°C/W

Thermal Resistance,
SOT23-3LD

JA

256

°C/W

JC

81

°C/W

Thermal Resistance,
SOT23-5LD

JA

256

°C/W

JC

81

°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

DS20005623B-page 6

 2016-2018 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

 2016-2018 Microchip Technology Inc.

DS20005623B-page 7

MCP1810

2.0

TYPICAL PERFORMANCE CURVES

Note: 

Unless otherwise indicated,

 

C

OUT

= 2.2 µF ceramic (X7R), C

IN

= 2.2 µF ceramic (X7R), I

OUT

= 1 mA,

T

A

= +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-1:

Output Voltage vs. Input 

Voltage (V

R

= 1.2V).

FIGURE 2-2:

Output Voltage vs. Input 

Voltage (V

R

= 2.5V).

FIGURE 2-3:

Output Voltage vs. Input 

Voltage (V

R

= 3.3V).

FIGURE 2-4:

Output Voltage vs. Input 

Voltage (V

R

= 4.2V).

FIGURE 2-5:

Output Voltage vs. Load 

Current (V

R

= 1.2V).

FIGURE 2-6:

Output Voltage vs. Load 

Current (V

R

= 2.5V).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

1.190

1.195

1.200

1.205

1.210

1.215

1.220

2.5

3.5

4.5

5.5

Ou

tpu

t V

o

ltag

e (V)

Input Voltage (V)

T

J

= +25°C

T

J

= -40°C

T

J

= +85°C

V

R

= 1.2V

2.490

2.495

2.500

2.505

2.510

2.515

2.5

3.5

4.5

5.5

Output V

o

ltage (V)

Input Voltage (V)

T

J

= -40°C

T

J

= +25°C

T

J

= +85°C

V

R

= 2.5V

3.300

3.302

3.304

3.306

3.308

3.310

3.312

3.5

4.0

4.5

5.0

5.5

Output V

o

ltage (V)

Input Voltage (V)

T

J

= +25°C

T

J

= +85°C

T

J

= -40°C

V

R

= 3.3V

4.185

4.190

4.195

4.200

4.205

4.210

4.5

4.7

4.9

5.1

5.3

5.5

Output V

o

ltage (V)

Input Voltage (V)

T

J

= +25°C

T

J

= +85°C

T

J

= -40°C

V

R

= 4.2V

1.170

1.175

1.180

1.185

1.190

1.195

1.200

1.205

1.210

1.215

1.220

0

25

50

75

100

125

150

Output V

o

ltage (V)

Load Current (mA)

T

J

= +85°C

T

J

= -40°C

T

J

= +25°C

V

IN

= 2.5V

V

R

= 1.2V

2.470

2.480

2.490

2.500

2.510

2.520

2.530

0

25

50

75

100

125

150

Output V

o

ltage (V)

Load Current (mA)

V

IN

= 3.3V

T

J

= +25°C

T

J

= +85°C

T

J

= -40°C

V

R

= 2.5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

DS20005623B-page 8

 2016-2018 Microchip Technology Inc.

Note: 

Unless otherwise indicated,

 

C

OUT

= 2.2 µF ceramic (X7R), C

IN

= 2.2 µF ceramic (X7R), I

OUT

= 1 mA,

T

A

= +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-7:

Output Voltage vs. Load 

Current (V

R

= 3.3V).

FIGURE 2-8:

Output Voltage vs. Load 

Current (V

R

= 4.2V).

FIGURE 2-9:

Dropout Voltage vs. Load 

Current (V

R

 = 2.5V)

FIGURE 2-10:

Dropout Voltage vs. Load 

Current (V

R

= 3.3V).

FIGURE 2-11:

Dropout Voltage vs. Load 

Current (V

R

= 4.2V).

FIGURE 2-12:

Noise vs. Frequency 

(V

R

= 1.2V).

3.270

3.280

3.290

3.300

3.310

3.320

3.330

3.340

3.350

3.360

3.370

0

25

50

75

100

125

150

Output V

o

lt

age (

V

)

Load Current (mA)

V

IN

= 4.1V

T

J

= +25°C

T

J

= +85°C

T

J

= -40°C

V

R

= 3.3V

4.166

4.176

4.186

4.196

4.206

4.216

4.226

4.236

0

25

50

75

100

Output V

o

lt

age (

V

)

Load Current (mA)

V

IN

= 5.0V

T

J

= -40°C

T

J

= +25°C

T

J

= +85°C

V

R

= 4.2V

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0

25

50

75

100

125

150

D

ro

pou

t V

o

ltage

 (V)

Load Current (mA)

V

R

= 2.5V

T

J

= +85°C

T

J

= -40°C

T

J

= +25°C

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

25

50

75

100

125

150

Dropout V

o

ltage (V)

Load Current (mA)

V

R

= 3.3V

T

J

= +25°C

T

J

= -40°C

T

J

= +85°C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

20

40

60

80

100

Dropout V

o

ltage (V)

Load Current (mA)

V

R

= 4.2V

T

J

= +25°C

T

J

= +85°C

T

J

= -40°C

0.001

0.01

0.1

1

10

100

0.01

0.1

1

10

100

1000

Output Noise μV/

¥Hz

Frequency (kHz)

V

= 1.2V

V

IN

= 2.5V, C

IN

= C

OUT

= 2.2 μF

I

OUT

= 50 mA

Noise (100 Hz to 1 MHz) = 53.49 μVrms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

 2016-2018 Microchip Technology Inc.

DS20005623B-page 9

MCP1810

Note: 

Unless otherwise indicated,

 

C

OUT

= 2.2 µF ceramic (X7R), C

IN

= 2.2 µF ceramic (X7R), I

OUT

= 1 mA,

T

A

= +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-13:

Noise vs. Frequency 

(V

R

= 2.5V).

FIGURE 2-14:

Noise vs. Frequency 

(V

R

= 3.3V).

FIGURE 2-15:

Noise vs. Frequency 

(V

R

= 4.2V).

FIGURE 2-16:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 1.2V).

FIGURE 2-17:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 2.5V).

FIGURE 2-18:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 3.3V).

0.001

0.01

0.1

1

10

0.01

0.1

1

10

100

1000

Output Noi

se μV/

¥Hz

Frequency (kHz)

V

R

= 2.5V

V

IN

= 3.3V, C

IN

= C

OUT

= 2.2 μF

I

OUT

= 50 mA

Noise (100 Hz to 1 MHz) = 47.57 μVrms

0.001

0.01

0.1

1

10

0.01

0.1

1

10

100

1000

Output Noise μV/

¥Hz

Frequency (kHz)

V

R

= 3.3V

V

IN

= 4.1V, C

IN

= C

OUT

= 2.2 μF

I

OUT

= 50 mA

Noise (100 Hz to 1 MHz) = 43.01 μVrms

0.001

0.01

0.1

1

10

0.01

0.1

1

10

100

1000

Output Noi

se μV/

¥Hz

Frequency (kHz)

V

R

= 4.2V

V

IN

= 5.0V, C

IN

= C

OUT

= 2.2 μF

I

OUT

= 50 mA

Noise (100 Hz to 1 MHz) = 38.70 μVrms

-60

-50

-40

-30

-20

-10

0

10

0.01

0.1

1

10

100

1000

PSRR (

d

B)

Frequency (kHz)

V

R

= 1.2V

C

IN

= 0, C

OUT

= 2.2 µF

V

IN

= 2.7V + 0.2 Vpk-pk

I

OUT

= 50 mA

I

OUT

= 10 mA

-60

-50

-40

-30

-20

-10

0

10

0.01

0.1

1

10

100

1000

PSRR (dB)

Frequency (kHz)

I

OUT

= 50 mA

I

OUT

= 10 mA

V

R

= 2.5V

C

IN

= 0, C

OUT

= 2.2 µF

V

IN

= 3.5V + 0.2 Vpk-pk

-60

-50

-40

-30

-20

-10

0

10

0.01

0.1

1

10

100

1000

PSRR (dB)

Frequency (kHz)

I

OUT

= 10 mA

I

OUT

= 50 mA

V

R

= 3.3V

C

IN

= 0, C

OUT

= 2.2 µF

V

IN

= 4.3V + 0.2 Vpk-pk

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005623B-html.html
background image

MCP1810

DS20005623B-page 10

 2016-2018 Microchip Technology Inc.

Note: 

Unless otherwise indicated,

 

C

OUT

= 2.2 µF ceramic (X7R), C

IN

= 2.2 µF ceramic (X7R), I

OUT

= 1 mA,

T

A

= +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-19:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 4.2V).

FIGURE 2-20:

Dynamic Load Step 

(V

R

= 1.2V).

FIGURE 2-21:

Dynamic Load Step 

(V

R

= 2.5V).

FIGURE 2-22:

Dynamic Load Step 

(V

R

= 3.3V).

FIGURE 2-23:

Dynamic Load Step 

(V

R

= 4.2V).

FIGURE 2-24:

Dynamic Line Step 

(V

R

= 1.2V).

-60

-50

-40

-30

-20

-10

0

10

0.01

0.1

1

10

100

1000

PSRR (dB)

Frequency (kHz)

I

OUT

= 50 mA

I

OUT

= 10 mA

V

R

= 4.2V

C

IN

= 0, C

OUT

= 2.2 µF

V

IN

= 5.2V + 0.2 Vpk-pk

V

OUT

 (AC Coupled, 100 mV/Div)

10 mA

100 µA

Time = 80 µs/Div

V

R

 = 1.2V, V

IN

 = 2.7V, I

OUT

 = 100 µA to 10 mA

I

OUT

 (DC Coupled, 5 mA/Div)

V

OUT

I

OUT

V

OUT

 (AC Coupled, 100 mV/Div)

10 mA

100 µA

Time = 80 µs/Div

V

R

 = 2.5V, V

IN

 = 3.3V, I

OUT

 = 100 µA to 10 mA

I

OUT

 (DC Coupled, 5 mA/Div)

V

OUT

I

OUT

V

OUT

 (AC Coupled, 100 mV/Div)

10 mA

100 µA

Time = 80 µs/Div

V

R

 = 3.3V, V

IN

 = 4.1V, I

OUT

 = 100 µA to 10 mA

I

OUT

 (DC Coupled, 5 mA/Div)

V

OUT

I

OUT

V

OUT

 (AC Coupled, 100 mV/Div)

10 mA

100 µA

Time = 80 µs/Div

V

R

 = 4.2V, V

IN

 = 5.0V, I

OUT

 = 100 µA to 10 mA

I

OUT

 (DC Coupled, 5 mA/Div)

V

OUT

I

OUT

V

OUT

 (AC Coupled, 200 mV/Div)

Time = 80 µs/Div

V

R

 = 1.2V, V

IN

 = 2.5V to 3.5V, I

OUT

 = 10 mA

2.5V

3.5V

V

IN

 (DC Coupled, 1V/Div)

V

IN

V

OUT

Maker
Microchip Technology Inc.
Datasheet PDF Download