MCP16331 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

 2014-2016 Microchip Technology Inc.

DS20005308C-page  1

MCP16331

Features

• Up to 96% Efficiency
• Input Voltage Range: 4.4V to 50V
• Output Voltage Range: 2.0V to 24V
• 2% Output Voltage Accuracy
• Qualification: AEC-Q100 Rev. G, Grade 1

(-40°C to 125°C)

• Integrated N-Channel Buck Switch: 600 m

• Minimum 500 mA Output Current Over All Input 

Voltage Ranges (see 

Figure 2-9

 for Maximum 

Output Current vs. V

IN

)

- Up to 1.2A output current at 3.3V and 

5V V

OUT

, V

IN 

> 12V, SOT-23 package at 

+25°C ambient temperature

- Up to 0.8A output current at 12V V

OUT

V

IN 

> 18V, SOT-23 package at 

+25°C ambient temperature

• 500 kHz Fixed Frequency
• Adjustable Output Voltage
• Low Device Shutdown Current
• Peak Current Mode Control
• Internal Compensation
• Stable with Ceramic Capacitors
• Internal Soft Start
• Internal Pull-up on EN
• Cycle-by-Cycle Peak Current Limit
• Undervoltage Lockout (UVLO): 4.1V to Start; 

3.6V to Stop

• Overtemperature Protection
• Available Package: 6-Lead SOT-23, 

8-Lead 2x3 TDFN

Applications

• PIC

®

 MCU/dsPIC

®

 DSC Microcontroller Bias 

Supply

• 48V, 24V and 12V Industrial Input 

DC-DC Conversion

• Set-Top Boxes (STB)
• DSL Cable Modems
• Automotive
• AC/DC Adapters
• SLA Battery-Powered Devices
• AC-DC Digital Control Power Source
• Power Meters
• Consumer
• Medical and Health Care
• Distributed Power Supplies

General Description

The MCP16331 is a highly integrated, high-efficiency, 
fixed frequency, step-down DC-DC converter in a popular 
6-pin SOT-23 or 8-pin 2x3 TDFN package that operates 
from input voltage sources up to 50V. Integrated features 
include a high-side switch, fixed frequency Peak Current-
Mode control, internal compensation, peak current limit 
and overtemperature protection. Minimal external com-
ponents are necessary to develop a complete step-down 
DC-DC converter power supply. 
High converter efficiency is achieved by integrating the 
current-limited, low-resistance, high-speed N-Channel 
MOSFET and associated drive circuitry. High switching 
frequency minimizes the size of external filtering 
components, resulting in a small solution size.
The MCP16331 can supply 500 mA of continuous 
current while regulating the output voltage from 2.0V to 
24V. An integrated, high-performance Peak Current-
Mode architecture keeps the output voltage tightly regu-
lated, even during input voltage steps and output current 
transient conditions that are common in power systems.
The EN input is used to turn the device on and off. 
While off, only a few µA of current are consumed from 
the input for power shedding and load distribution 
applications. This pin is internally pulled up, so the 
device will start, even if the EN pin is left floating.
Output voltage is set with an external resistor divider.
The MCP16331 is offered in a space-saving 6-lead 
SOT-23 and 8-lead 2x3 TDFN surface mount package.

Package Type

MCP16331

6-Lead SOT-23

MCP16331

8-Lead 2x3 TDFN*

V

FB

GND

EN

1

2

3

6

4

SW

BOOST

5

V

IN

NC

EN

NC

1
2
3
4

8

7
6
5

SW

EP

9

V

IN

BOOST
V

FB

GND

*Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

High-Voltage Input Integrated Switch Step-Down Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

MCP16331

DS20005308C-page  2

 2014-2016 Microchip Technology Inc.

Typical Applications

V

IN

GND

V

FB

SW

V

IN

6.0V to 50V

V

OUT

5.0V at 500 mA

C

OUT

2 X10 µF

C

IN

2x10 µF

L

1

22 µH

BOOST

52.3 k

10 k

EN

1N4148

100V

Schottky

Diode

C

BOOST

100 nF

V

IN

GND

V

FB

SW

V

IN

4.5V to 50V

V

OUT

3.3V at 500 mA

C

OUT

2 X10 µF

C

IN

2x10 µF

L

1

15 µH

BOOST

31.6 k

10 k

EN

1N4148

100V

Schottky

Diode

C

BOOST

100 nF

0

10

20

30

40

50

60

70

80

90

100

10

100

1000

Efficiency

 (%

Output Current (mA) 

V

OUT

=3.3V 

V

OUT

=5V 

V

IN

=12V 

Note:

EN has an internal pull-up, so the device will start even if the EN pin is left floating.

20 pF 

20 pF

Optional

Optional

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

 2014-2016 Microchip Technology Inc.

DS20005308C-page  3

MCP16331

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

V

IN,

 SW ............................................................... -0.5V to 54V

BOOST – GND ................................................... -0.5V to 60V
BOOST – SW Voltage........................................ -0.5V to 6.0V
V

FB

 Voltage ........................................................ -0.5V to 6.0V

EN Voltage ............................................. -0.5V to (V

IN

 + 0.3V)

Output Short-Circuit Current ................................. Continuous
Power Dissipation  ....................................... Internally Limited
Storage Temperature ....................................-65°C to +150°C
Ambient Temperature with Power Applied ......-40°C to +125°C
Operating Junction Temperature...................-40°C to +160°C
ESD Protection on All Pins:

HBM..................................................................... 4 kV

MM ......................................................................300V

† Notice:

 Stresses above those listed under “Maximum 

Ratings” may cause permanent damage to the device. 
This is a stress rating only and functional operation of the 
device at those or any other conditions above those indi-
cated in the operational sections of this specification is 
not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

 

DC CHARACTERISTICS 

Electrical Characteristics:

 Unless otherwise indicated, T

A

 = +25°C, V

IN

 = V

EN

 = 12V, V

BOOST

 – V

SW

 = 3.3V, 

V

OUT

 = 3.3V, I

OUT

 = 100 mA, L = 15 µH, C

OUT

 = C

IN

 = 2 x 10 µF X7R Ceramic Capacitors.

Boldface

 specifications apply over the T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Voltage

V

IN

4.4

50

V

Note 1

Feedback Voltage

V

FB

0.784

0.800

0.816

V

Output Voltage Adjust Range

V

OUT

2.0

24

V

Note 1

Note 3

Feedback Voltage 

Line Regulation

|

V

FB

/V

FB

)/

V

IN

|

0.002

0.1

%/V

V

IN

 = 5V to 50V

Feedback Voltage 

Load Regulation

|

V

FB

/V

FB

|

0.13

0.35

%

I

OUT 

= 50 mA to 

500 mA

Feedback Input Bias Current

I

FB

+/- 3

nA

Undervoltage Lockout Start

UVLO

STRT

4.1

4.4

V

V

IN

 rising

Undervoltage Lockout Stop

UVLO

STOP

3

3.6

V

V

IN

 falling

Undervoltage Lockout 

Hysteresis

UVLO

HYS

0.5

V

Switching Frequency

f

SW

425

500

550

kHz

Maximum Duty Cycle

DC

MAX

90

93

%

V

IN

 = 5V; V

FB

 = 0.7V; 

I

OUT

 = 100 mA

Minimum Duty Cycle

DC

MIN

1

%

Note 4

NMOS Switch-On Resistance

R

DS(ON)

0.6

V

BOOST

 – V

SW

 = 5V, 

Note 3

NMOS Switch Current Limit

I

N(MAX)

1.3

A

V

BOOST

 – V

SW

 = 5V, 

Note 3

Quiescent Current

I

Q

1

1.7

mA

V

IN

 = 12V; 

Note 2

Quiescent Current – Shutdown

I

Q

6

10

A

V

OUT

 = EN = 0V

Output Current

I

OUT

500

mA

Note 1

; see 

Figure 2-9

Note 1:

The input voltage should be > output voltage + headroom voltage; higher load currents increase the input 
voltage necessary for regulation. See characterization graphs for typical input to output operating voltage 
range.

2:

V

BOOST

 supply is derived from V

OUT

.

3:

Determined by characterization, not production tested.

4:

This is ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

MCP16331

DS20005308C-page  4

 2014-2016 Microchip Technology Inc.

 

EN Input Logic High

V

IH

1.9

V

EN Input Logic Low

V

IL

0.4

V

EN Input Leakage Current

I

ENLK

0.007

0.5

µA

V

IN 

= EN = 5V

Soft Start Time

t

SS

600

µs

EN Low-to-high, 

90% of V

OUT

Thermal Shutdown Die 
Temperature

T

SD

160

C

Note 3

Die Temperature Hysteresis

T

SDHYS

30

C

Note 3

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 Unless otherwise indicated, T

A

 = +25°C, V

IN

 = V

EN

 = 12V, V

BOOST

 – V

SW

 = 3.3V, 

V

OUT

 = 3.3V, I

OUT

 = 100 mA, L = 15 µH, C

OUT

 = C

IN

 = 2 x 10 µF X7R Ceramic Capacitors.

Boldface

 specifications apply over the T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

The input voltage should be > output voltage + headroom voltage; higher load currents increase the input 
voltage necessary for regulation. See characterization graphs for typical input to output operating voltage 
range.

2:

V

BOOST

 supply is derived from V

OUT

.

3:

Determined by characterization, not production tested.

4:

This is ensured by design.

TEMPERATURE SPECIFICATIONS

Electrical Specifications

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction Temperature Range

T

J

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature

T

J

+160

°C

Transient

Package Thermal Resistances
Thermal Resistance, 6L-SOT-23

JA

190.5

°C/W

EIA/JESD51-3 Standard

Thermal Resistance, 8L-2x3 TDFN 

JA

52.5

°C/W

EIA/JESD51-3 Standard

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

 2014-2016 Microchip Technology Inc.

DS20005308C-page  5

MCP16331

2.0

TYPICAL PERFORMANCE CURVES   

Note: 

Unless otherwise indicated, V

IN 

= EN = 12V, C

OUT 

= C

IN 

= 2 x10 µF, L

 

= 15 µH, V

OUT

 = 3.3V, I

LOAD

 = 100 mA, 

T

A

 = +25°C, 6-Lead SOT-23 package.

FIGURE 2-1:

3.3V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-2:

5V V

OUT

 Efficiency vs. I

OUT

.

FIGURE 2-3:

12V V

OUT

 Efficiency vs. I

OUT

.

FIGURE 2-4:

24V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-5:

3.3V V

OUT

 Efficiency vs. 

V

IN

.

FIGURE 2-6:

5V V

OUT

 Efficiency vs. V

IN

.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN 

= 6V

V

IN

= 12V

V

IN 

= 24V

V

IN

= 48V

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN

= 12V

V

IN

= 24V

V

IN

= 48V

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN 

= 24V

V

IN

= 48V

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

I

OUT 

(mA) 

V

IN

 = 48V  

0

10

20

30

40

50

60

70

80

90

100

6

10

14

18

22

26

30

34

38

42

46

50

Efficiency

 (%

V

IN 

(V) 

I

OUT

= 10 mA  

I

OUT

= 100 mA 

I

OUT

= 500 mA 

0

10

20

30

40

50

60

70

80

90

100

6

10

14

18

22

26

30

34

38

42

46

50

Efficiency

 (%

)

V

IN

(V)

I

OUT

= 10 mA 

I

OUT

= 100 mA

I

OUT

= 500 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

MCP16331

DS20005308C-page  6

 2014-2016 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN 

= EN = 12V, C

OUT 

= C

IN 

= 2 x10 µF, L

 

= 15 µH, V

OUT

 = 3.3V, I

LOAD

 = 100 mA, 

T

A

 = +25°C, 6-Lead SOT-23 package

.

FIGURE 2-7:

12V V

OUT

 Efficiency vs. V

IN

.

FIGURE 2-8:

24V V

OUT

 Efficiency vs. V

IN

.

FIGURE 2-9:

Max I

OUT 

vs. V

IN

.

FIGURE 2-10:

V

FB

 vs. Temperature.

FIGURE 2-11:

Peak Current Limit vs. 

Temperature.

FIGURE 2-12:

Switch R

DSON

 vs. 

Temperature.

0

10

20

30

40

50

60

70

80

90

100

14

18

22

26

30

34

38

42

46

50

Efficiency

 (%

V

IN 

(V) 

I

OUT

 = 10 mA  

I

OUT

 = 100 mA 

I

OUT

 = 500 mA 

0

10

20

30

40

50

60

70

80

90

100

26

30

34

38

42

46

50

Efficiency

 (%

V

IN 

(V) 

I

OUT

 = 10 mA  

I

OUT

 = 100 mA 

I

OUT

 = 500 mA 

0

200

400

600

800

1000

1200

1400

6

10

14

18

22

26

30

34

38

42

46

50

I

OUT

 (mA) 

V

IN 

(V) 

V

OUT

 = 3.3V 

V

OUT

 = 5V 

V

OUT

 = 12V 

V

OUT

 = 24V 

0.78

0.79

0.8

0.81

0.82

0.83

-40 -25 -10

5

20 35 50 65 80 95 110 125

Feedback V

o

ltage (V)

Temperature (°C)

V

IN

=12V

V

OUT

= 3.3V

I

OUT

= 100 mA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-40 -25 -10

5

20

35

50

65

80

95 110 125

Peak Current Limit 

(A)

Temperature (°C)

V

OUT

= 3.3V

V

OUT

= 5V

V

OUT

= 12V

0

0.2

0.4

0.6

0.8

1

1.2

-40 -25 -10

5

20

35

50

65

80

95 110 125

Sw

itch R

DSON

(Ω

)

Temperature (°C)

V

IN

= 6V

V

OUT

=V

BOOST

= 3.3V

I

OUT

= 200 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

 2014-2016 Microchip Technology Inc.

DS20005308C-page  7

MCP16331

Note: 

Unless otherwise indicated, V

IN 

= EN = 12V, C

OUT 

= C

IN 

= 2 x10 µF, L

 

= 15 µH, V

OUT

 = 3.3V, I

LOAD

 = 100 mA, 

T

A

 = +25°C, 6-Lead SOT-23 package

.

FIGURE 2-13:

Switch R

DSON

 vs. V

BOOST

.

FIGURE 2-14:

Undervoltage Lockout vs. 

Temperature.

FIGURE 2-15:

EN Threshold Voltage vs. 

Temperature.

FIGURE 2-16:

V

OUT

 vs. V

IN

.

FIGURE 2-17:

Input Quiescent Current vs. 

Temperature.

FIGURE 2-18:

Shutdown Current vs. 

Temperature.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2.5

3

3.5

4

4.5

5

5.5

Sw

itch R

DSON

(Ω

)

V

BOOST

(V)

V

IN

= 6V

V

OUT

= 3.3V

3

3.4

3.8

4.2

4.6

5

-40 -25 -10

5

20

35

50

65

80

95 110 125

Input V

o

ltage (V)

Temperature (°C)

UVLO START

UVLO STOP

0.9

1

1.1

1.2

1.3

1.4

-40 -25 -10

5

20

35

50

65

80

95 110 125

Enable V

o

ltage (V)

Temperature (°C)

UP

DOWN

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 100 mA

3.27

3.275

3.28

3.285

3.29

3.295

5

10

15

20

25

30

35

40

45

50

V

OUT

(V)

V

IN

(V)

V

OUT

= 3.3V

I

OUT

=100 mA

0.8

0.9

1

1.1

1.2

-40 -25 -10

5

20

35

50

65

80

95 110 125

No Load Input Current (mA)

Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

4

4.5

5

5.5

6

6.5

7

-40 -25 -10

5

20

35

50

65

80

95 110 125

Shutdow

n Current 

(µA)

Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

MCP16331

DS20005308C-page  8

 2014-2016 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN 

= EN = 12V, C

OUT 

= C

IN 

= 2 x10 µF, L

 

= 15 µH, V

OUT

 = 3.3V, I

LOAD

 = 100 mA, 

T

A

 = +25°C, 6-Lead SOT-23 package

.

FIGURE 2-19:

Input Quiescent Current vs. 

V

IN

.

FIGURE 2-20:

Shutdown Current vs. V

IN

.

FIGURE 2-21:

PWM/Skipping I

OUT

 

Threshold vs. V

IN

.

FIGURE 2-22:

Switching Frequency vs. 

Temperature.

FIGURE 2-23:

Minimum Input Voltage vs. 

Output Current. 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

5

10

15

20

25

30

35

40

45

50

No Load Input Current (mA)

V

IN

(V)

V

OUT

= 3.3V

3

6

9

12

15

18

5

10

15

20

25

30

35

40

45

50

Shutdow

n Current 

(µA)

V

IN

(V)

V

OUT

= 3.3V

0

5

10

15

20

5

10

15

20

25

30

35

40

45

50

Output Current (mA)

V

IN

(V)

V

OUT

= 5V

V

OUT

= 3.3V

450

475

500

525

-40 -25 -10

5

20

35

50

65

80

95 110 125

Sw

itching Frequency

 (kHz)

Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 200 mA

3.5

3.7

3.9

4.1

4.3

0

0.1

0.2

0.3

0.4

0.5

V

IN

(V)

Output Current (A)

To Start

To Stop

V

OUT

=3.3V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

 2014-2016 Microchip Technology Inc.

DS20005308C-page  9

MCP16331

Note: 

Unless otherwise indicated, V

IN 

= EN = 12V, C

OUT 

= C

IN 

= 2 x10 µF, L

 

= 15 µH, V

OUT

 = 3.3V, I

LOAD

 = 100 mA, 

T

A

 = +25°C, 6-Lead SOT-23 package

.

FIGURE 2-24:

Heavy Load Switching 

Waveforms.

FIGURE 2-25:

Light Load Switching 

Waveforms.

FIGURE 2-26:

Start-up from V

IN

.

FIGURE 2-27:

Start-up from EN.

FIGURE 2-28:

Load Transient Response.

FIGURE 2-29:

Line Transient Response.

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 300 mA

2 µs/div

V

OUT

20 mV/div
AC coupled

IL
200 mA/div

SW
10V/div

V

IN

= 48V

V

OUT

= 3.3V

I

OUT

= 5 mA

V

OUT

20 mV/div
AC coupled

IL
50 mA/div

SW
20V/div

10 µs/div

V

IN

= 36V

V

OUT

= 3.3V

I

OUT

= 200 mA

V

OUT

1V/div

V

IN

20V/div

80 µs/div

V

OUT

1V/div

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 200 mA

80 µs/div

EN

2V/div

V

IN

= 12V

V

OUT

= 3.3V

Load Step from 

100 mA to 500 mA

V

OUT

50 mV/div

AC coupled

200 µs/div

I

OUT

200 mA/div

V

OUT

= 3.3V

I

OUT

= 200 mA

Line Step from 

5V to 24V

200 µs/div

V

OUT

100 mV/div

AC coupled

V

IN

10V/div

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005308C-html.html
background image

MCP16331

DS20005308C-page  10

 2014-2016 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

   

3.1

Switch Node (SW)

The switch node pin is connected internally to the 
NMOS switch, and externally to the SW node consist-
ing of the inductor and Schottky diode. The external 
Schottky diode should be connected close to the SW 
node and GND.

3.2

Enable Pin (EN)

The EN pin is a logic-level input used to enable or 
disable the device switching and lower the quiescent 
current while disabled. By default the MCP16331 is 
enabled through an internal pull-up. To turn off the 
device, the EN pin must be pulled low.

3.3

Ground Pin (GND)

The ground or return pin is used for circuit ground con-
nection. The length of the trace from the input cap return, 
output cap return and GND pin should be made as short 
as possible to minimize the noise on the GND pin.

3.4

Feedback Voltage Pin (V

FB

)

The V

FB

 pin is used to provide output voltage regulation 

by using a resistor divider. The V

FB

 voltage will be 0.8V

typical with the output voltage in regulation.

3.5

Boost Pin (BOOST)

The supply for the floating high-side driver, used to turn 
the integrated N-Channel MOSFET on and off, is 
connected to the BOOST pin.

3.6

Power Supply Input Voltage Pin 
(V

IN

)

Connect the input voltage source to V

IN

. The input 

source should be decoupled to GND with a 4.7 µF-20 µF 
capacitor, depending on the impedance of the source 
and output current. The input capacitor provides current 
for the switch node and a stable voltage source for the 
internal device power. This capacitor should be 
connected as close as possible to the V

IN

 and GND pins.

3.7

Exposed Thermal Pad Pin (EP)

There is an internal electrical connection between the 
EP and GND pin for the TDFN package.

TABLE 3-1:

PIN FUNCTION TABLE

MCP16331

Symbol

Description

TDFN

 SOT-23

1

6

SW

Output switch node. Connects to the inductor, freewheeling diode and the 
bootstrap capacitor.

2

4

EN

Enable pin. There is an internal pull-up on the V

IN

. To turn the device off, 

connect EN to GND.

3

NC

Not connected.

4

NC

Not connected.

5

2

GND

Ground pin.

6

3

V

FB

Output voltage feedback pin. Connect V

FB

 to an external resistor divider to set 

the output voltage.

7

1

BOOST

Boost voltage that drives the internal NMOS control switch. A bootstrap 
capacitor is connected between the BOOST and SW pins.

8

5

V

IN

Input supply voltage pin for power and internal biasing.

9

EP

Exposed Thermal Pad

Maker
Microchip Technology Inc.
Datasheet PDF Download