MCP1702 250 mA Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

 2010 Microchip Technology Inc.

DS22008E-page 1

MCP1702

Features:

• 2.0 µA Quiescent Current (typical)

• Input Operating Voltage Range: 2.7V to 13.2V

• 250 mA Output Current for Output Voltages 

 2.5V

• 200 mA Output Current for Output Voltages < 2.5V

• Low Dropout (LDO) Voltage

- 625 mV typical @ 250 mA (V

OUT

 = 2.8V)

• 0.4% Typical Output Voltage Tolerance

• Standard Output Voltage Options:

- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V,

3.0V, 3.3V, 4.0V, 5.0V

• Output Voltage Range 1.2V to 5.5V in 0.1V 

Increments (50 mV increments available upon 
request)

• Stable with 1.0 µF to 22 µF Output Capacitor

• Short-Circuit Protection

• Overtemperature Protection

Applications:

• Battery-powered Devices

• Battery-powered Alarm Circuits

• Smoke Detectors

• CO

2

 Detectors

• Pagers and Cellular Phones

• Smart Battery Packs

• Low Quiescent Current Voltage Reference

• PDAs

• Digital  Cameras

• Microcontroller Power

• Solar-Powered Instruments

• Consumer Products

• Battery Powered Data Loggers

Related Literature:

• AN765, “Using Microchip’s Micropower LDOs”

DS00765, Microchip Technology Inc., 2002

• AN766, “Pin-Compatible CMOS Upgrades to 

Bipolar LDOs”, DS00766, 
Microchip Technology Inc., 2002

• AN792, “A Method to Determine How Much 

Power a SOT-23 Can Dissipate in an Application”
DS00792, Microchip Technology Inc., 2001

Description:

The MCP1702 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 250 mA of
current while consuming only 2.0 µA of quiescent
current (typical). The input operating range is specified
from 2.7V to 13.2V, making it an ideal choice for two to
six primary cell battery-powered applications, 9V
alkaline and one or two cell Li-Ion-powered
applications.

The MCP1702 is capable of delivering 250 mA with
only 625 mV (typical) of input to output voltage
differential (V

OUT

= 2.8V). The output voltage tolerance

of the MCP1702 is typically ±0.4% at +25°C and ±3%
maximum over the operating junction temperature
range of -40°C to +125°C. Line regulation is ±0.1%
typical at +25°C.

Output voltages available for the MCP1702 range from
1.2V to 5.0V. The LDO output is stable when using only
1 µF of output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit and
overtemperature shutdown provide a robust solution
for any application.

Package options include the SOT-23A, SOT-89-3, and
TO-92.

Package Types

1

3

2

V

IN

GND V

OUT

MCP1702

1

2

3

V

IN

GND

V

OUT

MCP1702

3-Pin SOT-23A

3-Pin SOT-89

V

IN

3-Pin TO-92

1 2

V

OUT

V

IN

GND

Bottom

View

3

250 mA Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

MCP1702

DS22008E-page 2

 2010 Microchip Technology Inc.

Functional Block Diagrams

Typical Application Circuits

+

-

MCP1702

V

IN

V

OUT

GND

+V

IN

Error Amplifier

Voltage

Reference

Overcurrent

Overtemperature

MCP1702

V

IN

C

IN

1 µF  Ceramic

C

OUT

1 µF  Ceramic

V

OUT

V

IN

3.3V

I

OUT

50 mA

GND

V

OUT

9V

Battery

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

 2010 Microchip Technology Inc.

DS22008E-page 3

MCP1702

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

...............................................................................+14.5V

All inputs and outputs w.r.t.  .............(V

SS

-0.3V) to (V

IN

+0.3V)

Peak Output Current ...................................................500 mA

Storage temperature .....................................-65°C to +150°C

Maximum Junction Temperature ................................... 150°C

ESD protection on all pins (HBM;MM)

 4 kV;  400V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

Note 1

I

LOAD

 = 100 µA, C

OUT

 = 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C.

Boldface type applies for junction temperatures, T

of -40°C to +125°C. 

(

Note 7

)

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input / Output Characteristics

Input Operating Voltage

V

IN

2.7

13.2

V

Note 1

Input Quiescent Current

I

q

2.0

5

µA

I

L

 = 0 mA

Maximum Output Current

I

OUT_mA

250

mA

For V

R

 

 2.5V

50

100

mA

For V

R

 < 2.5V, V

IN

 

 2.7V

100

130

mA

For V

R

 < 2.5V, V

IN

 

 2.95V

150

200

mA

For V

R

 < 2.5V, V

IN

 

 3.2V

200

250

mA

For V

R

 < 2.5V, V

IN

 

 3.45V

Output Short Circuit Current

I

OUT_SC

400

mA

V

IN

 = V

IN(MIN)

 (

Note 1

), V

OUT

 = GND,

Current (average current) measured 
10 ms after short is applied.

Output Voltage Regulation

V

OUT

V

R

-3.0%

V

R

±0.4%

V

R

+3.0%

V

Note 2

V

R

-2.0%

V

R

±0.4%

V

R

+2.0%

V

V

R

-1.0%

V

R

±0.4%

V

R

+1.0%

V

1% Custom

V

OUT

 Temperature 

Coefficient

TCV

OUT

50

ppm/°C

Note 3

Line Regulation

V

OUT

/

(V

OUT

X

V

IN

)

-0.3

±0.1

+0.3

%/V

(V

OUT(MAX)

 + V

DROPOUT(MAX)

)

 V

IN

 

 13.2V, (

Note 1

)

Load Regulation

V

OUT

/V

OUT

-2.5

±1.0

+2.5

%

I

L

 = 1.0 mA to 250 mA for V

R

 

 2.5V

I

L

 = 1.0 mA to 200 mA for V

R

 

 2.5V, 

V

IN

 = 3.45V (

Note 4

)

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

2.7V and V

IN

 

V

OUT(MAX) 

+ V

DROPOUT(MAX)

.

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The 

input voltage V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or V

IN

 = 2.7V (whichever is greater); I

OUT

 = 100 µA. 

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained 
junction temperatures above 150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

MCP1702

DS22008E-page 4

 2010 Microchip Technology Inc.

Dropout Voltage
(

Note 1

Note 5

)

V

DROPOUT

330

650

mV

I

L

 = 250 mA, V

R

 = 5.0V

525

725

mV

I

L

 = 250 mA, 3.3V 

 V

R

 < 5.0V

625

975

mV

I

L

 = 250 mA, 2.8V 

 V

R

 < 3.3V

750

1100

mV

I

L

 = 250 mA, 2.5V 

 V

R

 < 2.8V

mV

V

R

 < 2.5V, See Maximum Output 

Current Parameter

Output Delay Time

T

DELAY

1000

µs

V

IN

 = 0V to 6V, V

OUT

 = 90% V

R

 

R

L

 = 50

 resistive

Output Noise

e

N

8

µV/(Hz)

1/2

I

L

 = 50 mA, f = 1 kHz, C

OUT

 = 1 µF

Power Supply Ripple 
Rejection Ratio

PSRR

44

dB

f = 100 Hz, C

OUT

 = 1 µF, I

L

 = 50 mA, 

V

INAC

 = 100 mV pk-pk, C

IN

 = 0 µF, 

V

R

= 1.2V

Thermal Shutdown 
Protection

T

SD

150

°C

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

Note 1

I

LOAD

 = 100 µA, C

OUT

 = 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C.

Boldface type applies for junction temperatures, T

of -40°C to +125°C. 

(

Note 7

)

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

2.7V and V

IN

 

V

OUT(MAX) 

+ V

DROPOUT(MAX)

.

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The 

input voltage V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or V

IN

 = 2.7V (whichever is greater); I

OUT

 = 100 µA. 

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained 
junction temperatures above 150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

 2010 Microchip Technology Inc.

DS22008E-page 5

MCP1702

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Operating Junction Temperature Range

T

J

-40

+125

°C

Steady State

Maximum Junction Temperature

T

J

+150

°C

Transient

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistance (

Note 2

)

Thermal Resistance, 3L-SOT-23A

JA

336

°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

JC

110

°C/W

Thermal Resistance, 3L-SOT-89

JA

153.3

°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

JC

100

°C/W

Thermal Resistance, 3L-TO-92

JA

131.9

°C/W

JC

66.3

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained 

junction temperatures above 150°C can impact the device reliability.

2:

Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging 
information.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

MCP1702

DS22008E-page 6

 2010 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated: V

R

 = 2.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

.

Note: Junction Temperature (T

J

) is approximated by soaking the device under test to an ambient temperature equal to the desired junction

temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.

FIGURE 2-1:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-2:

Quiescent Current vs.Input 

Voltage.

FIGURE 2-3:

Quiescent Current vs.Input 

Voltage.

FIGURE 2-4:

Ground Current vs. Load 

Current.

FIGURE 2-5:

Ground Current vs. Load 

Current.

FIGURE 2-6:

Quiescent Current vs. 

Junction Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.00

1.00

2.00

3.00

4.00

5.00

2

4

6

8

10

12

14

Input Voltage (V)

Q

u

iesc

en

t C

u

rr

en

A

)

V

OUT

 = 1.2V

+25°C

+130°C

-45°C

0°C

+90°C

0.00

1.00

2.00

3.00

4.00

5.00

3

5

7

9

11

13

Input Voltage (V)

Quie

s

c

ent C

u

rr

en

t (µA)

V

OUT

 = 2.8V

+25°C

+130°C

-45°C

0°C

+90°C

1.00

2.00

3.00

4.00

5.00

6

7

8

9

10

11

12

13

14

Input Voltage (V)

Q

u

ie

sc

ent

 C

u

rr

e

nt

 (

µ

A

)

V

OUT

 = 5.0V

+25°C

+130°C

-45°C

0°C

+90°C

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0

40

80

120

160

200

Load Current (mA)

GND Cu

rre

n

t (µ

A

)

Temperature = +25°C

V

OUT

 = 1.2V

V

IN

 = 2.7V

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0

50

100

150

200

250

Load Current (mA)

GND Cu

rre

n

t (µ

A)

Temperature = +25°C

V

OUT

 = 5.0V

V

IN

 = 6.0V

V

OUT

 = 2.8V

V

IN

 = 3.8V

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-45

-20

5

30

55

80

105

130

Junction Temperature (°C)

Qu

ie

sc

e

n

t Cu

rre

n

t (

µ

A)

I

OUT

 = 0 mA

V

OUT

 = 5.0V

V

IN

 = 6.0V

V

OUT

 = 1.2V

V

IN

 = 2.7V

V

OUT

 = 2.8V

V

IN

 = 3.8V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

 2010 Microchip Technology Inc.

DS22008E-page 7

MCP1702

Note: Unless otherwise indicated: V

R

 = 2.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

.

FIGURE 2-7:

Output Voltage vs. Input 

Voltage.

FIGURE 2-8:

Output Voltage vs. Input 

Voltage.

FIGURE 2-9:

Output Voltage vs. Input 

Voltage.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Output Voltage vs. Load 

Current.

FIGURE 2-12:

Output Voltage vs. Load 

Current.

1.18

1.19

1.20

1.21

1.22

1.23

1.24

2

4

6

8

10

12

14

Input Voltage (V)

O

u

tput

 Volt

age

 (V)

V

OUT

 = 1.2V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

2.77

2.78

2.79

2.80

2.81

2.82

2.83

2.84

2.85

3

4

5

6

7

8

9

10 11 12 13 14

Input Voltage (V)

O

u

tput V

o

lta

g

(V)

V

OUT

 = 2.8V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

4.96

4.98

5.00

5.02

5.04

5.06

6

7

8

9

10

11

12

13

14

Input Voltage (V)

O

u

tput

 Volt

age

 (V)

V

OUT

 = 5.0V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

1.18

1.19

1.20

1.21

1.22

1.23

0

20

40

60

80

100

Load Current (mA)

O

u

tput

 Volt

age

 (V)

V

OUT

 = 1.2V

+25°C

+130°C

-45°C

0°C

+90°C

2.77

2.78

2.79

2.80

2.81

2.82

2.83

0

50

100

150

200

250

Load Current (mA)

O

u

tput V

o

lta

g

(V)

V

OUT

 = 2.8V

+25°C

+130°C

-45°C

0°C

+90°C

4.96

4.97

4.98

4.99

5.00

5.01

5.02

5.03

5.04

0

50

100

150

200

250

Load Current (mA)

O

u

tput

 Volt

age

 (V)

V

OUT

 = 5.0V

+25°C

+130°C

-45°C

0°C

+90°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

MCP1702

DS22008E-page 8

 2010 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 2.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

.

FIGURE 2-13:

Dropout Voltage vs. Load 

Current.

FIGURE 2-14:

Dropout Voltage vs. Load 

Current.

FIGURE 2-15:

Dropout Voltage vs. Load 

Current.

FIGURE 2-16:

Dynamic Line Response.

FIGURE 2-17:

Dynamic Line Response.

FIGURE 2-18:

Short Circuit Current vs. 

Input Voltage.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

100

120

140

160

180

200

Load Current (mA)

D

ropou

t Vol

tage

 (V)

V

OUT

 = 1.8V

+25°C

+130°C

-45°C

0°C

+90°C

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0

25

50

75 100 125 150 175 200 225 250

Load Current (mA)

D

ropou

t Vol

tage

 (V)

V

OUT

 = 2.8V

+25°C

+130°C

+0°C

-45°C

+90°C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

25

50

75 100 125 150 175 200 225 250

Load Current (mA)

D

ropou

t Vol

tage

 (V)

V

OUT

 = 5.0V

+25°C

+130°C

+0°C

-45°C

+90°C

0.00

100.00

200.00

300.00

400.00

500.00

600.00

4

6

8

10

12

14

Input Voltage (V)

Short Circuit Current (mA)

V

OUT

 = 2.8V

R

OUT

 < 0.1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

 2010 Microchip Technology Inc.

DS22008E-page 9

MCP1702

Note: Unless otherwise indicated: V

R

 = 2.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

.

FIGURE 2-19:

Load Regulation vs. 

Temperature.

FIGURE 2-20:

Load Regulation vs. 

Temperature.

FIGURE 2-21:

Load Regulation vs. 

Temperature.

FIGURE 2-22:

Line Regulation vs. 

Temperature.

FIGURE 2-23:

Line Regulation vs. 

Temperature.

FIGURE 2-24:

Line Regulation vs. 

Temperature.

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

-45

-20

5

30

55

80

105

130

Temperature (°C)

Lo

ad R

egul

atio

(%

)

V

OUT

 = 1.2V

I

LOAD

 = 0.1 mA to 200 mA

V

IN

 = 4V

V

IN

 = 13.2V

V

IN

 = 6V

V

IN

 = 12V

V

IN

 = 10V

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

-45

-20

5

30

55

80

105

130

Temperature (°C)

Lo

ad R

egul

atio

(%

)

V

OUT

 = 2.8V

I

LOAD

 = 1 mA to 250 mA

V

IN

 = 3.8V

V

IN

 = 13.2V

V

IN

 = 10V

V

IN

 = 6V

-0.10

0.00

0.10

0.20

0.30

0.40

-45

-20

5

30

55

80

105

130

Temperature (°C)

Lo

ad R

egul

atio

(%

)

V

OUT

 = 5.0V

I

LOAD

 = 1 mA to 250 mA

V

IN

 = 6V

V

IN

 = 13.2V

V

IN

 = 8V

V

IN

 = 10V

0.00

0.04

0.08

0.12

0.16

0.20

-45

-20

5

30

55

80

105

130

Temperature (°C)

Line

 R

e

gu

lati

on 

(%/

V

)

V

OUT

 = 1.2V

V

IN

 = 2.7V to 13.2V

1 mA

100 mA

0 mA

0.00

0.04

0.08

0.12

0.16

0.20

-45

-20

5

30

55

80

105

130

Temperature (°C)

Li

ne R

egula

tion

 (%

/V)

V

OUT

 = 2.8V

V

IN

 = 3.8V to 13.2V

200 mA

100 mA

0 mA

250 mA

0.06

0.08

0.10

0.12

0.14

0.16

-45

-20

5

30

55

80

105

130

Temperature (°C)

Li

ne R

egula

tion

 (%

/V)

V

OUT

 = 5.0V

V

IN

 = 6.0V to 13.2V

200 mA

100 mA

0 mA

250 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22008E-html.html
background image

MCP1702

DS22008E-page 10

 2010 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 2.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

.

FIGURE 2-25:

Power Supply Ripple 

Rejection vs. Frequency.

FIGURE 2-26:

Power Supply Ripple 

Rejection vs. Frequency.

FIGURE 2-27:

Output Noise vs. Frequency.

FIGURE 2-28:

Power Up Timing.

FIGURE 2-29:

Dynamic Load Response.

FIGURE 2-30:

Dynamic Load Response.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (kHz)

PS

RR

 (d

B)

V

R

=1.2V

C

OUT

=1.0 μF ceramic X7R

V

IN

=2.7V

C

IN

=0 μF

I

OUT

=1.0 mA

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (kHz)

PS

RR

 (d

B)

V

R

=5.0V

C

OUT

=1.0 μF ceramic X7R

V

IN

=6.0V

C

IN

=0 μF

I

OUT

=1.0 mA

0.001

0.01

0.1

1

10

100

0.01

0.1

1

10

100

1000

Frequency (kHz)

Noise (μV/Hz)

V

R

=5.0V, V

IN

=6.0V

I

OUT

=50 mA

V

R

=2,8V, V

IN

=3.8V

V

R

=1.2V, V

IN

=2.7V

Maker
Microchip Technology Inc.