MCP1754/MCP1754S Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

 2011-2013 Microchip Technology Inc.

DS20002276C-page 1

MCP1754/MCP1754S

Features:

• High PSRR: >70 dB @ 1 kHz, Typical

• 56.0 µA Typical Quiescent Current

• Input Operating Voltage Range: 3.6V to16.0V

• 150 mA Output Current for All Output Voltages

• Low-Dropout Voltage, 300 mV Typical @ 150 mA

• 0.4% Typical Output Voltage Tolerance

• Standard Output Voltage Options (1.8V, 2.5V, 

2.8V, 3.0V, 3.3V, 4.0V, 5.0V)

• Output Voltage Range 1.8V to 5.5V in 0.1V 

Increments (tighter increments also possible per 
design)

• Output Voltage Tolerances of ±2.0% Over Entire 

Temperature Range

• Stable with Minimum 1.0 µF Output Capacitance

• Power Good Output

• Shutdown Input

• True Current Foldback Protection

• Short-Circuit Protection

• Overtemperature Protection

Applications:

• Battery-Powered Devices

• Battery-Powered Alarm Circuits

• Smoke Detectors

• CO

2

 Detectors

• Pagers and Cellular Phones

• Smart Battery Packs

• PDAs

• Digital  Cameras

• Microcontroller Power

• Consumer Products

• Battery-Powered Data Loggers

Related Literature:

• AN765, “Using Microchip’s Micropower LDOs” 

(DS00765), Microchip Technology Inc., 2007

• AN766, “Pin-Compatible CMOS Upgrades to 

BiPolar LDOs” (DS00766), 
Microchip Technology Inc., 2003

• AN792, “A Method to Determine How Much 

Power a SOT23 Can Dissipate in an Application” 
(DS00792), Microchip Technology Inc., 2001

Description:

The MCP1754/MCP1754S is a family of CMOS low
dropout (LDO) voltage regulators that can deliver up to
150 mA of current while consuming only 56.0 µA of
quiescent current (typical). The input operating range is
specified from 3.6V to 16.0V, making it an ideal choice
for four to six primary cell battery-powered applications,
12V mobile applications and one to three-cell Li-Ion-
powered applications.

The MCP1754/MCP1754S is capable of delivering
150 mA with only 300 mV (typical) of input to output
voltage differential. The output voltage tolerance of the
MCP1754/MCP1754S is typically ±0.2% at +25°C and
±2.0% maximum over the operating junction
temperature range of -40°C to +125°C. Line regulation
is ±0.01% typical at +25°C.

Output voltages available for the MCP1754/MCP1754S
range from 1.8V to 5.5V. The LDO output is stable when
using only 1 µF of output capacitance. Ceramic,
tantalum or aluminum electrolytic capacitors may all be
used for input and output. Overcurrent limit and
overtemperature shutdown provide a robust solution for
any application.

The MCP1754/MCP1754S family introduces a true
current foldback feature. When the load impedance
decreases beyond the MCP1754/MCP1754S load
rating, the output current and voltage will gracefully
foldback towards 30 mA at about 0V output. When the
load impedance decreases and returns to the rated
load, the MCP1754/MCP1754S follows the same
foldback curve as the device comes out of current
foldback.

Package options for the MCP1754S include the
SOT-23A, SOT-89-3, SOT-223-3 and 2x3 DFN-8.

Package options for the MCP1754 include the
SOT-23-5, SOT-223-5, and 2x3 DFN-8.

150 mA, 16V, High-Performance LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

MCP1754/MCP1754S

DS20002276C-page 2

 2011-2013 Microchip Technology Inc.

Package Types – MCP1754S 

Package Types – MCP1754

1

3

2

V

IN

GND V

OUT

1

2

3

V

IN

GND V

OUT

3-Pin SOT-23A

3-Pin SOT-89

GND

    

Tab is connected to GND

8-Lead 2X3 DFN(*)

1

2

3

SOT-223-3

4

GND

V

IN

V

OUT

GND

2

NC

NC

GND

NC

NC

1

2

3

4

8

7

6

5 NC

V

IN

V

OUT

EP

9

* Includes Exposed Thermal Pad (EP); see 

Table 3-2

.

(Note: The 3-lead SOT-223 (DB) is
not a standard package for output
voltages below 3.0V)

1

2

SOT23-5

1

2

3

SOT-223-5

4

5

PIN FUNCTION

 

 1     SHDN

  

5     PWRGD

  

3     GND

  

4     V

OUT

  

2     V

IN

4

3

5

PIN FUNCTION

  

4     PWRGD

 

 2     GND

 

  

1     V

IN

 

 5     V

OUT

  

3     SHDN

Tab is connected to GND

8-Lead 2X3 DFN(*)

3

NC

PWRGD

GND

NC

NC

1

2

3

4

8

7

6

5 SHDN

V

IN

V

OUT

EP

9

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

 2011-2013 Microchip Technology Inc.

DS20002276C-page 3

MCP1754/MCP1754S

Functional Block Diagram – MCP1754S

+

-

MCP1754S

V

IN

V

OUT

GND

+V

IN

Error Amplifier

Voltage
Reference

Overcurrent
Overtemperature

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

MCP1754/MCP1754S

DS20002276C-page 4

 2011-2013 Microchip Technology Inc.

Functional Block Diagram – MCP1754

Typical Application Circuits

EA

+

V

OUT

PMOS

R

f

C

f

I

SNS

Overtemperature

V

REF

Comp

92% of V

REF

T

DELAY

V

IN

Driver w/limit
and SHDN

GND

Soft-Start

Sense

Undervoltage 
Lock Out

VIN

 

Reference

SHDN

SHDN

SHDN

Sensing

(UVLO)

PWRGD

MCP1754

MCP1754S

C

IN

1 µF  Ceramic

C

OUT

1 µF  Ceramic

V

OUT

5.0V

I

OUT

30 mA

V

IN

V

OU

T

12V

+

GN

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

 2011-2013 Microchip Technology Inc.

DS20002276C-page 5

MCP1754/MCP1754S

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, V

IN

..................................................................+

17.6V

VIN, PWRGD, SHDN ..................... (GND-0.3V) to (V

IN

+0.3V)

VOUT .................................................. (GND-0.3V) to (+5.5V)
Internal Power Dissipation ............ Internally-Limited (

Note 6

)

Output Short Circuit Current ................................. Continuous
Storage temperature .....................................-55°C to +150°C
Maximum Junction Temperature .....................165°C (

Note 7

)

Operating Junction Temperature...................-40°C to +150°C
ESD protection on all pins

 kV HBM and   200V MM

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

R

 + 1V, 

Note 1

, I

LOAD

 = 1 mA, 

C

OUT

= 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C, t

r(VIN)

 = 0.5V/µs, SHDN = V

IN

, PWRGD = 10K to V

OUT

.

Boldface type applies for junction temperatures, T

(

Note 7

) of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input/Output Characteristics

Input Operating Voltage

V

IN

3.6

16.0

V

Output Voltage Operating 
Range

V

OUT-RANGE

1.8

5.5

V

Input Quiescent Current

I

q

56

90

µA

I

L

 = 0 mA

Input Quiescent Current for 
SHDN mode

I

SHDN

0.1

5

µA

SHDN = GND

Ground Current

I

GND

150

250

µA

I

LOAD

 = 150 mA

Maximum Output Current

I

OUT

150

mA

Output Soft Current 
Limit

I

OUT_SCL

250

mA

V

IN

 = V

IN(MIN)

, V

OUT

 

 0.1V, 

Current measured 10 ms after load 
is applied

Output Pulse Current 
Limit

I

OUT_PCL

250

mA

Pulse Duration < 100 ms, Duty 
Cycle < 50%, V

OUT

 

 0.1V, 

Note 6

Output Short Circuit 
Foldback Current

I

OUT_SC

30

mA

V

IN

 = V

IN(MIN)

, V

OUT

 = GND

Output Voltage Overshoot on 
Startup

V

OVER

0.5

%V

OUT

V

IN

 = 0 to 16V, I

LOAD

 = 150 mA

Output Voltage Regulation

V

OUT

V

R

-2.0%

V

R

±0.2%

V

R

+2.0%

V

Note 2

V

OUT

 Temperature

Coefficient

TCV

OUT

22

ppm/°C

Note 3

Note

1:

The minimum V

IN

 must meet two conditions: V

IN

3.6V and V

IN

 

V

R

 + V

DROPOUT(MAX)

.

2:

V

R

 is the nominal regulator output voltage when the input voltage V

IN

 = V

Rated

 + V

DROPOUT(MAX)

 or V

IN

 = 3.6V 

(whichever is greater); I

OUT

 = 1 mA. 

3:

TCV

OUT

 = (V

OUT-HIGH

– V

OUT-LOW

) *10

6

/(V

R

*

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below the output 
voltage value that was measured with an applied input voltage of V

IN

 = V

R

 + 1V or V

IN

 = 3.6V (whichever is greater).

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above +150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

MCP1754/MCP1754S

DS20002276C-page 6

 2011-2013 Microchip Technology Inc.

Line Regulation

V

OUT

/

(V

OUT

x

V

IN

)

-0.05

±0.01

+0.05

%/V

V

R

+ 1V  

 V

IN

 

 16V

Load Regulation

V

OUT

/V

OUT

-1.1

-0.4

0

%

I

L

 = 1.0 mA to 150 mA, 

Note 4

Dropout Voltage (

Note 5

)

V

DROPOUT

300

500

mV

I

L

 = 150 mA

Dropout Current

I

DO

50

85

µA

V

IN

 = 0.95V

R

, I

OUT

 = 0 mA

Undervoltage Lockout

Undervoltage Lockout

UVLO

2.95

V

Rising V

IN

Undervoltage Lockout 
Hysteresis

UVLO

HYS

285

mV

Falling V

IN

Shutdown Input

Logic High Input

V

SHDN-HIGH

2.4

V

IN(MAX)

V

Logic Low Input

V

SHDN-LOW

0.0

0.8

V

Shutdown Input Leakage 
Current

SHDN

ILK

0.100

0.500

µA

SHDN = GND

0.500

2.0

SHDN = 16V

Power Good Output

PWRGD Input Voltage 
Operating Range

V

PWRGD_VIN

1.7

V

IN

V

I

SINK

 = 1 mA

PWRGD Threshold Voltage 
(Referenced to V

OUT

)

V

PWRGD_TH

90

92

94

%V

OUT

Falling Edge of V

OUT

PWRGD Threshold 
Hysteresis

V

PWRGD_HYS

2.0

%V

OUT

Rising Edge of V

OUT

PWRGD Output Voltage Low

V

PWRGD_L

0.2

0.6

V

I

PWRGD_SINK

 = 5.0 mA, 

V

OUT

 = 0V

PWRGD Output Sink 
Current

I

PWRGD_L

5.0

mA

V

PWRGD

 

 0.4V

PWRGD Leakage Current

I

PWRGD_LK

40

700

nA

V

PWRGD

 Pullup = 10 k

 to V

IN, 

V

IN

 

= 16V

PWRGD Time Delay

T

PG

100

µs

Rising Edge of V

OUT

R

PULLUP

 = 10 k

Detect Threshold to PWRGD 
Active Time Delay

T

VDET_PWRGD

200

µs

Falling Edge of V

OUT

 after 

Transition from 
V

OUT

 = V

PRWRGD_TH

 + 50 mV, to 

V

PWRGD_TH

 - 50 mV,

R

PULLUP

 = 10k

 to V

IN

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

R

 + 1V, 

Note 1

, I

LOAD

 = 1 mA, 

C

OUT

= 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C, t

r(VIN)

 = 0.5V/µs, SHDN = V

IN

, PWRGD = 10K to V

OUT

.

Boldface type applies for junction temperatures, T

(

Note 7

) of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note

1:

The minimum V

IN

 must meet two conditions: V

IN

3.6V and V

IN

 

V

R

 + V

DROPOUT(MAX)

.

2:

V

R

 is the nominal regulator output voltage when the input voltage V

IN

 = V

Rated

 + V

DROPOUT(MAX)

 or V

IN

 = 3.6V 

(whichever is greater); I

OUT

 = 1 mA. 

3:

TCV

OUT

 = (V

OUT-HIGH

– V

OUT-LOW

) *10

6

/(V

R

*

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below the output 
voltage value that was measured with an applied input voltage of V

IN

 = V

R

 + 1V or V

IN

 = 3.6V (whichever is greater).

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above +150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

 2011-2013 Microchip Technology Inc.

DS20002276C-page 7

MCP1754/MCP1754S

AC Performance

Output Delay From V

IN

 To 

V

OUT

 = 90% V

REG

T

DELAY

240

µs

V

IN

 = 0V to 16V, V

OUT

 = 90% V

R

,

 t

r

 

(VIN)

= 5V/µs,

C

OUT

 = 1 µF, SHDN = V

IN

Output Delay From V

IN

 To 

V

OUT

 > 0.1V

T

DELAY_START

80

µs

V

IN

 = 0V to 16V, V

OUT

 

 0.1V,

 t

r

 

(VIN)

= 5V/µs,

C

OUT

 = 1 µF, SHDN = V

IN

Output Delay From SHDN 
to V

OUT

 = 90% V

REG

T

DELAY_SHDN

160

µs

V

IN

 = 16V, V

OUT

 = 90% V

R

,

C

OUT

 = 1 µF, SHDN = GND to V

IN

Output Noise

e

N

3

µV/(Hz)

1/2

I

L

 = 50 mA, f = 1 kHz, 

C

OUT

 = 1 µF

Power Supply Ripple 
Rejection Ratio

PSRR

72

dB

V

R

 = 5V, f = 1 kHz, I

L

 = 150 mA,

 V

INAC

 = 1V pk-pk, C

IN

 = 0 µF, 

 V

IN

 = V

R

 + 1.5V

Thermal Shutdown 
Temperature

T

SD

150

°C

Note 6

Thermal Shutdown 
Hysteresis

TSD

10

°C

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

R

 + 1V, 

Note 1

, I

LOAD

 = 1 mA, 

C

OUT

= 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C, t

r(VIN)

 = 0.5V/µs, SHDN = V

IN

, PWRGD = 10K to V

OUT

.

Boldface type applies for junction temperatures, T

(

Note 7

) of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note

1:

The minimum V

IN

 must meet two conditions: V

IN

3.6V and V

IN

 

V

R

 + V

DROPOUT(MAX)

.

2:

V

R

 is the nominal regulator output voltage when the input voltage V

IN

 = V

Rated

 + V

DROPOUT(MAX)

 or V

IN

 = 3.6V 

(whichever is greater); I

OUT

 = 1 mA. 

3:

TCV

OUT

 = (V

OUT-HIGH

– V

OUT-LOW

) *10

6

/(V

R

*

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below the output 
voltage value that was measured with an applied input voltage of V

IN

 = V

R

 + 1V or V

IN

 = 3.6V (whichever is greater).

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above +150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

MCP1754/MCP1754S

DS20002276C-page 8

 2011-2013 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Specified Temperature Range

T

A

-40

+125

°C

Operating Temperature Range

T

J

-40

+150

°C

Storage Temperature Range

T

A

-55

+150

°C

Thermal Package Resistance

Thermal Resistance, SOT-223-3

JA

JC


62
15


°C/W

Thermal Resistance, SOT-23A-3

JA

JC


336

110


°C/W

Thermal Resistance, SOT-89-3

JA

JC


153.3

100


°C/W

Thermal Resistance, SOT-223-5

JA

JC


62
15


°C/W

Thermal Resistance, 2X3 DFN

JA

JC


93
26


°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation causes the device operating junction temperature to exceed the 
maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

 2011-2013 Microchip Technology Inc.

DS20002276C-page 9

MCP1754/MCP1754S

2.0

TYPICAL PERFORMANCE CURVES

Note 1:

Unless otherwise indicated

 

V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 1 mA, T

A

 = +25°C,

V

IN

 = V

R

 + 1V or V

IN

 = 3.6V (whichever is greater), SHDN = V

IN

, package = SOT-223.

2:

Junction Temperature (T

J

) is approximated by soaking the device under test to an ambient temperature equal to the

desired junction temperature. The test time is small enough such that the rise in junction temperature over the ambient
temperature is not significant.

FIGURE 2-1:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-2:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-3:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-4:

Ground Current vs. Load 

Current.

FIGURE 2-5:

Quiescent Current vs. 

Junction Temperature.

FIGURE 2-6:

Quiescent Current vs. Input 

Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

40

50

60

70

80

3

4

5

6

7

8

9

10 11 12 13 14 15 16

Quiescent Current (µA)

Input Voltage (V)

V

OUT

= 1.8V

I

OUT

= 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

40

45

50

55

60

65

70

3

5

7

9

11

13

15

Quiescent Current (µA)

Input Voltage (V)

V

OUT

= 3.3V

I

OUT

= 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

0

10

20

30

40

50

60

70

80

1.0

3.0

5.0

7.0

9.0

11.0 13.0 15.0 17.0

Quiescent Current (µA)

Input Voltage (V)

V

OUT

= 5.0V

I

OUT

= 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

40

60

80

100

120

140

160

180

0

20

40

60

80

100

120

140

160

GND Current (µA)

Load Current (mA)

V

OUT

= 5.0V

V

OUT

= 3.3V

V

OUT

= 1.8V

0

10

20

30

40

50

60

70

80

-45

-20

5

30

55

80

105

130

Quiescent Current (µA)

Junction Temperature (°C)

V

OUT

= 5.0V

V

OUT

= 1.8V

V

OUT

= 3.3V

0

10

20

30

40

50

60

70

80

0

2

4

6

8

10

12

14

16

18

Quiescent Current (µA)

Input Voltage (V)

V

OUT

= 5.0V

+25°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002276C-html.html
background image

MCP1754/MCP1754S

DS20002276C-page 10

 2011-2013 Microchip Technology Inc.

Note 1: Unless otherwise indicated

 

V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 1 mA,

T

A

 = +25°C, V

IN

 = V

R

 + 1V or V

IN

 = 3.6V (whichever is greater), SHDN = V

IN

, package = SOT-223.

2: Junction Temperature (T

J

) is approximated by soaking the device under test to an ambient temperature

equal to the desired junction temperature. The test time is small enough such that the rise in junction
temperature over the ambient temperature is not significant.

FIGURE 2-7:

Output Voltage vs. Input 

Voltage.

FIGURE 2-8:

Output Voltage vs. Input 

Voltage.

FIGURE 2-9:

Output Voltage vs. Input 

Voltage.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Output Voltage vs. Load 

Current.

FIGURE 2-12:

Output Voltage vs. Load 

Current.

1.800

1.802

1.804

1.806

1.808

1.810

1.812

1.814

3

4

5

6

7

8

9 10 11 12 13 14 15 16

Output V

o

ltage 

(V)

Input Voltage (V)

V

OUT

= 1.8V

+25°C

+130°C

-45°C

0°C

+90°C

3.290

3.292

3.294

3.296

3.298

3.300

3.302

3.304

3.306

3.308

3.310

4

5

6

7

8

9

10 11 12 13 14 15 16

Output V

o

ltage 

(V)

Input Voltage (V)

V

OUT

= 3.3V

+25°C

+130°C

-45°C

0°C

+90°C

5.000

5.004

5.008

5.012

5.016

5.020

6

7

8

9

10

11

12

13

14

15

16

Output V

o

ltage 

(V)

Input Voltage (V)

V

OUT

= 5.0V

+25°C

+130°C

-45°C

0°C

+90°C

1.790

1.795

1.800

1.805

1.810

1.815

0

25

50

75

100

125

150

Output V

o

ltage 

(V)

Load Current (mA)

V

OUT

= 1.8V

25°C

90°C

130°C

0°C

-45°C

3.280

3.285

3.290

3.295

3.300

3.305

3.310

0

25

50

75

100

125

150

Output V

o

ltage 

(V)

Load Current (mA)

V

OUT

= 3.3V

25°C

90°C

0°C

-45°C

130°C

4.980

4.985

4.990

4.995

5.000

5.005

5.010

5.015

5.020

0

25

50

75

100

125

150

Output V

o

ltage 

(V)

Load Current (mA)

V

OUT

= 5.0V

25°C

90°C

0°C

-45°C

130°C

Maker
Microchip Technology Inc.
Datasheet PDF Download