MCP1710 - Ultra Low Quiescent Current LDO Regulator Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

 2012-2015 Microchip Technology Inc.

DS20005158D-page 1

MCP1710

Features

• Ultra Low 20 nA (typical) Quiescent Current
• Ultra Low Shutdown Supply Current: 0.1 nA (typical)
• 200 mA Output Current Capability for V

R

≤ 3.5V

• 100 mA Output Current Capability for V

R

 3.5V

• Input Operating Voltage Range: 2.5V to 5.5V
• Standard Output Voltages (V

R

):

- 1.2V, 1.5V, 1.8V, 2.0V, 2.5V, 3.0V, 3.3V, 4.2V

• Low Dropout Voltage: 450 mV Maximum at 

200 mA

• Stable with 1.0 µF Ceramic Output Capacitor
• Overcurrent Protection 
• Space-Saving, 8-Lead Plastic 2 x 2 VDFN

Applications

• Energy Harvesting
• Long Life Battery-Powered Applications
• Smart Cards
• Ultra Low Consumption “Green” Products
• Portable Electronics

Description

The MCP1710 is a 200 mA for V

≤ 3.5V, 100 mA for

V

R

 

 3.5V, Low Dropout (LDO) linear regulator that

provides high-current and low-output voltages, while
maintaining an ultra low 20 nA of quiescent current
during device operation. In addition, the MCP1710 can
be shut down for an even lower 0.1 nA (typical) supply
current draw. The MCP1710 comes in eight standard,
fixed output voltage versions: 1.2V, 1.5V, 1.8V, 2V,
2.5V, 3V, 3.3V and 4.2V. The 200 mA output current
capability, combined with the low-output voltage
capability, make the MCP1710 a good choice for new
ultra long life LDO applications that have high-current
demands, but require ultra low-power consumption
during Sleep states.
The MCP1710 is stable using ceramic output
capacitors that inherently provide lower output noise,
and reduce the size and cost of the entire regulator
solution. Only 1 µF (2.2 µF recommended) of output
capacitance is needed to stabilize the LDO.
The MCP1710 device’s ultra low quiescent and
shutdown current allows it to be paired with other ultra
low-current draw devices, such as Microchip’s XLP
technology devices, for a complete ultra low-power
solution.

Package Type

MCP1710

2x2 VDFN*

NC

V

OUT

NC

V

IN

FB

1

2
3
4

8

7
6
5 NC

SHDN

GND

*

 Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

EP

9

Ultra Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

MCP1710

DS20005158D-page 2

 2012-2015 Microchip Technology Inc.

Typical Application

Functional Block Diagram

V

IN

V

OUT

FB

GND

LO

A

D

C

IN

C

OUT

SHDN

+

V

IN

SHDN

Voltage

Reference

Overcurrent

SHDN

GND

V

OUT

FB

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

 2012-2015 Microchip Technology Inc.

DS20005158D-page 3

MCP1710

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

I

nput voltage, V

IN

................................................................................................................................................6.0V

Maximum voltage on any pin – GND ..................................................................................................... 0.3V to 6.0V
Output short-circuit duration............................................................................................ ............................Unlimited
Storage temperature ....................................................................................................................... -65°C to +150°C
Maximum junction temperature, T

J

................................................................................................................+150°C

Operating junction temperature, T

J

....................................................................................................-40°C to +85°C

ESD protection on all pins (HBM) ................................................................................................................... ≥ 2 kV

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This 

is a stress rating only and functional operation of the device at those or any other conditions above those indicated 
in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended 
periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V

IN

= V

R

+ 800 mV (

Note 1

), I

OUT

= 1 mA,  C

IN

= C

OUT

= 2.2 µF 

(X7R Ceramic), T

A

= +25°C. Boldface type applies for junction temperatures T

of -40°C to +85°C (

Note 4

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Operating Voltage

V

IN

2.7

5.5

V

2.5

5.5

V

V

R

< 2.5V

Output Voltage Range

V

OUT

1.2

4.2

V

Input Quiescent Current

I

Q

20

nA

V

IN

= 2.5V to 5.5V, 

I

OUT

= 0

Input Quiescent Current 
for SHDN Mode

I

SHDN

0.1

nA

SHDN = GND

Maximum Continuous 
Output Current

I

OUT

200

mA

V

R

≤ 3.5V

100

mA

V

R

 3.5V

Current Limit

I

OUT

250

mA

V

OUT

= 0.9 x V

R

,

V

R

≤ 3.5V

175

mA

V

OUT

= 0.9 x V

R

,

V

R

 3.5V

Output Voltage Regulation 

V

OUT

V

R

– 4%

V

R

+ 4%

V

V

R

< 1.8V (

Note 2

)

V

R

– 2%

V

R

+ 2%

V

V

R

≥ 1.8V (

Note 2

)

Line Regulation

V

OUT

/

(V

OUT

x

V

IN

)

0.5

4

%

V

IN

 = V

IN(Min)

to 5.5V,

V

R

≥ 1.8V, I

OUT

= 50 mA 

(

Note 1

)

4

%

V

IN

 = V

IN(Min)

to 5.5V,

V

R

< 1.8V, I

OUT

= 50 mA 

(

Note 1

)

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 V

IN(Min)

 and V

IN

 V

R

 V

DROPOUT(Max).

2:

V

R

 is the nominal regulator output voltage. V

R

= 1.2V, 2.5V, etc. 

3:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% 
below its nominal value that was measured with an input voltage of V

IN

= V

OUT(Max)

+ V

DROPOUT(Max)

.

4:

The junction temperature is approximated by soaking the device under test at an ambient temperature 
equal to the desired junction temperature. The test time is small enough such that the rise in the junction 
temperature over the ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

MCP1710

DS20005158D-page 4

 2012-2015 Microchip Technology Inc.

Load Regulation

V

OUT

/V

OUT

1

3

%

V

IN

= (V

IN(Min)

+ V

IN(Max)

)/2,

I

OUT

= 0.02 mA to 200 mA 

(

Note 1

)

Dropout Voltage

V

DROPOUT

450

mV

I

OUT

= 200 mA,

V

R

≤ 3.5V (

Note 3

)

400

mV

I

OUT

= 100 mA,

V

R

> 3.5V (

Note 3

)

Shutdown Input
Logic High Input 

V

SHDN-HIGH

70

%V

IN

V

IN

= V

IN(Min)

 to 5.5V (

Note 1

)

Logic Low Input 

V

SHDN-LOW

30

%V

IN

V

IN

= V

IN(Min)

 to 5.5V (

Note 1

)

AC Performance
Output Delay From SHDN

T

OR

30

ms

SHDN = GND to V

IN

,

V

OUT

= GND to 95% V

R

 

Output Noise

e

N

0.37

µV/

Hz I

OUT

= 50 mA,  f = 1 kHz, 

C

OUT

= 2.2 µF (X7R Ceramic),

V

R

= 2.5V

Power Supply Ripple
Rejection Ratio

PSRR

22

dB

f = 100 Hz, I

OUT

= 10 mA, 

V

INAC

= 200 mV  pk-pk,

C

IN

= 0 µF

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise noted, V

IN

= V

R

+ 800 mV, (

Note 1

), I

OUT

= 1 mA,  C

IN

= C

OUT

= 2.2 µF 

(X7R Ceramic), T

A

= +25°C. Boldface type applies for junction temperatures, T

of -40°C to +85°C (

Note 4

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction 
Temperature Range

T

J

-40

+85

°C

Steady state

Maximum Junction 
Temperature

T

J

+150

°C

Transient

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances
Thermal Resistance, 
2 x 2  VDFN-8

JA

73.1

°C/W

JEDEC

®

 standard FR4 board with 

1 oz copper and thermal vias

JC

10.7

°C/W

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, V

IN

= V

R

+ 800 mV (

Note 1

), I

OUT

= 1 mA,  C

IN

= C

OUT

= 2.2 µF 

(X7R Ceramic), T

A

= +25°C. Boldface type applies for junction temperatures T

of -40°C to +85°C (

Note 4

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 V

IN(Min)

 and V

IN

 V

R

 V

DROPOUT(Max).

2:

V

R

 is the nominal regulator output voltage. V

R

= 1.2V, 2.5V, etc. 

3:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 3% 
below its nominal value that was measured with an input voltage of V

IN

= V

OUT(Max)

+ V

DROPOUT(Max)

.

4:

The junction temperature is approximated by soaking the device under test at an ambient temperature 
equal to the desired junction temperature. The test time is small enough such that the rise in the junction 
temperature over the ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

 2012-2015 Microchip Technology Inc.

DS20005158D-page 5

MCP1710

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-1:

Output Voltage vs. Input 

Voltage (V

R

= 1.2V).

FIGURE 2-2:

Output Voltage vs. Input 

Voltage (V

R

= 2.5V).

FIGURE 2-3:

Output Voltage vs. Input 

Voltage (V

R

= 4.2V).

FIGURE 2-4:

Output Voltage vs. Load 

Current (V

R

= 1.2V).

FIGURE 2-5:

Output Voltage vs. Load 

Current (V

R

= 2.5V).

FIGURE 2-6:

Output Voltage vs. Load 

Current (V

R

= 4.2V).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

1.210

1.215

1.220

1.225

1.230

1.235

1.240

tput V

o

ltage 

(V)

T

J

= +25°C

I

OUT

= 0.1 mA

T

J

= -40°C

1.195

1.200

1.205

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ou

t

Input Voltage (V)

T

J

= +85°C

2.500

2.502

2.504

2.506

2.508

2.510

tput V

o

ltage 

(V)

T

J

= +25°C

I

OUT

= 0.1 mA

T

J

= -40°C

2.494

2.496

2.498

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ou

t

Input Voltage (V)

T

J

= +85°C

4.240

4.244

4.248

4.252

u

tput V

o

ltage 

(V)

T

J

= -40°C

T

85°C

T

J

= +25°C

I

OUT

= 0.1 mA

4.232

4.236

4.50

4.75

5.00

5.25

5.50

O

u

Input Voltage (V)

T

J

= +85°C

1 180

1.185

1.190

1.195

1.200

1.205

tput V

o

ltage 

(V)

T

J

= +25°C

T

J

= +85°C

V

IN

= 2.5V

1.170

1.175

1.180

0

50

100

150

200

Ou

t

Load Current (mA)

T

J

= -40°C

2.4950

2.4975

2.5000

2.5025

u

tput V

o

ltage 

(V)

T

J

= +25°C

T

J

= +85°C

V

IN

= 3.3V

T

J

= -40°C

2.4900

2.4925

0

20

40

60

80

100

O

u

Load Current (mA)

4.21

4.22

4.23

4.24

4.25

u

tput V

o

ltage 

(V)

T

J

= +25°C

T

J

= +85°C

V

IN

= 4.15V

T

J

= -40°C

4.19

4.20

0

20

40

60

80

100

O

u

Load Current (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

MCP1710

DS20005158D-page 6

 2012-2015 Microchip Technology Inc.

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-7:

Dropout Voltage vs. Load 

Current (V

R

= 2.5V).

FIGURE 2-8:

Dropout Voltage vs. Load 

Current (V

R

= 4.2V).

FIGURE 2-9:

Noise vs. Frequency.

FIGURE 2-10:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 1.2V).

FIGURE 2-11:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 2.5V).

FIGURE 2-12:

Power Supply Ripple 

Rejection vs. Frequency (V

R

= 4.2V).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0

20

40

60

80

100

Dropout V

o

ltage (V)

Load Current (mA)

T

J

= +85°C

T

J

= -40°C

T

J

= +25°C

V

OUT

= 2.5V

0.08

0.10

0.12

0.14

0.16

0.18

0.20

p

out V

o

ltage (V)

T

J

= +85°C

T

J

= -40°C

T

J

= +25°C

V

OUT

= 4.2V

0.00

0.02

0.04

0.06

0

20

40

60

80

100

Dro

p

Load Current (mA)

ut Noise 

(μV/

¥Hz)

V

IN 

= 5.2V

V

OUT 

= 4.2V

I

OUT

= 50 mA

0.1

1

10

V

IN 

= 3.5V

V

OUT 

= 2.5V

I

OUT

= 50 mA

V

IN 

= 2.8V

V

OUT 

= 1.8V

I

OUT

= 50 mA

Outp

u

Frequency (kHz)

0.01

0.1

0.01

0.1

1

10

100

1000

-60

-50

-40

-30

-20

-10

0

10

P

SRR (dB)

V

IN

= 2.5V

I

OUT

= 10 mA 

-100

-90

-80

-70

0.01

0.1

1

10

100

1000

P

Frequency (kHz)

-60

-50

-40

-30

-20

-10

0

10

PSRR (dB)

V

IN

= 3.5V

I

OUT

= 10 mA 

-100

-90

-80

-70

0.01

0.1

1

10

100

1000

Frequency (kHz)

-60

-50

-40

-30

-20

-10

0

10

PSRR (dB)

V

IN

= 5.2V

I

OUT

= 10 mA 

-100

-90

-80

-70

0.01

0.1

1

10

100

1000

Frequency (kHz)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

 2012-2015 Microchip Technology Inc.

DS20005158D-page 7

MCP1710

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-13:

Dynamic Load Step 

(V

R

= 1.2V).

FIGURE 2-14:

Dynamic Load Step 

(V

R

= 2.5V).

FIGURE 2-15:

Dynamic Load Step 

(V

R

= 4.2V).

FIGURE 2-16:

Dynamic Line Step 

(V

R

= 1.2V).

FIGURE 2-17:

Dynamic Line Step 

(V

R

= 2.5V).

FIGURE 2-18:

Dynamic Line Step 

(V

R

= 4.2V).

V

OUT

 = 1.2V

I

OUT

 = 100 nA to 10 mA

CH1 (AC) 200 mV/div

CH2 10 mA/div

200 µs/div

CH1

CH2

V

OUT

 = 2.5V

I

OUT

 = 100 nA to 10 mA

AC1M 200 mV/div

10 mA/div

200 µs/div

V

OUT

 = 4.2V

I

OUT

 = 100 nA to 10 mA

AC1M 200 mV/div

10 mA/div

200 µs/div

I

OUT

 = 10 mA

V

IN

 = 2.5V to 3.5V

2V/div

1V/div

V

OUT

 = 1.2V

10 ms/div

I

OUT

 = 10 mA

V

IN

 = 3.5V to 4.5V

2V/div

1V/div

V

OUT

 = 2.5V

10 ms/div

I

OUT

 = 10 mA

V

IN

 = 4.5V to 5.5V

2V/div

2V/div

V

OUT

 = 4.2V

10 ms/div

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

MCP1710

DS20005158D-page 8

 2012-2015 Microchip Technology Inc.

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-19:

Start-up from V

IN

 

(V

R

= 1.2V).

FIGURE 2-20:

Start-up from V

IN

 

(V

R

= 2.5V).

FIGURE 2-21:

Start-up from V

IN

 

(V

R

= 4.2V).

FIGURE 2-22:

Start-up from SHDN 

(V

R

= 1.2V).

FIGURE 2-23:

Start-up from SHDN 

(V

R

= 2.5V).

FIGURE 2-24:

Start-up from SHDN 

(V

R

= 4.2V).

I

OUT

 = 100 nA

V

IN

 = 2.5V

2V/div

2V/div

V

OUT

 = 1.2V

10 ms/div

I

OUT

 = 100 nA

V

IN

 = 3.5V

2V/div

2V/div

V

OUT

 = 2.5V

10 ms/div

I

OUT

 = 100 nA

V

IN

 = 5.2V

2V/div

2V/div

V

OUT

 = 4.2V

10 ms/div

I

OUT

 = 10 mA

SHDN Signal

2V/div

1V/div

V

OUT

 = 1.2V

5 ms/div

I

OUT

 = 10 mA

SHDN Signal

2V/div

1V/div

V

OUT

 = 2.5V

5 ms/div

I

OUT

 = 10 mA

SHDN Signal

2V/div

1V/div

V

OUT

 = 4.2V

5 ms/div

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

 2012-2015 Microchip Technology Inc.

DS20005158D-page 9

MCP1710

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-25:

Load Regulation vs. 

Junction Temperature (V

R

= 1.2V).

FIGURE 2-26:

Load Regulation vs. 

Junction Temperature (V

R

= 2.5V).

FIGURE 2-27:

Load Regulation vs. 

Junction Temperature (V

R

= 4.2V).

FIGURE 2-28:

Line Regulation vs. Junction 

Temperature.

FIGURE 2-29:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-30:

Ground Current vs. Junction 

Temperature.

0.50

1.00

1.50

2.00

d

 Regulation (%

)

V

IN

= 2.5V

V

IN

= 4.0V

I

OUT 

= 0 mA to 100 mA

-0.50

0.00

-40

-15

10

35

60

85

Loa

d

Junction Temperature (°C)

V

IN

= 5.5V

-0.10

0.00

0.10

0.20

0.30

d

 Regulation (%

)

V

IN

= 2.8V

I

OUT 

= 0 mA to 100 mA

V

IN

= 4.0V

-0.40

-0.30

-0.20

-40

-15

10

35

60

85

Loa

d

Junction Temperature (°C)

V

IN

= 5.5V

0.01

0.02

0.03

0.04

0.05

d

 Regulation (%

)

V

IN

= 5.0V

I

OUT 

= 0 mA to 100 mA

V

IN

= 4.5V

V

IN

= 5.5V

-0.01

0.00

0.01

-40

-15

10

35

60

85

Loa

d

Junction Temperature (°C)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-40

-15

10

35

60

85

Line Regulation (%

/V)

Junction Temperature (°C)

I

OUT 

= 1 mA

V

OUT

= 4.2V

V

OUT

= 2.5V

V

OUT

= 1.2V

20

25

30

35

40

45

50

c

ent Current (nA)

T

J

= +85°C

T

J

= -40°C

V

OUT

= 1.2V

0

5

10

15

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Quies

c

Input Voltage (V)

T

J

= +25°C

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

-40

-15

10

35

60

85

Ground Current (µA)

Junction Temperature (°C)

V

IN

= 2.5V

V

OUT

= 1.2V

I

OUT

= 0.1 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005158d-html.html
background image

MCP1710

DS20005158D-page 10

 2012-2015 Microchip Technology Inc.

Note: Unless otherwise indicated,

 

C

OUT

= 2.2 µF Ceramic (X7R), C

IN

= 2.2 µF Ceramic (X7R), I

OUT

= 1 mA,

Temperature = +25°C, V

IN

= V

R

+ 0.8V, SHDN = 1 M

 pull-up to V

IN

.

FIGURE 2-31:

Ground Current vs. Load 

Current.

60

80

100

120

140

160

u

nd Current (µA)

T

J

= +85°C

T

J

= +25°C

T

J

= -40°C

V

IN

= 4.0V

V

OUT

= 1.2V

0

20

40

0

20

40

60

80

100

Gro

u

Load Current (mA)

Maker
Microchip Technology Inc.
Datasheet PDF Download