MCP1663 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

 2015 Microchip Technology Inc.

DS20005406A-page 1

MCP1663

Features

• 36V,  400 mΩ Integrated Switch
• Up to 92% Efficiency
• Output Voltage Range: up to 32V
• 1.8A Peak Input Current Limit:

- I

OUT

> 375 mA @ 5.0V V

IN

, 12V V

OUT

- I

OUT

> 200 mA @ 3.3V V

IN

, 12V V

OUT

- I

OUT

> 150 mA @ 4.2V V

IN

, 24V V

OUT

• Input Voltage Range: 2.4V to 5.5V
• Undervoltage Lockout (UVLO):

- UVLO @ V

IN

 Rising: 2.3V, typical

- UVLO @ V

IN

 Falling: 1.85V, typical

• No Load Input Current: 250 µA, typical
• Sleep mode with 0.3 µA Typical Shutdown 

Quiescent Current

• PWM Operation with Skip Mode: 500 kHz
• Feedback Voltage Reference: V

FB

= 1.227V

• Cycle-by-Cycle Current Limiting
• Internal Compensation
• Inrush Current Limiting and Internal Soft Start
• Output Overvoltage Protection (OVP) in the event 

of:
- Feedback pin shorted to GND
- Disconnected feedback divider

• Overtemperature Protection
• Easily Configurable for SEPIC, Cuk or Flyback 

Topologies

• Available Packages:

- 5-Lead SOT-23
- 8-Lead 2x3 TDFN

Applications

• Two and Three-Cell Alkaline, Lithium Ultimate and 

NiMH/NiCd Portable Products

• Single-Cell Li-Ion to 5V, 12V or 24V Converters
• LCD Bias Supply for Portable Applications
• Camera Phone Flash
• Portable Medical Equipment
• Hand-Held Instruments

General Description

The MCP1663 device is a compact, high-efficiency,
fixed-frequency, non-synchronous step-up DC-DC
converter which integrates a 36V, 400 mΩ NMOS
switch. It provides a space-efficient high-voltage
step-up power supply solution for applications powered
by either two-cell or three-cell alkaline, Ultimate
Lithium, NiCd, NiMH, one-cell Li-Ion or Li-Polymer
batteries.
The integrated switch is protected by the 1.8A
cycle-by-cycle inductor peak current limit operation.
There is an output overvoltage protection which turns
off switching in case the feedback resistors are
accidentally disconnected or the feedback pin is
short-circuited to GND.
Low-voltage technology allows the regulator to start-up
without high inrush current or output voltage overshoot
from a low-voltage input. The device features a UVLO
which avoids start-up and operation with low inputs or
discharged batteries for two cell-powered applications. 
For standby applications (EN = GND), the device stops
switching, enters sleep mode and consumes 0.3 µA
(typical) of input current.
MCP1663 is easy to use and allows creating classic
boost, SEPIC or flyback DC-DC converters within a
small Printed Circuit Board (PCB) area. All
compensation and protection circuitry is integrated to
minimize the number of external components. Ceramic
input and output capacitors are used.

Package Types

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

SW

EN

V

IN

GND

MCP1663

SOT-23

V

FB

MCP1663

 2x3 TDFN*

1

2

3

5

4

SW

S

GND

NC

P

GND

NC

1

2
3
4

8

7
6
5 V

IN

EN

V

FB

EP

9

High-Voltage Integrated Switch PWM Boost Regulator with UVLO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

MCP1663

DS20005406A-page 2

 2015 Microchip Technology Inc.

Typical Applications

Maximum Output Current vs. Input Voltage

V

IN

GND

V

FB

V

OUT

12V, 250 mA

C

OUT

4.7 - 10 µF

C

IN

4.7 - 10 µF

L

4.7 µH

SW

1.05 MΩ

120   Ω

EN

+

-

1 X LI-ION

ON

OFF

MCP1663

R

TOP

R

BOT

V

IN

3.6V to 4.5V

D

PMEG2010

3 X ALKALINE

OR

BAT

T

E

RY

V

IN

GND

V

FB

V

OUT

24V, 100 mA

C

OUT

10 - 22 µF

C

IN

10 µF

L

10 µH

SW

1.05 MΩ

56   Ω

EN

+

-

BA

T

T

E

R

Y

MCP1663

R

TOP

R

BOT

V

IN

3.6V to 4.5V

D

MBRM140

1 X LI-ION

3 X ALKALINE

OR

ON

OFF

0

50

100

150

200

250

300

350

400

450

2.4 2.7

3

3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4

I

OUT

(mA)

V

IN

(V)

V

OUT

= 12V

V

OUT

= 24V

k

k

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

 2015 Microchip Technology Inc.

DS20005406A-page 3

MCP1663

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

SW

 

– GND .....................................................................+36V

EN, V

IN

 – GND...............................................................+6.0V

V

FB

.................................................................................+1.3V

Power Dissipation  ....................................... Internally Limited
Storage Temperature ....................................-65°C to +150°C
Ambient Temperature with Power Applied ....-40°C to +125°C
Operating Junction Temperature...................-40°C to +150°C
ESD Protection On All Pins:

HBM ................................................................. 4 kV
MM ..................................................................400V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

DC AND AC CHARACTERISTICS

Electrical Specifications: 

Unless otherwise specified, all limits apply for typical values at ambient temperature 

T

A

= +25°C,  V

IN

= 3.3V, I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic, L = 4.7 µH.

Boldface

 specifications apply over the controlled T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Voltage Range

V

IN

2.4

5.5

V

Note 1

Undervoltage Lockout 
(UVLO)

UVLO

START

2.3

V

V

IN

 rising,

I

OUT

= 1 mA  resistive  load

UVLO

STOP

1.85

V

V

IN

 falling,

I

OUT

= 1 mA  resistive  load

Output Voltage Adjust Range

V

OUT

32

V

Note 1

Maximum Output Current

I

OUT

200

mA

3.3V  V

IN

, 12V V

OUT 

(

Note 4

)

375

mA

5.0V V

IN

, 12V V

OUT 

(

Note 4

)

150

mA

4.2V V

IN

, 24V V

OUT 

(

Note 4

)

Feedback Voltage

V

FB

1.190

1.227

1.264

V

V

FB

 Accuracy

-3

3

%

Feedback Input Bias Current

I

VFB

0.025

µA

No Load Input Current

I

IN0

250

µA

Device switching, no load,
3.3V V

IN

, 12V V

OUT

 (

Note 2

Shutdown Quiescent Current

I

QSHDN

300

nA

EN = GND,
feedback divider current not 
included (

Note 3

)

Peak Switch Current Limit

I

Lmax

1.8

A

Note 4

NMOS Switch Leakage

I

NLK

0.4

µA

V

IN

= V

SW

= 5V;  V

OUT

= 5.5V 

V

EN

= V

FB

= GND

NMOS Switch ON Resistance

R

DS(ON)

0.4

V

IN

= 5V,  V

OUT

= 12V, 

I

OUT

= 100 mA  (

Note 4

)

Note 1:

Minimum input voltage in the range of V

IN

 (V

IN

≤ 5.5V < V

OUT

) depends on the maximum duty cycle 

(DC

MAX

) and on the output voltage (V

OUT

), according to the boost converter equation:

V

INmin

= V

OUT

x (1 – DC

MAX

). Recommended (V

OUT

 - V

IN

) > 1V for boost applications.

2:

I

IN0

 varies with input and output voltage (

Figure 2-8

). I

IN0

 is measured on the V

IN

 pin when the device is 

switching (EN = V

IN

), at no load, with R

TOP

= 120 k

 and R

BOT

= 1.05 MΩ.

3:

I

QSHDN

 is measured on the V

IN

 pin when the device is not switching (EN = GND), at no load, with the 

feedback resistors (R

TOP

+ R

BOT

) disconnected from V

OUT

.

4:

Determined by characterization, not production tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

MCP1663

DS20005406A-page 4

 2015 Microchip Technology Inc.

Line Regulation

|(

V

FB

/V

FB

)/

V

IN

|

0.05

0.5

%/V

V

IN

= 3V to 5V,

I

OUT

= 20 mA,  V

OUT

= 12.0V

Load Regulation

|

V

FB

/V

FB

|

0.5

1.5

%

I

OUT

= 20 mA to 125 mA,

V

IN

= 3.3V, V

OUT

= 12.0V

Maximum Duty Cycle

DC

MAX

88

90

%

Note 4

Switching Frequency

f

SW

425

500

575

kHz

±15%

EN Input Logic High

V

IH

85

%  of  V

IN

I

OUT

= 1 mA

EN Input Logic Low

V

IL

7.5

% of V

IN

I

OUT

= 1 mA

EN Input Leakage Current

I

ENLK

0.025

µA

V

EN

= 5V

Soft-Start Time

t

SS

3

ms

T

A

, EN Low-to-High,

90% of V

OUT

Thermal Shutdown
Die Temperature

T

SD

150

°C

Die Temperature Hysteresis

T

SDHYS

15

°C

TEMPERATURE SPECIFICATIONS

Electrical Specifications: 

Unless otherwise specified, all limits apply for typical values at ambient temperature 

T

A

= +25°C,  V

IN

= 3.3V, I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic, L = 4.7 µH and 5-lead 

SOT-23 package.
Boldface

 specifications apply over the controlled T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction Temperature 
Range

T

J

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature

T

J

+150

°C

Transient

Package Thermal Resistances
Thermal Resistance, 5LD-SOT-23

JA

201.0

°C/W

Thermal Resistance, 8LD-2x3 TDFN

JA

52.5

°C/W

DC AND AC CHARACTERISTICS (CONTINUED)

Electrical Specifications: 

Unless otherwise specified, all limits apply for typical values at ambient temperature 

T

A

= +25°C,  V

IN

= 3.3V, I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic, L = 4.7 µH.

Boldface

 specifications apply over the controlled T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

Minimum input voltage in the range of V

IN

 (V

IN

≤ 5.5V < V

OUT

) depends on the maximum duty cycle 

(DC

MAX

) and on the output voltage (V

OUT

), according to the boost converter equation:

V

INmin

= V

OUT

x (1 – DC

MAX

). Recommended (V

OUT

 - V

IN

) > 1V for boost applications.

2:

I

IN0

 varies with input and output voltage (

Figure 2-8

). I

IN0

 is measured on the V

IN

 pin when the device is 

switching (EN = V

IN

), at no load, with R

TOP

= 120 k

 and R

BOT

= 1.05 MΩ.

3:

I

QSHDN

 is measured on the V

IN

 pin when the device is not switching (EN = GND), at no load, with the 

feedback resistors (R

TOP

+ R

BOT

) disconnected from V

OUT

.

4:

Determined by characterization, not production tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

 2015 Microchip Technology Inc.

DS20005406A-page 5

MCP1663

2.0

TYPICAL PERFORMANCE CURVES

Note: 

Unless otherwise indicated, V

IN

= 3.3V,  I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic,

L = 4.7 µH,  R

TOP

 

= 120 kΩ and R

BOT

 

= 1.05 MΩ, T

A

= 25°C.

FIGURE 2-1:

Undervoltage Lockout 

(UVLO) vs. Ambient Temperature.

FIGURE 2-2:

V

FB

 Voltage vs. Ambient 

Temperature and V

IN.

FIGURE 2-3:

Maximum Output Current 

vs. V

IN

 (V

OUT

 in Regulation with Max. 5% Drop).

FIGURE 2-4:

9.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-5:

12.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-6:

24.0V V

OUT

 Efficiency vs. 

I

OUT

.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

1.7

1.8

1.9

2

2.1

2.2

2.3

-40 -25 -10

5

20

35

50

65

80

95 110 125

UVLO Thresholds (V)

Ambient Temperature (°C)

UVLO Start 

UVLO Stop 

1.210

1.215

1.220

1.225

1.230

-40 -25 -10

5

20 35 50 65 80 95 110 125

Feedback V

o

ltage  

(V)

Ambient Temperature (°C)

0

100

200

300

400

500

600

700

800

2.3

2.7

3.1

3.5

3.9

4.3

4.7

5.1

5.5

I

OUT

(mA)

V

IN

(V)

V

OUT

= 12V

L = 4.7 µH

V

OUT

= 9.0V

L = 4.7 µH

V

OUT

= 24V

L = 10 µH

20

30

40

50

60

70

80

90

100

0.1

1

10

100

1000

Efficiency

 (%

)

I

OUT

(mA)

V

OUT

= 9.0V

V

IN

= 3.0V

V

IN

= 2.3V

V

IN

= 4.0V

V

IN

= 5.5V

20

30

40

50

60

70

80

90

100

0.1

1

10

100

1000

Efficiency

 (%

)

I

OUT

(mA)

V

OUT

= 12.0V

V

IN

= 4.0V

V

IN

= 5.5V

V

IN

= 3.0V

V

IN

= 2.3V

0

10

20

30

40

50

60

70

80

90

100

0.1

1

10

100

1000

Efficiency

 (%

)

I

OUT

(mA)

V

OUT

= 24V

V

IN

= 5.5V

V

IN

= 3.0V V

IN

= 4.0V

L = 10 µH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

MCP1663

DS20005406A-page 6

 2015 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN

= 3.3V,  I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic,

L = 4.7 µH,  T

A

= 25°C.

FIGURE 2-7:

Inductor Peak Current Limit 

vs. Input Voltage.

FIGURE 2-8:

No Load Input Current, I

IN0

 

vs. V

IN

 (EN = V

IN

).

FIGURE 2-9:

Shutdown Quiescent 

Current,

 

I

QSHDN

 vs. V

IN

 (EN = GND).

FIGURE 2-10:

No Load Input Current,

 

I

IN0

 

vs. Ambient Temperature.

FIGURE 2-11:

f

SW

 vs. Ambient 

Temperature.

FIGURE 2-12:

PWM Pulse Skipping Mode 

Threshold.

1

1.2

1.4

1.6

1.8

2

2.4 2.7

3

3.3

3.6

3.9

4.2

4.5

4.8

5.1 5.4

Inductor Peak Current  (A)

Input Voltage (V)

V

OUT

= 24V

V

OUT

= 12V

0

30

60

90

120

150

180

210

240

270

300

1.4 1.8 2.2 2.6

3

3.4 3.8 4.2 4.6

5

5.4

I

Q

PWM Mode (µA)

Input Voltage (V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.8

2.2

2.6

3

3.4

3.8

4.2

4.6

5

5.4

I

Q

Shutdow

n Mode 

(µA)

Input Voltage (V)

V

OUT

= 6.0V

V

OUT

= 12.0V

V

OUT

= 32.0V

Note: Without FB Resistor Divider Current

0

200

400

600

800

1000

1200

1400

1600

-40 -25 -10

5

20 35 50 65 80 95 110 125

I

Q

PWM Mode (µA)

Ambient Temperature (°C)

V

IN 

= 3.0V

V

IN

= 5.5V

V

OUT

= 12V

V

IN

= 2.3V

425

450

475

500

525

550

575

-40 -25 -10

5

20

35

50

65

80

95 110 125

Sw

itching Frequency

 (kHz)

Ambient Temperature (°C)

V

IN

= 3.5V

I

OUT

= 150 mA

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0

1

2

3

4

5

6

7

8

9

10

V

IN

(V)

I

OUT

(mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

 2015 Microchip Technology Inc.

DS20005406A-page 7

MCP1663

Note: 

Unless otherwise indicated, V

IN

= 3.3V,  I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic,

L = 4.7 µH,  T

A

= 25°C.

FIGURE 2-13:

Enable Threshold vs. Input 

Voltage.

FIGURE 2-14:

N-Channel Switch R

DSON

 

vs. V

IN

.

FIGURE 2-15:

 12.0V V

OUT

 Light Load 

PWM Mode Waveforms.

FIGURE 2-16:

 High-Load PWM Mode 

Waveforms.

FIGURE 2-17:

12.0V Start-Up by Enable.

FIGURE 2-18:

12.0V Start-Up 

(V

IN

= V

ENABLE

).

0

10

20

30

40

50

60

70

80

90

100

2.3

2.6

2.9

3.2

3.5

3.8

4.1

4.4

4.7

5

Enable Thresholds (%

 of 

V

IN

)

Input Voltage (V)

EN V

IL

EN V

IH

I

OUT 

= 1 mA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2.4

2.8

3.2

3.6

4

4.4

4.8

5.2

Sw

itch R

DS(ON)

(Ohms)

Input Voltage (V)  

I

OUT 

= 100 mA

V

IN 

= 5V

2 µs/div

V

OUT

20 mV/div, AC Coupled,  20 MHz BW

I

OUT

= 5 mA

V

SW

5 V/div

I

L

100 mA/div

1 µs/div

V

OUT

50 mV/div, AC Coupled
20 MHz BW

I

OUT

= 100 mA

V

SW

5 V/div

I

L

500 mA/div

V

OUT

5 V/div

I

OUT

= 15 mA

V

EN

5 V/div

I

L

500 mA/div

800 µs/div

V

IN

5 V/div

V

OUT

5 V/div

I

OUT

= 15 mA

V

SW

5 V/div

V

IN

2 V/div

400 µs/div

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

MCP1663

DS20005406A-page 8

 2015 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN

= 3.3V,  I

OUT

= 20 mA,  V

OUT

= 12V,  C

IN

= C

OUT

= 10 µF, X7R ceramic,

L = 4.7 µH,  T

A

= 25°C.

FIGURE 2-19:

12.0V V

OUT

 Load Transient 

Waveforms.

FIGURE 2-20:

12.0V V

OUT

 Line Transient 

Waveforms.

2 ms/div

V

OUT

200 mV/div, AC Coupled

I

OUT

20 mA/div

Step from 20 mA to 50 mA

800 us/div

V

OUT

100 mV/div, AC Coupled

V

IN

3 V/div

Step from 3.3V to 5.0V

I

OUT

= 60 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

 2015 Microchip Technology Inc.

DS20005406A-page 9

MCP1663

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

3.1

Feedback Voltage Pin (V

FB

)

The V

FB

 pin is used to provide output voltage regulation

by using a resistor divider. The V

FB

 voltage is 1.227V

typical.

3.2

Signal Ground Pin (S

GND

)

The signal ground pin is used as a return for the
integrated reference voltage and error amplifier. The
signal ground and power ground must be connected
externally in one point.

3.3

Switch Node Pin (SW)

Connect the inductor from the input voltage to the SW
pin. The SW pin carries inductor current, which is 1.8A
peak typically. The integrated N-Channel switch drain
is internally connected to the SW node.

3.4

Not Connected (NC)

This is an unconnected pin.

3.5

Power Supply Input Voltage Pin 
(V

IN

)

Connect the input voltage source to V

IN

. The input

source must be decoupled from GND with a 4.7 µF
minimum capacitor.

3.6

Power Ground Pin (P

GND

)

The power ground pin is used as a return for the
high-current N-Channel switch. The signal ground and
power ground must be connected externally in one
point.

3.7

Enable Pin (EN)

The EN pin is a logic-level input used to enable or
disable device switching and lower quiescent current
while disabled. A logic high (>85% of V

IN

) will enable

the regulator output. A logic low (<7.5% of V

IN

) will

ensure that the regulator is disabled.

3.8

Exposed Thermal Pad (EP)

There is no internal electrical connection between the
Exposed Thermal Pad (EP) and the S

GND

 and P

GND

pins. They must be connected to the same potential on
the PCB.

3.9

Ground Pin (GND)

The ground or return pin is used for circuit ground
connection. The length of the trace from the input cap
return, the output cap return and the GND pin must be
as short as possible to minimize noise on the GND pin.
The 5-lead SOT-23 package uses a single ground pin.

TABLE 3-1:

PIN FUNCTION TABLE

MCP1663

2x3 TDFN

MCP1663

SOT-23

Symbol

Description

1

3

V

FB

Feedback Voltage Pin

2

S

GND

Signal Ground Pin (TDFN only)

3

1

SW

Switch Node, Boost Inductor Input Pin

4, 6

NC

Not Connected

5

5

V

IN

Input Voltage Pin

7

P

GND

Power Ground Pin (TDFN only)

8

4

EN

Enable Control Input Pin

9

EP

Exposed Thermal Pad (EP); must be connected to Ground.
(TDFN only)

2

GND

Ground Pin (SOT-23 only)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005406A-html.html
background image

MCP1663

DS20005406A-page 10

 2015 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download