MCP1790/MCP1791 - 70 mA, High Voltage Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

© 2010 Microchip Technology Inc.

DS22075B-page 1

MCP1790/MCP1791

Features

• 48V (43.5V ±10%) load dump protected for <500 ms 

with a 30 second repetition rate (FORD Test Pulse 
G Loaded)

• Wide steady state supply voltage, 6.0V - 30.0V
• Extended Junction Temperature Range: 

-40 to +125°C

• Fixed output voltages: 3.0V, 3.3V, 5.0V
• Low quiescent current: 70 µA typical
• Low shutdown quiescent current: 10 µA typical
• Output Voltage Tolerances of ±2.5% over the 

temperature range

• Maximum output current of 70 mA @ +125°C 

Junction Temperature

• Maximum continuous input voltage of 30V
• Internal thermal overload protection, +157°C 

(typical) Junction Temperature

• Internal short circuit current limit, 120 mA (typical) 

for +5V option 

• Short Circuit Current Foldback
• Shutdown Input option (MCP1791)
• Power Good Output option (MCP1791)
• High PSRR, -90 dB@100 Hz (typical)
• Stable with 1 µF to 1000 µF Tantalum and 

Electrolytic Capacitors

• Stable with 4.7 µF to 1000 µF Ceramic Capacitors

Applications

• Low Voltage A/C powered (24VAC) Fire Alarms, 

CO

2

 Sensors, HVAC Controls

• Automotive Electronics
• Automotive Accessory Power Adapters
• Electronic Thermostat Controls
• Microcontroller power

General Description

The MCP1790/MCP1791 regulator provides up to 70 mA
of current. The input operating voltage range is specified
from 6.0V to 30V continuous, 48V absolute max, making
it ideal for automotive and commercial 12/24 VDC
systems.
The MCP1790/MCP1791 has a tight tolerance output
voltage load regulation of ±0.2% (typical) and a very
good line regulation at ±0.0002%/V (typical). The
regulator output is stable with ceramic, tantalum and
electrolytic capacitors. The MCP1790/MCP1791
regulator incorporates both thermal and short circuit
protection.
The MCP1790 is the 3-pin version of the MCP1790/
MCP1791 family. The MCP1791 is the 5-pin version
and incorporates a Shutdown input signal and a Power
Good output signal.
The regulator is specifically designed to operate in the
automotive environment and will survive +48V (43.5V
±10%) load dump transients and double-battery jumps.
The device is designed to meet the stringent quiescent
current requirements of the automotive industry. The
device is also designed for the commercial low voltage
fire alarm/detector systems, which use 24 VDC to
supply the required alarms throughout buildings. The
low ground current, 110 µA (typ.), of the CMOS device
will provide a power cost savings to the end users over
similar bipolar devices. Typical buildings using
hundreds of 24V powered fire and smoke detectors can
see substantial savings on energy consumption and
wiring gage reduction compared to bipolar regulators.
The MCP1790 device will be offered in the 3-pin
DD-PAK, and SOT-223 packages.
The MCP1791 device will be offered in the 5-pin
DD-PAK, and SOT-223 packages.
The MCP1790/MCP1791 will have a junction
temperature operating range of -40°C to +125°C.

70 mA, High Voltage Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

MCP1790/MCP1791

DS22075B-page 2

© 2010 Microchip Technology Inc.

Package Types

MCP1791

1

2

3

4

5

6

SOT-223-5

Pin

1

SHDN

2

V

IN

3

GND (TAB)

4

V

OUT

5

 

PWRGD

6

GND (TAB)

1

2

3

SOT-223-3

4

MCP1790

Pin

1

V

IN

2

GND  (TAB)

3

V

OUT

4

GND  (TAB)

DDPAK-3

DDPAK-5

1 2 3 4 5

1 2 3

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

© 2010 Microchip Technology Inc.

DS22075B-page 3

MCP1790/MCP1791

TYPICAL APPLICATION

V

OUT

 = 5.0V @ 70 mA

V

IN

 = 6V to 30V

On

Off

1 µF Tantalum

100 k

Ω

4.7 µF

C

1

C

2

R

1

SHDN

V

IN

GND

V

OUT

PWRGD

5

Ω

V

OUT

 = 3.3V @ 70 mA

V

IN

 = 8.0V to 16V

1.0 µF Tantalum

1.0 µF

C

1

C

2

V

IN

GND

V

OUT

1

1

MCP1791

MCP1790

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

MCP1790/MCP1791

DS22075B-page 4

© 2010 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, 

V

IN

........................................................+48.0V

V

IN

, PWRGD, SHDN ..................... (GND-0.3V) to (

V

IN

+0.3V)

V

OUT

.................................................... (GND-0.3V) to (+5.5V)

Internal Power Dissipation ............ Internally-Limited (Note 4)
Output Short Circuit Current..................................Continuous
Storage temperature .....................................-55°C to +150°C
Maximum Junction Temperature .....................165°C (Note 7)
Operating Junction Temperature...................-40°C to +125°C
ESD protection on all pins

........ ≥ 6 kV HBM and  ≥ 400V MM

† Notice: Stresses above those listed under “Maximum Rat-
ings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied. Expo-
sure to maximum rating conditions for extended periods may
affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX), 

(Note 1), I

OUT

 = 1 mA,

C

OUT

 = 4.7 µF (X7R Ceramic), C

IN

= 4.7 µF (X7R Ceramic), T

A

 = +25°C, SHDN > 2.4V.

Boldface type applies for junction temperatures, T

(Note 5) of -40°C to +125°C.

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Input Operating Voltage

V

IN

6.0

30.0

V

+48

V

DC

 Load Dump Peak

< 500 ms

Input Quiescent Current

I

q

70

130

µA

I

L

 = 0 mA

Input Quiescent Current for SHDN 
Mode

I

SHDN

10

25

µA

SHDN = GND

Ground Current

I

GND

110

210

µA

I

L

 = 70 mA

Maximum Output Current

I

OUT

70

mA

Line Regulation

ΔV

OUT

/

(V

OUT

X

ΔV

IN

)

±0.0002

±0.05

%/V

6.0V < V

IN

 < 30V

Load Regulation

ΔV

OUT

/V

OUT

-0.45

±0.2

0.45

%

I

OUT

 = 1 mA to 70 mA 

(Note 3)

Output Peak Short Circuit Current

I

OUT_SC

V

R

/10

A

R

LOAD

< 0.1

Ω, 

Peak Current 

Output Voltage Regulation

V

OUT

V

R

-2.5%

V

R

V

R

+2.5%

V

V

OUT

 Temperature Coefficient

TCV

OUT

65

ppm/°C

Note 9

Input Voltage to Turn On Output

V

ON

5.5

6.0

V

Rising V

IN

Note 1:

The minimum V

IN

, V

IN(MIN)

 must meet two conditions: V

IN

 ≥ 6.0V and V

IN

 

 ≥ V

OUT(MAX)

 + V

DROPOUT(MAX).

2:

V

R

 is the nominal regulator output voltage.

3:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 
tested over a load range from 1 mA to the maximum specified output current.

4:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 165°C rating. Sustained 
junction temperatures above 165°C can impact the device reliability.

5:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the 
ambient temperature is not significant.

6:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value that was measured with an input voltage of V

IN

 = V

R

 + V

DROPOUT(MAX)

.

7:

Sustained junction temperatures above 165°C can impact the device reliability.

8:

The Short Circuit Recovery Time test is done by placing the device into a short circuit condition and then removing the 
short circuit condition before the device die temperature reaches 125 °C. If the device goes into thermal shutdown, then 
the Short Circuit Recovery Time will depend upon the thermal dissipation properties of the package and circuit board.

9:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10^6/(V

R

 * 

ΔTemperature), V

OUT-HIGH

 = highest voltage measured over the temperature 

range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

© 2010 Microchip Technology Inc.

DS22075B-page 5

MCP1790/MCP1791

Short Circuit Foldback Voltage Corner

V

FOLDBACK

4.2

V

V

R

 = 5.0V

Falling V

OUT,

 R

LOAD

< 0.1

Ω

3.0

V

V

R

 = 3.3V

Falling V

OUT,

 R

LOAD

< 0.1

Ω

2.7

V

V

R

 = 3.0V

Falling V

OUT,

 R

LOAD

< 0.1

Ω

Short Circuit Foldback Current

105

mA

V

OUT

 ~= 0V,

R

LOAD

< 0.1

Ω,

V

R

 = 5.0V (Note 2)

99

mA

V

R

 = 3.3V (Note 2)

99

mA

V

R

 = 3.0V (Note 2)

Startup Voltage Overshoot

V

OVER

0.10

%  V

OUT

V

IN

 = 0V to 6.0V

Dropout Voltage

V

DROPOUT

700

1300

mV

I

OUT

 = 70 mA, (Note 6)

Dropout Current
I

OUT

 = 0 mA

I

DO

130

µA

V

R

 = 5.0V, V

IN

 = 4.500V

75

µA

V

R

 = 3.3V, V

IN

 = 4.500V

75

µA

V

R

 = 3.0V, V

IN

 = 4.500V

Shutdown Input
Logic High Input

V

SHDN-HIGH

2.4

V

IN(MAX)

V

Logic Low Input

V

SHDN-LOW

0

0.8

V

Shutdown Input Leakage Current

SHDN

ILK


0.100

3.0

0.500

5.0

µA

SHDN = GND
SHDN = 6V

Power Good Characteristics
PWRGD Input Voltage Operating 
Range

V

PWRGD_VIN

2.8

V

PWRGD Threshold Voltage 
(Referenced to V

OUT

V

PWRGD_TH

88

90

92

%V

OUT

Falling Edge of  V

OUT

PWRGD Threshold Hysteresis

V

PWRGD_HYS

1.0

2.0

3.0

%V

OUT

Rising Edge of  V

OUT

PWRGD Output Voltage LOW

V

PWRGD_L

0.2

0.4

V

I

PWRGD

 

SINK

 = 5.0 mA, 

V

OUT

 = 0V

PWRGD Output Sink Current

I

PWRGD_L

5.0

mA

V

PWRGD

 <= 0.4V

PWRGD Leakage

I

PWRGD

_

LK

1.0

nA

V

PWRGD

 = V

IN

 = 6.0V

PWRGD Time Delay

T

PG

30

µs

Rising Edge

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX), 

(Note 1), I

OUT

 = 1 mA,

C

OUT

 = 4.7 µF (X7R Ceramic), C

IN

= 4.7 µF (X7R Ceramic), T

A

 = +25°C, SHDN > 2.4V.

Boldface type applies for junction temperatures, T

(Note 5) of -40°C to +125°C.

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Note 1:

The minimum V

IN

, V

IN(MIN)

 must meet two conditions: V

IN

 ≥ 6.0V and V

IN

 

 ≥ V

OUT(MAX)

 + V

DROPOUT(MAX).

2:

V

R

 is the nominal regulator output voltage.

3:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 
tested over a load range from 1 mA to the maximum specified output current.

4:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 165°C rating. Sustained 
junction temperatures above 165°C can impact the device reliability.

5:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the 
ambient temperature is not significant.

6:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value that was measured with an input voltage of V

IN

 = V

R

 + V

DROPOUT(MAX)

.

7:

Sustained junction temperatures above 165°C can impact the device reliability.

8:

The Short Circuit Recovery Time test is done by placing the device into a short circuit condition and then removing the 
short circuit condition before the device die temperature reaches 125 °C. If the device goes into thermal shutdown, then 
the Short Circuit Recovery Time will depend upon the thermal dissipation properties of the package and circuit board.

9:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10^6/(V

R

 * 

ΔTemperature), V

OUT-HIGH

 = highest voltage measured over the temperature 

range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

MCP1790/MCP1791

DS22075B-page 6

© 2010 Microchip Technology Inc.

Detect Threshold to PWRGD Active 
Time Delay

TV

DET-PWRG

D

235

µs

V

OUT

 = V

PWRGD_TH

 + 

100 mV to V

PWRGD_TH

 - 

100 mV

AC Performance
Output Delay from SHDN

T

OR

200

µs

SHDN = GND to V

IN, 

V

OUT

 = GND to 95% V

R, 

C

OUT

 = 1.0 µF

PWRGD Delay from SHDN

T

SHDN_PG

400

ns

SHDN = V

IN

 to GND

,

C

OUT

 = 1.0 µF

Output Noise

e

N

1.2

(µV/

√Hz) I

OUT

 = 50 mA, f = 1 kHz 

Power Supply Ripple Rejection Ratio

PSRR

dB

V

IN

 = 7.0V, C

IN

 = 0 µF,

I

OUT

 = 10 mA,

V

INAC

 = 400 mVpp 

90

f = 100 Hz

75

f = 1 kHz, V

R

 = 5.0V

80

f = 1 kHz, V

R

 = < 5.0V

Thermal Shutdown Temperature

T

SD

157

°C

Rising Temperature

Thermal Shutdown Hysteresis

ΔT

SD

20

°C

Falling Temperature

Short Circuit Recovery Time

t

THERM

0

ms

(Note 8)

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX), 

(Note 1), I

OUT

 = 1 mA,

C

OUT

 = 4.7 µF (X7R Ceramic), C

IN

= 4.7 µF (X7R Ceramic), T

A

 = +25°C, SHDN > 2.4V.

Boldface type applies for junction temperatures, T

(Note 5) of -40°C to +125°C.

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Note 1:

The minimum V

IN

, V

IN(MIN)

 must meet two conditions: V

IN

 ≥ 6.0V and V

IN

 

 ≥ V

OUT(MAX)

 + V

DROPOUT(MAX).

2:

V

R

 is the nominal regulator output voltage.

3:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 
tested over a load range from 1 mA to the maximum specified output current.

4:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 165°C rating. Sustained 
junction temperatures above 165°C can impact the device reliability.

5:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the 
ambient temperature is not significant.

6:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value that was measured with an input voltage of V

IN

 = V

R

 + V

DROPOUT(MAX)

.

7:

Sustained junction temperatures above 165°C can impact the device reliability.

8:

The Short Circuit Recovery Time test is done by placing the device into a short circuit condition and then removing the 
short circuit condition before the device die temperature reaches 125 °C. If the device goes into thermal shutdown, then 
the Short Circuit Recovery Time will depend upon the thermal dissipation properties of the package and circuit board.

9:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10^6/(V

R

 * 

ΔTemperature), V

OUT-HIGH

 = highest voltage measured over the temperature 

range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

© 2010 Microchip Technology Inc.

DS22075B-page 7

MCP1790/MCP1791

TEMPERATURE SPECIFICATIONS

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Temperature Ranges
Specified Temperature Range

T

J

-40

+125

°C

Operating Temperature Range

T

J

-40

+125

°C

Storage Temperature Range

T

A

-55

+150

°C

Package Thermal Resistances
Thermal Resistance, 3LD DDPAK

θ

JA

θ

JC

31.4

3

°C/W

EIA/JEDEC JESD51-751-7
4 Layer Board

Thermal Resistance, 3LD SOT-223

θ

JA

θ

JC

62
15

°C/W

EIA/JEDEC JESD51-751-7
4 Layer Board

Thermal Resistance, 5LD DDPAK

θ

JA

θ

JC

31.4

3

°C/W

EIA/JEDEC JESD51-751-7
4 Layer Board

Thermal Resistance, 5LD SOT-223

θ

JA

θ

JC

62
15

°C/W

EIA/JEDEC JESD51-751-7
4 Layer Board

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

MCP1790/MCP1791

DS22075B-page 8

© 2010 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CHARACTERISTICS

Note: 

Unless otherwise indicated, C

OUT

 = 4.7 uF Ceramic (X7R), C

IN

 = 10.0 µF Ceramic (X7R), I

OUT

 = 1 mA, Temperature = +25°C,

V

IN

 = 6.0V, R

PWRGD_PULLUP

 = 10 k

Ω To V

OUT

, V

SHDN

 = V

IN, 

and device is MCP1790.

Note: 

Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal to the desired

junction temperature. The test time is small enough such that the rise in Junction Temperature over the Ambient temperature is not
significant.

FIGURE 2-1:

Power Good Time Delay vs. 

Temperature (MCP1791).

FIGURE 2-2:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-3:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-4:

Quiescent Current vs. 

Junction Temperature.

FIGURE 2-5:

Ground Current vs. Load 

Current.

FIGURE 2-6:

I

SHDN

 vs Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

10

20

30

40

50

-45

-20

5

30

55

80

105

130

Temperature (°C)

PWRGD Time

 Dela

y (

µ

s)

V

OUT

 = 5.0V

I

OUT

 = 0 µA

V

IN

 = 10V,15V,25V,30V

V

IN

 = 6V

0

20

40

60

80

100

120

140

0

5

10

15

20

25

30

35

Input Voltage (V)

Quie

sc

ent

 Current

 (µ

A)

V

OUT

 = 3.3V

I

OUT

 = 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

0

20

40

60

80

100

120

140

0

5

10

15

20

25

30

35

Input Voltage (V)

Quie

sc

ent

 Current

 (µ

A)

V

OUT

 = 5.0V

I

OUT

 = 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

0.00

20.00

40.00

60.00

80.00

100.00

120.00

-45

-20

5

30

55

80

105

130

Junction Temperature (°C)

Quies

c

en

t Curre

nt (µA)

V

IN

 = 6V

I

OUT

 = 0µA

V

OUT

 = 5.0V

V

OUT

 = 3.3V

V

OUT

 = 3.0V

0

20

40

60

80

100

120

140

0

10

20

30

40

50

60

70

Load Current (mA)

GND

 Current (

µ

A)

V

OUT

 = 5.0V

V

OUT

 = 3.0V

V

OUT

 = 3.3V

0

4

8

12

16

20

24

28

-45

-20

5

30

55

80

105

130

Temperature (°C)

I

SH

DN

 (µ

A

)

V

IN

 = 6.0V

V

IN

 = 10V, 30V

V

REG

 = 3.0V

V

SHDN

 = 0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

© 2010 Microchip Technology Inc.

DS22075B-page 9

MCP1790/MCP1791

Note: 

Unless otherwise indicated, C

OUT

 = 4.7 uF Ceramic (X7R), C

IN

 = 10.0 µF Ceramic (X7R), I

OUT

 = 1 mA, Temperature = +25°C,

V

IN

 = 6.0V, R

PWRGD_PULLUP

 = 10 k

Ω To V

OUT

, V

SHDN

 = V

IN, 

and device is MCP1790.

FIGURE 2-7:

Line Regulation vs. 

Temperature.

FIGURE 2-8:

Line Regulation vs. 

Temperature.

FIGURE 2-9:

Load Regulation vs. 

Temperature.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Dropout Voltage vs. Load 

Current.

FIGURE 2-12:

Dropout Voltage vs. 

Temperature.

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

-45

-20

5

30

55

80

105

130

Temperature (°C)

Line Regulat

ion (%/V)

V

OUT

 = 3.3V

V

IN

 = 6V to 30V

70 mA

10 mA

0 mA

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

-45

-20

5

30

55

80

105

130

Temperature (°C)

Line Regulat

ion (%/V)

V

OUT

 = 5.0V

V

IN

 = 6V to 30V

70 mA

0 mA

30 mA

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-45

-20

5

30

55

80

105

130

Temperature (°C)

Load Regulation (

%

)

I

LOAD

 = 1 mA to 70 mA

V

REG

=5.0V

V

REG

=3.3V

V

REG

=3.0V

4.94

4.95

4.96

4.97

4.98

4.99

5.00

5.01

5.02

5.03

5.04

0

10

20

30

40

50

60

70

Load Current (mA)

Output

 V

o

lt

age (

V

)

V

OUT

 = 5.0V

V

IN

 = 6.3V

+25°C

+130°C

-45°C

0°C

+90°C

+25°C

+130°C

-45°C

0°C

+90°C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

10

20

30

40

50

60

70

Load Current (mA)

Dropout Voltage (

V

)

V

OUT

 = 5.0V

+25°C

+130°C

-45°C

0°C

+90°C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-45

-20

5

30

55

80

105

130

Temperature (°C)

Dropout Voltage (

V

)

V

OUT

 = 5.0V

1 mA

50 mA

10 mA

30 mA

70 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22075b-html.html
background image

MCP1790/MCP1791

DS22075B-page 10

© 2010 Microchip Technology Inc.

Note: 

Unless otherwise indicated, C

OUT

 = 4.7 uF Ceramic (X7R), C

IN

 = 10.0 µF Ceramic (X7R), I

OUT

 = 1 mA, Temperature = +25°C,

V

IN

 = 6.0V, R

PWRGD_PULLUP

 = 10 k

Ω To V

OUT

, V

SHDN

 = V

IN, 

and device is MCP1790.

FIGURE 2-13:

Short Circuit Current vs 

Input Voltage.

FIGURE 2-14:

Output Noise Voltage 

Density vs. Frequency.

FIGURE 2-15:

Power Supply Ripple 

Rejection vs. Frequency.

FIGURE 2-16:

Power Supply Ripple 

Rejection vs. Frequency.

FIGURE 2-17:

Startup from V

IN

 

(MCP1791).

FIGURE 2-18:

Startup from Shutdown 

(MCP1791).

100

105

110

115

120

125

130

6

10

14

18

22

26

30

Input Voltage (V)

S

hort

 Circuit Current (

m

A)

R

OUT

 < 0.1

V

OUT

 = 5.0V

V

OUT

 = 3.3V

V

OUT

 = 3.0V

0.00

0.01

0.10

1.00

10.00

0.01

0.1

1

10

100

1000

Frequency (kHz)

Noise (μV/Hz)

V

R

=5.0V

I

OUT

=50mA

V

R

=3.3V

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

0.01

0.1

1

10

100

1000

Frequency (kHz)

PSRR (

d

B)

V

R

=3.3V

V

IN

=7.0V

V

INAC

 = 400 mV p-p

C

IN

=0 μF

I

OUT

=10 mA

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

0.01

0.1

1

10

100

1000

Frequency (kHz)

PSRR (dB)

V

R

=5.0V

V

IN

=7.0V

V

INAC

 = 400 mV p-p

C

IN

=0 μF

I

OUT

=10 mA

Maker
Microchip Technology Inc.