MCP1810
2016-2018 Microchip Technology Inc.
DS20005623B-page 1
Features
• Ultra-Low Quiescent Current: 20 nA (typical)
• Ultra-Low Shutdown Supply Current:
1 nA (typical)
• 150 mA Output Current Capability for V
R
≤ 3.5V
• 100 mA Output Current Capability for V
R
3.5V
• Input Operating Voltage Range: 2.5V to 5.5V
• Standard Output Voltages (V
R
): 1.2V, 1.5V, 1.8V,
2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V, 4.2V
• Low Dropout Voltage: 380 mV maximum at
150 mA
• Stable with 1.0 µF Ceramic Output Capacitor
• Overcurrent Protection
• Available in the following packages:
- 2 x 2 mm No Lead VDFN
- 3 Lead SOT-23 (V
R
< 4.0V)
- 5 Lead SOT-23 (V
R
< 4.0V)
Applications
• Energy Harvesting
• Long-Life, Battery-Powered Applications
• Smart Cards
• Ultra-Low Consumption “Green” Products
• Portable Electronics
Description
The MCP1810 is a 150 mA (for V
R
≤ 3.5V), 100 mA (for
V
R
3.5V) low dropout (LDO) linear regulator that
provides high-current and low-output voltages, while
maintaining an ultra-low 20 nA of quiescent current
during device operation. In addition, the MCP1810 can
be shut down for an even lower 1 nA (typical) supply
current draw.
The MCP1810 comes in 11 standard fixed
output-voltage versions: 1.2V, 1.5V, 1.8V, 2.0V, 2.2V,
2.5V, 2.8V, 3.0V, 3.3V, 3.5V and 4.2V.
The 150 mA output current capability, combined with
the low output-voltage capability, make the MCP1810 a
good choice for new ultra-long-life LDO applications
that have high-current demands, but require ultra-low
power consumption during sleep states.
The MCP1810 is stable with ceramic output capacitors
that inherently provide lower output noise and reduce
the size and cost of the entire regulator solution. Only
1 µF (2.2 µF recommended) of output capacitance is
needed to stabilize the LDO.
The MCP1810 ultra-low quiescent and shutdown
current allows it to be paired with other ultra-low current
draw devices, such as Microchip’s nanoWatt eXtreme
Low Power (XLP) technology devices, for a complete
ultra-low-power solution.
Package Types
MCP1810
2x2 VDFN*
NC
V
OUT
NC
V
IN
FB
1
2
3
4
8
7
6
5 NC
SHDN
GND
* Includes Exposed Thermal Pad (EP); see
Table 3-1
.
EP
9
1
2
4
3
5
1
2
3
V
OUT
V
OUT
V
IN
V
IN
GND
NC
GND
SHDN
3 Lead-SOT23
5 Lead-SOT23
.
Ultra-Low Quiescent Current LDO Regulator
MCP1810
DS20005623B-page 2
2016-2018 Microchip Technology Inc.
Typical Application
Functional Block Diagram
V
IN
V
OUT
FB
GND
MCP1810
LOAD
C
IN
C
OUT
SHDN
+
-
ESR
V
IN
SHDN
Voltage
Reference
V
OUT
FB
+
-
GND
Overcurrent
SHDN
2016-2018 Microchip Technology Inc.
DS20005623B-page 3
MCP1810
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Input voltage, V
IN
.....................................................................................................................................................+6.0V
Maximum Voltage on any pin - ......................................................................................................(GND - 0.3V) to +6.0V
Output Short-Circuit Duration................................................................................................. ............................Unlimited
Storage Temperature ............................................................................................................................ –65°C to +150°C
Maximum Junction Temperature, T
J
..................................................................................................................... +150°C
Operating Junction Temperature, T
J
........................................................................................................ –40°C to +85°C
ESD protection on all pins (HBM) .......................................................................................................................... ≥ 4 kV
† Notice:
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for
extended periods may affect device reliability.
AC/DC CHARACTERISTICS
Electrical Specifications:
Unless otherwise noted, V
IN
= V
R
+ 800 mV (
Note 1
)
, I
OUT
= 1 mA, C
IN
= C
OUT
= 2.2 µF
ceramic (X7R), T
A
= +25°C. Boldface type applies for junction temperatures T
J
of –40°C to +85°C (
Note 2
)
.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Input Operating Voltage
V
IN
2.7
—
5.5
V
2.5
—
5.5
V
V
R
1.8V, I
OUT
< 50 mA
Output Voltage Range
V
OUT
1.2
—
4.2
V
Input Quiescent Current
I
Q
—
20
50
nA
V
IN
= V
R
+ 800 mV or 2.7V
(whichever is greater)
I
OUT
= 0
Input Quiescent Current
for SHDN Mode
I
SHDN
—
1
—
nA
SHDN = GND
Ground Current
I
GND
—
200
290
µA
V
IN
= V
R
+ 800 mV or 2.7V
(whichever is greater)
I
OUT
= 150 mA, V
R
3.5V
I
OUT
= 100 mA, V
R
> 3.5V
Maximum Continuous
Output Current
I
OUT
—
—
150
mA
V
R
≤ 3.5V
—
—
100
mA
V
R
3.5V
Current Limit
I
OUT
—
350
—
mA
V
OUT
= 0.9 x V
R
V
R
≤ 3.5V
—
250
—
mA
V
OUT
= 0.9 x V
R
V
R
3.5V
Output Voltage Regulation
V
OUT
V
R
- 4%
—
V
R
+ 4%
V
V
R
< 1.8V (
Note 3
)
V
R
- 2%
—
V
R
+ 2%
V
V
R
≥ 1.8V (
Note 3
)
Line Regulation
V
OUT
/
(V
OUT
x
V
IN
)
–4
—
+4
%/V
V
IN
= V
IN(min.)
to 5.5V
I
OUT
= 50 mA (
Note 1
)
Note 1:
The minimum V
IN
must meet two conditions: V
IN
V
IN(MIN)
and V
IN
V
R
V
DROPOUT(MAX).
2:
The junction temperature is approximated by soaking the device under test at an ambient temperature
equal to the desired junction temperature. The test time is short enough such that the rise in junction
temperature over the ambient temperature is not significant.
3:
V
R
is the nominal regulator output voltage. V
R
= 1.2V, 1.5V, 1.8V, 2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V
or 4.2V.
4:
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3%
below its nominal value that was measured with an input voltage of V
IN
= V
OUT(MAX)
+ V
DROPOUT(MAX)
.
MCP1810
DS20005623B-page 4
2016-2018 Microchip Technology Inc.
Load Regulation
V
OUT
/V
OUT
–3
1
+3
%
V
IN
= (V
IN(MIN)
+ V
IN(MAX)
)/2
I
OUT
= 0.02 mA to 150 mA
(
Note 1
)
Dropout Voltage
V
DROPOUT
—
—
380
mV
I
OUT
= 150 mA
V
R
≤ 3.5V (
Note 4
)
—
—
280
mV
I
OUT
= 100 mA
V
R
> 3.5V (
Note 4
)
Shutdown Input
Logic High Input
V
SHDN-HIGH
70
—
—
%V
IN
V
IN
= V
R
+ 800 mV or 2.7V
(whichever is greater)
I
OUT
= 1 mA (
Note 3
)
Logic Low Input
V
SHDN-LOW
—
—
30
%V
IN
V
IN
= V
R
+ 800 mV or 2.7V
(whichever is greater)
I
OUT
= 1 mA (
Note 3
)
AC Performance
Output Delay from SHDN
T
OR
—
20
—
ms
SHDN = GND to V
IN
V
OUT
= GND to 95% V
R
Output Noise
e
N
—
0.48
—
µV/
Hz
V
IN
= 3.3V
C
IN
= C
OUT
= 2.2 µF ceramic
(X7R)
V
R
= 2.5V, I
OUT
= 50 mA
f = 1 kHz
—
48
—
µVrms
V
IN
= 3.3V
C
IN
= C
OUT
= 2.2 µF ceramic
(X7R)
V
R
= 2.5V, I
OUT
= 50 mA
f = 100 Hz to 1 MHz
Power Supply Ripple
Rejection Ratio
PSRR
—
40
—
dB
f = 100 Hz, I
OUT
= 10 mA
V
INAC
= 200 mV pk-pk
C
IN
= 0 µF
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications:
Unless otherwise noted, V
IN
= V
R
+ 800 mV (
Note 1
)
, I
OUT
= 1 mA, C
IN
= C
OUT
= 2.2 µF
ceramic (X7R), T
A
= +25°C. Boldface type applies for junction temperatures T
J
of –40°C to +85°C (
Note 2
)
.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Note 1:
The minimum V
IN
must meet two conditions: V
IN
V
IN(MIN)
and V
IN
V
R
V
DROPOUT(MAX).
2:
The junction temperature is approximated by soaking the device under test at an ambient temperature
equal to the desired junction temperature. The test time is short enough such that the rise in junction
temperature over the ambient temperature is not significant.
3:
V
R
is the nominal regulator output voltage. V
R
= 1.2V, 1.5V, 1.8V, 2.0V, 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.5V
or 4.2V.
4:
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3%
below its nominal value that was measured with an input voltage of V
IN
= V
OUT(MAX)
+ V
DROPOUT(MAX)
.
2016-2018 Microchip Technology Inc.
DS20005623B-page 5
MCP1810
TEMPERATURE SPECIFICATIONS
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Temperature Ranges
Operating Junction
Temperature Range
T
J
-40
—
+85
°C
Steady State
Maximum Junction
Temperature
T
J
—
—
+150
°C
Transient
Storage Temperature Range
T
A
-65
—
+150
°C
Thermal Package Resistances
Thermal Resistance,
2 x 2 mm VDFN-8LD
JA
—
73.1
—
°C/W
JEDEC
®
standard FR4 board with
1 oz. copper and thermal vias
JC
—
10.7
—
°C/W
Thermal Resistance,
SOT23-3LD
JA
—
256
—
°C/W
JC
—
81
—
°C/W
Thermal Resistance,
SOT23-5LD
JA
—
256
—
°C/W
JC
—
81
—
°C/W
MCP1810
DS20005623B-page 6
2016-2018 Microchip Technology Inc.
NOTES:
2016-2018 Microchip Technology Inc.
DS20005623B-page 7
MCP1810
2.0
TYPICAL PERFORMANCE CURVES
Note:
Unless otherwise indicated,
C
OUT
= 2.2 µF ceramic (X7R), C
IN
= 2.2 µF ceramic (X7R), I
OUT
= 1 mA,
T
A
= +25°C, V
IN
= V
R
+ 0.8V, SHDN = 1 M
pull-up to V
IN
.
FIGURE 2-1:
Output Voltage vs. Input
Voltage (V
R
= 1.2V).
FIGURE 2-2:
Output Voltage vs. Input
Voltage (V
R
= 2.5V).
FIGURE 2-3:
Output Voltage vs. Input
Voltage (V
R
= 3.3V).
FIGURE 2-4:
Output Voltage vs. Input
Voltage (V
R
= 4.2V).
FIGURE 2-5:
Output Voltage vs. Load
Current (V
R
= 1.2V).
FIGURE 2-6:
Output Voltage vs. Load
Current (V
R
= 2.5V).
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
1.190
1.195
1.200
1.205
1.210
1.215
1.220
2.5
3.5
4.5
5.5
Ou
tpu
t V
o
ltag
e (V)
Input Voltage (V)
T
J
= +25°C
T
J
= -40°C
T
J
= +85°C
V
R
= 1.2V
2.490
2.495
2.500
2.505
2.510
2.515
2.5
3.5
4.5
5.5
Output V
o
ltage (V)
Input Voltage (V)
T
J
= -40°C
T
J
= +25°C
T
J
= +85°C
V
R
= 2.5V
3.300
3.302
3.304
3.306
3.308
3.310
3.312
3.5
4.0
4.5
5.0
5.5
Output V
o
ltage (V)
Input Voltage (V)
T
J
= +25°C
T
J
= +85°C
T
J
= -40°C
V
R
= 3.3V
4.185
4.190
4.195
4.200
4.205
4.210
4.5
4.7
4.9
5.1
5.3
5.5
Output V
o
ltage (V)
Input Voltage (V)
T
J
= +25°C
T
J
= +85°C
T
J
= -40°C
V
R
= 4.2V
1.170
1.175
1.180
1.185
1.190
1.195
1.200
1.205
1.210
1.215
1.220
0
25
50
75
100
125
150
Output V
o
ltage (V)
Load Current (mA)
T
J
= +85°C
T
J
= -40°C
T
J
= +25°C
V
IN
= 2.5V
V
R
= 1.2V
2.470
2.480
2.490
2.500
2.510
2.520
2.530
0
25
50
75
100
125
150
Output V
o
ltage (V)
Load Current (mA)
V
IN
= 3.3V
T
J
= +25°C
T
J
= +85°C
T
J
= -40°C
V
R
= 2.5V
MCP1810
DS20005623B-page 8
2016-2018 Microchip Technology Inc.
Note:
Unless otherwise indicated,
C
OUT
= 2.2 µF ceramic (X7R), C
IN
= 2.2 µF ceramic (X7R), I
OUT
= 1 mA,
T
A
= +25°C, V
IN
= V
R
+ 0.8V, SHDN = 1 M
pull-up to V
IN
.
FIGURE 2-7:
Output Voltage vs. Load
Current (V
R
= 3.3V).
FIGURE 2-8:
Output Voltage vs. Load
Current (V
R
= 4.2V).
FIGURE 2-9:
Dropout Voltage vs. Load
Current (V
R
= 2.5V)
FIGURE 2-10:
Dropout Voltage vs. Load
Current (V
R
= 3.3V).
FIGURE 2-11:
Dropout Voltage vs. Load
Current (V
R
= 4.2V).
FIGURE 2-12:
Noise vs. Frequency
(V
R
= 1.2V).
3.270
3.280
3.290
3.300
3.310
3.320
3.330
3.340
3.350
3.360
3.370
0
25
50
75
100
125
150
Output V
o
lt
age (
V
)
Load Current (mA)
V
IN
= 4.1V
T
J
= +25°C
T
J
= +85°C
T
J
= -40°C
V
R
= 3.3V
4.166
4.176
4.186
4.196
4.206
4.216
4.226
4.236
0
25
50
75
100
Output V
o
lt
age (
V
)
Load Current (mA)
V
IN
= 5.0V
T
J
= -40°C
T
J
= +25°C
T
J
= +85°C
V
R
= 4.2V
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0
25
50
75
100
125
150
D
ro
pou
t V
o
ltage
(V)
Load Current (mA)
V
R
= 2.5V
T
J
= +85°C
T
J
= -40°C
T
J
= +25°C
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0
25
50
75
100
125
150
Dropout V
o
ltage (V)
Load Current (mA)
V
R
= 3.3V
T
J
= +25°C
T
J
= -40°C
T
J
= +85°C
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0
20
40
60
80
100
Dropout V
o
ltage (V)
Load Current (mA)
V
R
= 4.2V
T
J
= +25°C
T
J
= +85°C
T
J
= -40°C
0.001
0.01
0.1
1
10
100
0.01
0.1
1
10
100
1000
Output Noise μV/
¥Hz
Frequency (kHz)
V
R
= 1.2V
V
IN
= 2.5V, C
IN
= C
OUT
= 2.2 μF
I
OUT
= 50 mA
Noise (100 Hz to 1 MHz) = 53.49 μVrms
2016-2018 Microchip Technology Inc.
DS20005623B-page 9
MCP1810
Note:
Unless otherwise indicated,
C
OUT
= 2.2 µF ceramic (X7R), C
IN
= 2.2 µF ceramic (X7R), I
OUT
= 1 mA,
T
A
= +25°C, V
IN
= V
R
+ 0.8V, SHDN = 1 M
pull-up to V
IN
.
FIGURE 2-13:
Noise vs. Frequency
(V
R
= 2.5V).
FIGURE 2-14:
Noise vs. Frequency
(V
R
= 3.3V).
FIGURE 2-15:
Noise vs. Frequency
(V
R
= 4.2V).
FIGURE 2-16:
Power Supply Ripple
Rejection vs. Frequency (V
R
= 1.2V).
FIGURE 2-17:
Power Supply Ripple
Rejection vs. Frequency (V
R
= 2.5V).
FIGURE 2-18:
Power Supply Ripple
Rejection vs. Frequency (V
R
= 3.3V).
0.001
0.01
0.1
1
10
0.01
0.1
1
10
100
1000
Output Noi
se μV/
¥Hz
Frequency (kHz)
V
R
= 2.5V
V
IN
= 3.3V, C
IN
= C
OUT
= 2.2 μF
I
OUT
= 50 mA
Noise (100 Hz to 1 MHz) = 47.57 μVrms
0.001
0.01
0.1
1
10
0.01
0.1
1
10
100
1000
Output Noise μV/
¥Hz
Frequency (kHz)
V
R
= 3.3V
V
IN
= 4.1V, C
IN
= C
OUT
= 2.2 μF
I
OUT
= 50 mA
Noise (100 Hz to 1 MHz) = 43.01 μVrms
0.001
0.01
0.1
1
10
0.01
0.1
1
10
100
1000
Output Noi
se μV/
¥Hz
Frequency (kHz)
V
R
= 4.2V
V
IN
= 5.0V, C
IN
= C
OUT
= 2.2 μF
I
OUT
= 50 mA
Noise (100 Hz to 1 MHz) = 38.70 μVrms
-60
-50
-40
-30
-20
-10
0
10
0.01
0.1
1
10
100
1000
PSRR (
d
B)
Frequency (kHz)
V
R
= 1.2V
C
IN
= 0, C
OUT
= 2.2 µF
V
IN
= 2.7V + 0.2 Vpk-pk
I
OUT
= 50 mA
I
OUT
= 10 mA
-60
-50
-40
-30
-20
-10
0
10
0.01
0.1
1
10
100
1000
PSRR (dB)
Frequency (kHz)
I
OUT
= 50 mA
I
OUT
= 10 mA
V
R
= 2.5V
C
IN
= 0, C
OUT
= 2.2 µF
V
IN
= 3.5V + 0.2 Vpk-pk
-60
-50
-40
-30
-20
-10
0
10
0.01
0.1
1
10
100
1000
PSRR (dB)
Frequency (kHz)
I
OUT
= 10 mA
I
OUT
= 50 mA
V
R
= 3.3V
C
IN
= 0, C
OUT
= 2.2 µF
V
IN
= 4.3V + 0.2 Vpk-pk
MCP1810
DS20005623B-page 10
2016-2018 Microchip Technology Inc.
Note:
Unless otherwise indicated,
C
OUT
= 2.2 µF ceramic (X7R), C
IN
= 2.2 µF ceramic (X7R), I
OUT
= 1 mA,
T
A
= +25°C, V
IN
= V
R
+ 0.8V, SHDN = 1 M
pull-up to V
IN
.
FIGURE 2-19:
Power Supply Ripple
Rejection vs. Frequency (V
R
= 4.2V).
FIGURE 2-20:
Dynamic Load Step
(V
R
= 1.2V).
FIGURE 2-21:
Dynamic Load Step
(V
R
= 2.5V).
FIGURE 2-22:
Dynamic Load Step
(V
R
= 3.3V).
FIGURE 2-23:
Dynamic Load Step
(V
R
= 4.2V).
FIGURE 2-24:
Dynamic Line Step
(V
R
= 1.2V).
-60
-50
-40
-30
-20
-10
0
10
0.01
0.1
1
10
100
1000
PSRR (dB)
Frequency (kHz)
I
OUT
= 50 mA
I
OUT
= 10 mA
V
R
= 4.2V
C
IN
= 0, C
OUT
= 2.2 µF
V
IN
= 5.2V + 0.2 Vpk-pk
V
OUT
(AC Coupled, 100 mV/Div)
10 mA
100 µA
Time = 80 µs/Div
V
R
= 1.2V, V
IN
= 2.7V, I
OUT
= 100 µA to 10 mA
I
OUT
(DC Coupled, 5 mA/Div)
V
OUT
I
OUT
V
OUT
(AC Coupled, 100 mV/Div)
10 mA
100 µA
Time = 80 µs/Div
V
R
= 2.5V, V
IN
= 3.3V, I
OUT
= 100 µA to 10 mA
I
OUT
(DC Coupled, 5 mA/Div)
V
OUT
I
OUT
V
OUT
(AC Coupled, 100 mV/Div)
10 mA
100 µA
Time = 80 µs/Div
V
R
= 3.3V, V
IN
= 4.1V, I
OUT
= 100 µA to 10 mA
I
OUT
(DC Coupled, 5 mA/Div)
V
OUT
I
OUT
V
OUT
(AC Coupled, 100 mV/Div)
10 mA
100 µA
Time = 80 µs/Div
V
R
= 4.2V, V
IN
= 5.0V, I
OUT
= 100 µA to 10 mA
I
OUT
(DC Coupled, 5 mA/Div)
V
OUT
I
OUT
V
OUT
(AC Coupled, 200 mV/Div)
Time = 80 µs/Div
V
R
= 1.2V, V
IN
= 2.5V to 3.5V, I
OUT
= 10 mA
2.5V
3.5V
V
IN
(DC Coupled, 1V/Div)
V
IN
V
OUT