MCP1640/B/C/D Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

 2010-2015 Microchip Technology Inc.

DS20002234D-page 1

MCP1640/B/C/D

Features

• Up to 96% Typical Efficiency

• 800 mA Typical Peak Input Current Limit:

- I

OUT 

> 100 mA @ 1.2V V

IN

, 3.3V V

OUT

- I

OUT 

> 350 mA @ 2.4V V

IN

, 3.3V V

OUT

- I

OUT

 > 350 mA @ 3.3V V

IN

, 5.0V V

OUT

• Low Start-Up Voltage: 0.65V, typical 3.3V V

OUT 

@ 1 mA

• Low Operating Input Voltage: 0.35V, typical 

3.3V

OUT

 @ 1 mA

• Adjustable Output Voltage Range: 2.0V to 5.5V

• Maximum Input Voltage 

 V

OUT

 < 5.5V

• Automatic PFM/PWM Operation (MCP1640/C):

- PFM Operation Disabled (MCP1640B/D)

- PWM Operation: 500 kHz

• Low Device Quiescent Current: 19 µA, typical 

PFM Mode (not switching)

• Internal Synchronous Rectifier

• Internal Compensation

• Inrush Current Limiting and Internal Soft Start

• Selectable, Logic Controlled Shutdown States:

- True Load Disconnect Option (MCP1640/B)

- Input to Output Bypass Option (MCP1640C/D)

• Shutdown Current (All States): < 1 µA

• Low Noise, Anti-Ringing Control

• Overtemperature Protection

• Available Packages:

- 6-Lead SOT-23

- 8-Lead 2 x 3 mm DFN

Applications

• One, Two and Three Cell Alkaline and NiMH/NiCd 

Portable Products

• Single-Cell Li-Ion to 5V Converters

• Li Coin Cell Powered Devices

• Personal Medical Products

• Wireless Sensors

• Handheld Instruments

• GPS Receivers

• Bluetooth Headsets

• +3.3V to +5.0V Distributed Power Supply

General Description

The MCP1640/B/C/D is a compact, high-efficiency,
fixed frequency, synchronous step-up DC-DC con-
verter. It provides an easy-to-use power supply solution
for applications powered by either single-cell, two-cell,
or three-cell alkaline, NiCd, NiMH, and single-cell Li-Ion
or Li-Polymer batteries.

Low-voltage technology allows the regulator to start-up
without high inrush current or output voltage overshoot
from a low 0.65V input. High efficiency is accomplished
by integrating the low resistance N-Channel Boost
switch and synchronous P-Channel switch. All
compensation and protection circuitry is integrated to
minimize the number of external components. For
standby applications, the MCP1640 consumes only
19 µA while operating at no load, and provides a true
disconnect from input to output while in Shutdown
(EN = GND). Additional device options are available by
operating in PWM-Only mode and connecting input to
output while the device is in Shutdown.

The “true” load disconnect mode provides input-to-out-
put isolation while the device is disabled by removing
the normal boost regulator diode path from input-to-
output. The Input-to-Output Bypass mode option con-
nects the input to the output using the integrated low
resistance P-Channel MOSFET, which provides a low
bias voltage for circuits operating in Deep Sleep mode.
Both options consume less than 1 µA of input current.

Output voltage is set by a small external resistor
divider. Two package options are available, 6-Lead
SOT-23 and 8-Lead 2 x 3 mm DFN.

Package Types

MCP1640

8-Lead 2 x 3 DFN*

P

GND

S

GND

EN

V

OUTS

V

OUTP

1

2

3

4

8

7

6

5 SW

V

IN

V

FB

EP

9

4

1

2

3

6 V

IN

V

FB

SW

GND

EN

5 V

OUT

MCP1640

6-Lead SOT-23

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

0.65V Start-Up Synchronous Boost Regulator

with True Output Disconnect or Input/Output Bypass Option

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

MCP1640/B/C/D

DS20002234D-page 2

 2010-2015 Microchip Technology Inc.

Typical Application

Efficiency vs. I

OUT

 for 3.3V

OUT

40.0

60.0

80.0

100.0

0.1

1.0

10.0

100.0

1000.0

Output Current (mA)

E

ffi

ci

e

n

cy

 (%

)

V

IN

 = 0.8V

V

IN

 = 1.2V

V

IN

 = 2.5V

V

IN

GND

V

FB

SW

V

IN

 

0.9V to 1.7V

V

OUT

3.3V @ 100 mA

C

OUT

10 µF

C

IN

4.7 µF

L

1

4.7 µH

V

OUT

+

-

976 k

562 k

AL

KAL

IN

E

V

IN

P

GND

V

FB

SW

V

IN

 

3.0V to 4.2V

V

OUT

5.0V @ 300 mA

C

OUT

10 µF

C

IN

4.7 µF

L

1

4.7 µH

V

OUTS

+

-

976 k

309 k

V

OUTP

S

GND

LI-

ION

EN

EN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

 2010-2015 Microchip Technology Inc.

DS20002234D-page 3

MCP1640/B/C/D

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

EN, V

FB

, V

IN,

 V

SW

, V

OUT

 - GND ......................... +6.5V

EN, V

FB

.... <maximum of V

OUT

 or V

IN

 > (GND –  0.3V)

Output Short-Circuit Current ...................... Continuous
Output Current Bypass Mode........................... 400 mA
Power Dissipation  ............................ Internally Limited
Storage Temperature ......................... -65°C to +150°C
Ambient Temp. with Power Applied...... -40°C to +85°C
Operating Junction Temperature........ -40°C to +125°C
ESD Protection On All Pins:

HBM........................................................ 3 kV
MM......................................................... 300V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

DC CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V

IN

 = 1.2V, C

OUT

 = C

IN

 = 10 µF, L = 4.7 µH, V

OUT

= 3.3V, 

I

OUT

= 15 mA,  T

A

 = +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Characteristics

Minimum Start-Up Voltage

V

IN

0.65

0.8

V

Note 1

Minimum Input Voltage After 
Start-Up

V

IN

0.35

V

Note 1

Output Voltage Adjust Range

V

OUT

2.0

5.5

V

V

OUT

 

 V

IN

Note 2

Maximum Output Current

I

OUT

150

mA

1.2V V

IN

, 2.0V V

OUT

150

mA

1.5V V

IN

, 3.3V V

OUT

350

mA

3.3V V

IN

, 5.0V V

OUT

Feedback Voltage

V

FB

1.175

1.21

1.245

V

Feedback Input Bias Current

I

VFB

10

pA

Quiescent Current – PFM 
Mode

I

QPFM

19

30

µA

Measured at V

OUT 

= 4.0V; 

EN = V

IN

, I

OUT

 = 0 mA; 

Note 3

Quiescent Current – PWM 
Mode

I

QPWM

220

µA

Measured at V

OUT 

= 4.0V; 

EN = V

IN,

 I

OUT

 = 0 mA; 

Note 3

Quiescent Current – Shutdown

I

QSHDN

0.7

2.3

µA

V

OUT

 = EN = GND; 

Includes N-Channel and 
P-Channel Switch Leakage

NMOS Switch Leakage

I

NLK

0.3

µA

V

IN 

= V

SW 

= 5V;

V

OUT 

= 5.5V 

V

EN 

= V

FB 

= GND

PMOS Switch Leakage

I

PLK

0.05

µA

V

IN 

= VS

= GND; 

V

OUT 

= 5.5V

Note 1:

3.3 k

 resistive load, 3.3V

OUT 

(1 mA).

2:

For V

IN

 > V

OUT

, V

OUT

 will not remain in regulation.

3:

I

QOUT

 is measured at V

OUT

; V

OUT

 is externally supplied with a voltage higher than the nominal 3.3V output 

(device is not switching); no load; V

IN

 quiescent current will vary with boost ratio. V

IN

 quiescent current 

can be estimated by: (I

QPFM

 * (V

OUT

/V

IN

)), (I

QPWM

 * (V

OUT

/V

IN

)).

4:

Peak current limit determined by characterization, not production tested.

5:

220

 resistive load, 3.3V

OUT 

(15 mA).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

MCP1640/B/C/D

DS20002234D-page 4

 2010-2015 Microchip Technology Inc.

NMOS Switch On Resistance

R

DS(ON)N

0.6

V

IN

 = 3.3V, I

SW

 = 100 mA

PMOS Switch On Resistance

R

DS(ON)P

0.9

V

IN

 = 3.3V, I

SW

 = 100 mA

NMOS Peak Switch Current 
Limit

I

N(MAX)

600

850

mA

Note 4

V

OUT

 Accuracy

V

OUT

%

-3

+3

%

Includes Line and Load 
Regulation; V

IN 

= 1.5V

Line Regulation

V

OUT

/V

OUT

)

/

V

IN

|

-1

0.01

1

%/V

V

IN 

= 1.5V to 3V

I

OUT 

= 25 mA

Load Regulation

V

OUT

/V

OUT

|

-1

0.01

1

%

I

OUT 

= 25 mA to 100 mA;

V

IN

 = 1.5V

Maximum Duty Cycle

DC

MAX

88

90

%

Switching Frequency

f

SW

425

500

575

kHz

EN Input Logic High

V

IH

90

%of  V

IN

I

OUT 

= 1 mA

EN Input Logic Low

V

IL

20

%of V

IN

I

OUT 

= 1 mA

EN Input Leakage Current

I

ENLK

0.005

µA

V

EN

 = 5V

Soft-Start Time

t

SS

750

µS

EN Low-to-High, 
90% of V

OUT

Note 5

Thermal Shutdown Die 
Temperature

T

SD

150

C

Die Temperature Hysteresis

T

SDHYS

10

C

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, V

IN

 = 1.2V, C

OUT

 = C

IN

 = 10 µF, L = 4.7 µH, V

OUT

= 3.3V, I

OUT

= 15 mA.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Operating Junction Temperature 
Range

T

J

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature

T

J

+150

°C

Transient

Package Thermal Resistances

Thermal Resistance, 6LD-SOT-23

JA

190.5

°C/W

Thermal Resistance, 8LD-2x3 DFN

JA

75

°C/W

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V

IN

 = 1.2V, C

OUT

 = C

IN

 = 10 µF, L = 4.7 µH, V

OUT

= 3.3V, 

I

OUT

= 15 mA,  T

A

 = +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

3.3 k

 resistive load, 3.3V

OUT 

(1 mA).

2:

For V

IN

 > V

OUT

, V

OUT

 will not remain in regulation.

3:

I

QOUT

 is measured at V

OUT

; V

OUT

 is externally supplied with a voltage higher than the nominal 3.3V output 

(device is not switching); no load; V

IN

 quiescent current will vary with boost ratio. V

IN

 quiescent current 

can be estimated by: (I

QPFM

 * (V

OUT

/V

IN

)), (I

QPWM

 * (V

OUT

/V

IN

)).

4:

Peak current limit determined by characterization, not production tested.

5:

220

 resistive load, 3.3V

OUT 

(15 mA).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

 2010-2015 Microchip Technology Inc.

DS20002234D-page 5

MCP1640/B/C/D

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, 

V

IN

= EN = 1.2V, C

OUT

= C

IN

= 10 µF,  L

 

= 4.7 µH,  V

OUT

= 3.3V,  I

LOAD

= 15 mA,  T

A

= +25°C.

FIGURE 2-1:

V

OUT

 I

Q

 vs. Ambient 

Temperature in PFM Mode.

FIGURE 2-2:

V

OUT

 I

Q

 vs. Ambient 

Temperature in PWM Mode.

FIGURE 2-3:

Maximum I

OUT

 vs. V

IN

 After 

Start-Up, V

OUT

 10% Below Regulation Point.

FIGURE 2-4:

2.0V V

OUT

 PFM/PWM Mode 

Efficiency vs. I

OUT

.

FIGURE 2-5:

3.3V V

OUT

 PFM/PWM Mode 

Efficiency vs. I

OUT

.

FIGURE 2-6:

5.0V V

OUT

 PFM/PWM Mode 

Efficiency vs. I

OUT

.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

-40

-25

-10

5

20

35

50

65

80

IQ PFM 

Mode 

(µA)

Ambient Temperature (°C)

V

OUT

= 2.0V

V

OUT

= 5.0V

V

OUT

= 3.3V

V

IN

= 1.2V

150

175

200

225

250

275

300

-40

-25

-10

5

20

35

50

65

80

I

Q

PWM Mode (µA)

Ambient Temperature (°C)

V

OUT

= 3.3V

V

OUT

= 5.0V

V

IN

= 1.2V

0

100

200

300

400

500

600

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I

OUT

(mA)

V

IN

(V)

V

OUT

= 3.3V

V

OUT

= 2.0V

V

OUT

= 5.0V

0

10

20

30

40

50

60

70

80

90

100

0.01

0.1

1

10

100

1000

Efficiency

 (%

)

I

OUT

(mA)

V

OUT

= 2.0V

V

IN

= 0.8V

V

IN

= 1.2V

V

IN

= 1.6V

PWM / PFM

PWM Only

0

10

20

30

40

50

60

70

80

90

100

0.01

0.1

1

10

100

1000

Efficiency

 (%

)

I

OUT

(mA)

V

OUT

= 3.3V

V

IN

= 0.8V

V

IN

= 1.2V

V

IN

= 2.5V

PWM / PFM

PWM Only

0

10

20

30

40

50

60

70

80

90

100

0.01

0.1

1

10

100

1000

Efficiency

 (%

I

OUT

 (mA) 

V

OUT

 = 5.0V 

V

IN

 = 1.2V 

V

IN

 = 1.8V 

V

IN

 = 3.6V 

PWM / PFM 

PWM Only 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

MCP1640/B/C/D

DS20002234D-page 6

 2010-2015 Microchip Technology Inc.

Note: Unless otherwise indicated, 

V

IN

= EN = 1.2V, C

OUT

= C

IN

= 10 µF,  L

 

= 4.7 µH,  V

OUT

= 3.3V,  I

LOAD

= 15 mA,  T

A

= +25°C.

FIGURE 2-7:

3.3V V

OUT

 vs. Ambient 

Temperature.

FIGURE 2-8:

3.3V V

OUT

 vs. Ambient 

Temperature.

FIGURE 2-9:

3.3V V

OUT

 vs. V

IN

.

FIGURE 2-10:

Minimum Start-Up and 

Shutdown V

IN

 into Resistive Load vs. I

OUT

.

FIGURE 2-11:

F

OSC

 vs. Ambient 

Temperature.

FIGURE 2-12:

PWM Pulse-Skipping Mode 

Threshold vs. I

OUT

.

3.285

3.29

3.295

3.3

3.305

3.31

3.315

3.32

3.325

3.33

-40

-25

-10

5

20

35

50

65

80

V

OUT

(V)

Ambient Temperature (°C)

I

OUT

= 15 mA

V

IN

= 0.8V

V

IN

= 1.8V

V

IN

= 1.2V

3.26

3.28

3.30

3.32

3.34

3.36

3.38

-40

-25

-10

5

20

35

50

65

80

V

OUT

(V)

Ambient Temperature (°C)

I

OUT

= 15 mA

V

IN

= 1.5V

I

OUT

= 50 mA

I

OUT

= 5 mA

3.20

3.24

3.28

3.32

3.36

3.40

0.8

1.2

1.6

2

2.4

2.8

V

OUT

(V)

V

IN

(V)

T

A

= -40°C

I

OUT

= 5 mA

T

A

= +25°C

T

A

= +85°C

0.25

0.40

0.55

0.70

0.85

1.00

0

20

40

60

80

100

V

IN

(V)

I

OUT

(mA)

Startup

Shutdown

V

OUT

= 3.3V

480

485

490

495

500

505

510

515

520

525

-40

-25

-10

5

20

35

50

65

80

Sw

itching Frequency

 (kHz)

Ambient Temperature (°C)

V

OUT

= 3.3V

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1

2

3

4

5

6

7

8

9

10

V

IN

(V)

I

OUT

(mA)

V

OUT

= 3.3V

V

OUT

= 5.0V

V

OUT

= 2.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

 2010-2015 Microchip Technology Inc.

DS20002234D-page 7

MCP1640/B/C/D

Note: Unless otherwise indicated, 

V

IN

= EN = 1.2V, C

OUT

= C

IN

= 10 µF,  L

 

= 4.7 µH,  V

OUT

= 3.3V,  I

LOAD

= 15 mA,  T

A

= +25°C.

FIGURE 2-13:

Input No Load Current vs. 

V

IN

.

FIGURE 2-14:

N-Channel and P-Channel 

R

DSON

 vs. > of V

IN

 or V

OUT

.

FIGURE 2-15:

Average of PFM/PWM 

Threshold Current vs. V

IN

.

FIGURE 2-16:

MCP1640 3.3V V

OUT

 PFM 

Mode Waveforms.

FIGURE 2-17:

MCP1640B 3.3V V

OUT

 

PWM Mode Waveforms.

FIGURE 2-18:

MCP1640/B High Load 

Waveforms.

10

100

1000

10000

0.8

1.1

1.4

1.7

2

2.3

2.6

2.9

3.2

3.5

I

IN

(µA)

V

IN

(V)

V

OUT

= 3.3V

V

OUT

= 5.0V

V

OUT

= 2.0V

V

OUT

= 2.0V

V

OUT

= 3.3V

V

OUT

= 5.0V

PWM / PFM

PWM Only

0

1

2

3

4

5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sw

itch Resistance 

(Ohms)

> V

IN

or V

OUT

P - Channel

N - Channel

0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I

OUT

(mA)

V

IN

(V)

V

OUT

= 2.0V

V

OUT

= 3.3V

V

OUT

= 5.0V

I

OUT

 = 1 mA

1 µs/DIV

V

OUT

20 mV/DIV
AC
Coupled

V

SW

2V/DIV

I

L

0.05 mA/DIV

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

MCP1640/B/C/D

DS20002234D-page 8

 2010-2015 Microchip Technology Inc.

Note: Unless otherwise indicated, 

V

IN

= EN = 1.2V, C

OUT

= C

IN

= 10 µF,  L

 

= 4.7 µH,  V

OUT

= 3.3V,  I

LOAD

= 15 mA,  T

A

= +25°C.

FIGURE 2-19:

3.3V Start-Up After Enable.

FIGURE 2-20:

3.3V Start-Up when 

V

IN

= V

ENABLE

.

FIGURE 2-21:

MCP1640 3.3V V

OUT

 Load 

Transient Waveforms.

FIGURE 2-22:

MCP1640B 3.3V V

OUT

 Load 

Transient Waveforms.

FIGURE 2-23:

MCP1640B 2.0V V

OUT

 Load 

Transient Waveforms.

FIGURE 2-24:

3.3V V

OUT

 Line Transient 

Waveforms.

V

OUT

1V/DIV

V

IN

1V/DIV

V

EN

1V/DIV

500 µs/DIV

V

OUT

1V/DIV

V

IN

1V/DIV

V

EN

1V/DIV

500 µs/DIV

PFM

MODE

PWM

MODE

I

STEP

 = 1 mA to 75 mA

V

OUT

100 mV/DIV
AC
Coupled

I

OUT

50 mA/DIV

100 µs/DIV

MCP1640B PWM
Mode Only

V

OUT

100 mV/DIV
AC
Coupled

I

OUT

50 mA/DIV

100 µs/DIV

I

STEP

 = 1 mA to 75 mA

MCP1640B PWM
Mode Only

100 µs/DIV

V

OUT

50 mV/DIV
AC
Coupled

I

OUT

50 mA/DIV

I

STEP

 = 1 mA to 50 mA

V

STEP

 from

1V to 2.5V

200 µs/DIV

V

OUT

50 mV/DIV
AC
Coupled

V

IN

1V/DIV

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

 2010-2015 Microchip Technology Inc.

DS20002234D-page 9

MCP1640/B/C/D

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

3.1

Feedback Voltage Pin (V

FB

)

The V

FB

 pin is used to provide output voltage regulation

by using a resistor divider. Feedback voltage will be
1.21V typical with the output voltage in regulation.

3.2

Signal Ground Pin (S

GND

)

The signal ground pin is used as a return for the
integrated V

REF

 and error amplifier. In the 2x3 DFN

package, the S

GND

 and power ground (P

GND

) pins are

connected externally.

3.3

Power Ground Pin (P

GND

)

The power ground pin is used as a return for the
high-current N-Channel switch. In the 2x3 DFN
package, the P

GND

 and S

GND

 pins are connected

externally.

3.4

Enable Pin (EN)

The EN pin is a logic-level input used to enable or
disable device switching and lower quiescent current
while disabled. A logic high (>90% of V

IN

) will enable

the regulator output. A logic low (<20% of V

IN

) will

ensure that the regulator is disabled.

3.5

Switch Node Pin (SW)

Connect the inductor from the input voltage to the SW
pin. The SW pin carries inductor current and can be as
high as 800 mA peak. The integrated N-Channel switch
drain and integrated P-Channel switch source are
internally connected at the SW node.

3.6

Output Voltage Power Pin (V

OUTP

)

The output voltage power pin connects the output
voltage to the switch node. High current flows through
the integrated P-Channel and out of this pin to the
output capacitor and the output. In the 2x3 DFN
package, V

OUTP

 and V

OUTS

 are connected externally.

3.7

Output Voltage Sense Pin (V

OUTS

)

The output voltage sense pin connects the regulated
output voltage to the internal bias circuits. In the
2x3 DFN package, the V

OUTS

 and output voltage

power (V

OUTP

)

 

pins are connected externally.

3.8

Power Supply Input Voltage Pin (V

IN

)

Connect the input voltage source to V

IN

. The input

source should be decoupled to GND with a 4.7 µF
minimum capacitor.

3.9

Exposed Thermal Pad (EP)

There is no internal electrical connection between the
Exposed Thermal Pad (EP) and the S

GND

 and P

GND

pins. They must be connected to the same potential on
the Printed Circuit Board (PCB).

3.10

Ground Pin (GND)

The ground or return pin is used for circuit ground
connection. Length of trace from input cap return,
output cap return, and GND pin should be made as
short as possible to minimize noise on the GND pin. In
the SOT-23-6 package, a single ground pin is used.

3.11

Output Voltage Pin (V

OUT

)

The output voltage pin connects the integrated
P-Channel MOSFET to the output capacitor. The FB
voltage divider is also connected to the V

OUT

 pin for

voltage regulation.

TABLE 3-1:

PIN FUNCTION TABLE

MCP1640/B/C/D 

2x3 DFN

MCP1640/B/C/D 

SOT-23

Symbol

Description

1

4

V

FB

Feedback Voltage Pin

2

S

GND

Signal Ground Pin

3

P

GND

Power Ground Pin

4

3

EN

Enable Control Input Pin

5

1

SW

Switch Node, Boost Inductor Input Pin

6

V

OUTP

Output Voltage Power Pin

7

V

OUTS

Output Voltage Sense Pin

8

6

V

IN

Input Voltage Pin

9

EP

Exposed Thermal Pad (EP); must be connected to V

SS

2

GND

Ground Pin

5

V

OUT

Output Voltage Pin

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002234D-html.html
background image

MCP1640/B/C/D

DS20002234D-page 10

 2010-2015 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download