MCP16311/2 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005255B-page 1

MCP16311/2

Features

• Up to 95% Efficiency
• Input Voltage Range: 4.4V to 30V
• 1A Output Current Capability
• Output Voltage Range: 2.0V to 24V
• Qualification: AEC-Q100 Rev. G, Grade 1 (-40°C 

to 125°C)

• Integrated N-Channel High-Side and Low-Side 

Switches:
- 170 m

, Low Side

- 300 m

, High Side

• Stable Reference Voltage: 0.8V
• Automatic Pulse Frequency Modulation/Pulse-

Width Modulation (PFM/PWM) Operation 
(MCP16311):
- PFM Operation Disabled (MCP16312)
- PWM Operation: 500 kHz

• Low Device Shutdown Current: 3 µA typical
• Low Device Quiescent Current:

- 44 µA (non-switching, PFM Mode)

• Internal Compensation
• Internal Soft-Start: 300 µs (EN low-to-high)
• Peak Current Mode Control
• Cycle-by-Cycle Peak Current Limit
• Undervoltage Lockout (UVLO):

- 4.1V typical to start
- 3.6V typical to stop

• Overtemperature Protection
• Thermal Shutdown:

- +150°C
- +25°C Hysteresis

Applications

• PIC

®

/dsPIC

®

 Microcontroller Bias Supply

• 24V Industrial Input DC-DC Conversion
• General Purpose DC-DC Conversion
• Local Point of Load Regulation
• Automotive Battery Regulation
• Set-Top Boxes
• Cable Modems
• Wall Transformer Regulation
• Laptop Computers
• Networking Systems
• AC-DC Digital Control Bias
• Distributed Power Supplies

General Description

The MCP16311/2 is a compact, high-efficiency, fixed
frequency, synchronous step-down DC-DC converter in
an 8-pin MSOP, or 2 x 3 TDFN package that operates
from input voltage sources up to 30V. Integrated
features include a high-side and a low-side switch, fixed
frequency peak current mode control, internal
compensation, peak current limit and overtemperature
protection. The MCP16311/2 provides all the active
functions for local DC-DC conversion, with fast transient
response and accurate regulation.

High converter efficiency is achieved by integrating the
current-limited, low-resistance, high-speed high-side
and low-side switches and associated drive circuitry.
The MCP16311 is capable of running in PWM/PFM
mode. It switches in PFM mode for light load
conditions and for large buck conversion ratios. This
results in a higher efficiency over all load ranges. The
MCP16312 runs in PWM-only mode, and is
recommended for noise-sensitive applications.
The MCP16311/2 can supply up to 1A

 

of continuous

current while regulating the output voltage from 2V to
12V. An integrated, high-performance peak current
mode architecture keeps the output voltage tightly
regulated, even during input voltage steps and output
current transient conditions common in power systems.
The EN input is used to turn the device on and off.
While off, only a few micro amps of current are
consumed from the input.
Output voltage is set with an external resistor divider.
The MCP16311/2 is offered in small MSOP-8 and 2 x 3
TDFN surface mount packages.

Package Type

EN

V

CC

V

IN

BOOST
SW

1
2
3
4

8
7
6
5 P

GND

V

FB

EP

9

A

GND

5

1
2
3

A

GND

SW

EN

V

IN

V

FB

MCP16311/2

MSOP

7
6

BOOST

4

P

GND

V

CC

 

MCP16311/2

2x3 TDFN*

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

30V Input, 1A Output, High-Efficiency,

Integrated Synchronous Switch Step-Down Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

MCP16311/2

DS20005255B-page 2

 2013-2014 Microchip Technology Inc.

Typical Applications

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1 10 

100 

1000 

Efficiency

 (%

I

OUT 

(mA) 

 

 

 

       PWM ONLY

 

       PWM/PFM  

V

IN 

= 12V 

 

OUT 

          

= 5V

V

OUT 

          

= 3.3V

V

V

IN

GND

V

FB

SW

V

IN

 

4.5V to 30V

V

OUT

3.3V @ 1A

C

OUT

2 x 10 µF

C

IN

2 x 10 µF

L

1

15 µH

BOOST

31.6 k

10 k

EN

C

BOOST

100 nF

V

CC

C

VCC

1 µF

V

IN

GND

V

FB

SW

V

in

 

6V to 30V

V

OUT

5V, @ 1A

C

OUT

2 x 10 µF

C

IN

2 x 10 µF

L

1

22 µH

BOOST

52.3 k

10 k

EN

C

BOOST

100 nF

V

CC

C

VCC

1 µF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005255B-page 3

MCP16311/2

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

IN,

 SW ............................................................... -0.5V to 32V

BOOST – GND ................................................... -0.5V to 38V
BOOST – SW Voltage........................................ -0.5V to 6.0V
V

FB

 Voltage ........................................................ -0.5V to 6.0V

EN Voltage ............................................. -0.5V to (V

IN

+ 0.3V)

Output Short-Circuit Current ................................. Continuous
Power Dissipation  ....................................... Internally Limited
Storage Temperature ....................................-65°C to +150°C
Ambient Temperature with Power Applied ....-40°C to +125°C
Operating Junction Temperature...................-40°C to +150°C
ESD Protection on All Pins: 

HBM ..................................................................... 1 kV
MM ......................................................................200V

† Notice:

 Stresses above those listed under “Maximum

Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

DC CHARACTERISTICS

Electrical Characteristics:

 Unless otherwise indicated, T

A

= +25°C,  V

IN

= V

EN

= 7V,  V

BOOST

- V

SW

= 5.0V, 

V

OUT

= 5.0V,  I

OUT

= 100 mA, L = 22 µH, C

OUT

= C

IN

= 2 x 10 µF X7R Ceramic Capacitors.

Boldface

 specifications apply over the T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

V

IN 

Supply Voltage

Input Voltage

V

IN

4.4

30

V

Note 1

Quiescent Current 

I

Q

44

60

µA

Nonswitching, 
V

FB

= 0.9V

Quiescent Current - 
PFM Mode

I

Q_PFM

85

µA

Switching,
I

OUT

= 0  (MCP16311)

Quiescent Current - 
PWM Mode

I

Q_PWM

3.8

8

mA

Switching,
I

OUT

= 0  (MCP16312)

Quiescent Current - 
Shutdown

I

Q_SHDN

3

9

µA

V

OUT

= EN = 0V

V

IN 

Undervoltage Lockout

Undervoltage Lockout Start

UVLO

STRT

4.1

4.4

V

V

IN

 Rising

Undervoltage Lockout Stop

UVLO

STOP

3.18

3.6

V

V

IN

 Falling

Undervoltage Lockout 
Hysteresis

UVLO

HYS

0.2

0.5

1

V

Output Characteristics
Feedback Voltage

V

FB

0.784

0.800

0.816

V

I

OUT

= 5 mA

Output Voltage 
Adjust Range

V

OUT

2.0

24

V

Note 2

Note 3

Feedback Voltage 
Line Regulation

V

FB

/V

FB

)/

V

IN

-0.15

0.01

0.15

%/V

V

IN

= 7V to 30V, 

I

OUT

= 50 mA

Feedback Voltage
Load Regulation

V

FB

 / V

FB

0.25

%

I

OUT

= 5 mA to 1A, 

MCP16312

Note 1:

The input voltage should be greater than the output voltage plus headroom voltage; higher load currents 
increase the input voltage necessary for regulation. See characterization graphs for typical input-to-output 
operating voltage range.

2:

For V

IN

< V

OUT

, V

OUT

 will not remain in regulation; for output voltages above 12V, the maximum current 

will be limited to under 1A.

3:

Determined by characterization, not production tested.

4:

This is ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

MCP16311/2

DS20005255B-page 4

 2013-2014 Microchip Technology Inc.

Feedback Input 
Bias Current

I

FB

10

250

nA

Output Current

I

OUT

1

A

Notes 1

 

to

3

Figure 2-7

 

Switching Characteristics
Switching Frequency

f

SW

425

500

575

kHz

Maximum Duty Cycle

DC

MAX

85

94

%

Note 3

Minimum Duty Cycle

DC

MIN

2

%

Note 4

High-Side NMOS Switch-On 
Resistance

R

DS(ON)

0.3

V

BOOST

– V

SW

 = 5V,

Note 3

Buck NMOS Switch
Current Limit

I

(MAX)

1.8

A

V

BOOST

– V

SW

 = 5V,

Note 3

Synchronous NMOS Switch-
On Resistance

R

DS(ON)

0.17

Note 3

EN Input Characteristics
EN Input Logic High

V

IH

1.85

V

EN Input Logic Low

V

IL

0.4

V

EN Input Leakage Current

I

ENLK

0.1

1

µA

V

EN

= 5V

Soft-Start Time

t

SS

300

µs

EN Low-to-High, 
90% of V

OUT

Thermal Characteristics
Thermal Shutdown 
Die Temperature

T

SD

150

°C

Note 3

Die Temperature Hysteresis

T

SDHYS

25

°C

Note 3

TEMPERATURE CHARACTERISTICS

Electrical Specifications: 

Unless otherwise indicated, T

A

= +25°C, V

IN

= V

EN

= 7V,  V

BOOST

- V

SW

= 5.0V, 

V

OUT

= 5.0V.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction Temperature Range

T

J

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature

T

J

+150

°C

Transient

Package Thermal Resistances
Thermal Resistance, 8L-MSOP

JA

211

°C/W

EIA/JESD51-3 Standard

Thermal Resistance, 8L-2x3 TDFN

JA

52.5

°C/W

EIA/JESD51-3 Standard

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 Unless otherwise indicated, T

A

= +25°C,  V

IN

= V

EN

= 7V,  V

BOOST

- V

SW

= 5.0V, 

V

OUT

= 5.0V,  I

OUT

= 100 mA, L = 22 µH, C

OUT

= C

IN

= 2 x 10 µF X7R Ceramic Capacitors.

Boldface

 specifications apply over the T

A

 range of -40°C to +125°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

The input voltage should be greater than the output voltage plus headroom voltage; higher load currents 
increase the input voltage necessary for regulation. See characterization graphs for typical input-to-output 
operating voltage range.

2:

For V

IN

< V

OUT

, V

OUT

 will not remain in regulation; for output voltages above 12V, the maximum current 

will be limited to under 1A.

3:

Determined by characterization, not production tested.

4:

This is ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005255B-page 5

MCP16311/2

2.0

TYPICAL PERFORMANCE CURVES

Note: 

Unless otherwise indicated, V

IN

= EN = 7V,  C

OUT

= C

IN

= 2 x 10 µF,  L

 

= 22 µH,  V

OUT

= 5.0V,  I

LOAD

= 100 mA,

T

A

= +25°C

,

 8L-MSOP package.

FIGURE 2-1:

3.3V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-2:

5.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-3:

12.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-4:

3.3V V

OUT

 Efficiency vs.V

IN

.

FIGURE 2-5:

5.0V V

OUT

 Efficiency vs.V

IN

.

FIGURE 2-6:

12.0V V

OUT

 Efficiency vs. 

V

IN

.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN 

= 6V

V

IN

= 12V

V

IN 

= 24V

V

IN

= 30V

       PWM/PFM
       PWM ONLY

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN

= 12V

V

IN

= 24V

V

IN

= 30V

       PWM/PFM
       PWM ONLY

0

10

20

30

40

50

60

70

80

90

100

1

10

100

1000

Efficiency

 (%

)

I

OUT 

(mA)

V

IN 

= 15V

V

IN 

= 24V

V

IN

= 30V

       PWM/PFM
       PWM ONLY

0

20

40

60

80

100

5

10

15

20

25

30

Efficiency

 (%

)

V

IN

(V)

I

OUT

= 10 mA 

I

OUT

= 200 mA

I

OUT

= 800 mA

PWM/PFM option

0

20

40

60

80

100

6

10

14

18

22

26

30

Efficiency

 (%

)

V

IN

(V)

I

OUT 

= 10 mA 

I

OUT 

= 200 mA

I

OUT 

= 800 mA

PWM/PFM option

0

20

40

60

80

100

12

14

16

18

20

22

24

26

28

30

Efficiency

 (%

)

V

IN

(V)

I

OUT

= 10 mA 

I

OUT

= 200 mA

I

OUT

= 800 mA

PWM/PFM option

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

MCP16311/2

DS20005255B-page 6

 2013-2014 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN

= EN = 7V,  C

OUT

= C

IN

= 2 x 10 µF,  L

 

= 22 µH,  V

OUT

= 5.0V,  I

LOAD

= 100 mA,

T

A

= +25°C

,

 8L-MSOP package

.

FIGURE 2-7:

Max I

OUT 

vs.V

IN.

FIGURE 2-8:

V

FB

 vs. Temperature; 

V

OUT

= 3.3V.

FIGURE 2-9:

Switch R

DSON

 vs. 

Temperature.

FIGURE 2-10:

Undervoltage Lockout vs. 

Temperature.

FIGURE 2-11:

Enable Threshold Voltage 

vs. Temperature.

FIGURE 2-12:

V

OUT 

vs. Temperature.

0

200

400

600

800

1000

1200

1400

1600

0

5

10

15

20

25

30

I

OUT

(mA)

V

IN

(V)

V

OUT

= 3.3V

V

OUT

= 5V

V

OUT

= 12V

0.79

0.792

0.794

0.796

0.798

0.8

-40 -25 -10

5

20 35 50 65 80 95 110 125

Feedback V

o

ltage (V)

Temperature (°C)

V

IN

=7V

V

OUT

= 3.3V

I

OUT

= 100 mA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-40 -25 -10

5

20

35

50

65

80

95 110 125

Sw

itch R

DSON

(:

)

Temperature (°C)

Low Side

High Side

V

IN

= 12V

V

OUT

= 5V

I

OUT

= 500 mA

3

3.4

3.8

4.2

4.6

5

-40 -25 -10

5

20

35

50

65

80

95 110 125

Input V

o

ltage 

(V)

Temperature (°C)

UVLO START

UVLO STOP

0.9

1

1.1

1.2

1.3

1.4

-40 -25 -10

5

20

35

50

65

80

95 110 125

Enable V

o

ltage 

(V)

Temperature (°C)

HIGH

LOW

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 200 mA

4.97

4.98

4.99

5

5.01

5.02

5.03

-40 -25 -10

5

20

35

50

65

80

95 110 125

Output V

o

ltage 

(V)

Temperature (°C)

V

IN

= 12V

V

OUT

= 5V

I

OUT

= 100 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005255B-page 7

MCP16311/2

Note: 

Unless otherwise indicated, V

IN

= EN = 7V,  C

OUT

= C

IN

= 2 x 10 µF,  L

 

= 22 µH,  V

OUT

= 5.0V,  I

LOAD

= 100 mA,

T

A

= +25°C

,

 8L-MSOP package

.

FIGURE 2-13:

Input Quiescent Current vs. 

Temperature.

FIGURE 2-14:

Input Quiescent Current vs. 

Input Voltage.

FIGURE 2-15:

PFM No Load Input Current 

vs. Input Voltage, MCP16311.

FIGURE 2-16:

PWM No Load Input Current 

vs.V

IN

, MCP16312.

FIGURE 2-17:

PFM/PWM I

OUT 

Threshold 

vs. V

IN

.

FIGURE 2-18:

Skipping/PWM I

OUT 

Threshold vs. Input Voltage.

0

20

40

60

-40 -25 -10

5

20

35

50

65

80

95 110 125

Quiescent Current (μA)

Temperature (°C)

Non-Swithcing

Shutdown

V

IN

= 12V

V

OUT

= 5V

0

10

20

30

40

50

5

10

15

20

25

30

Quiescent Current (μA)

Input Voltage (°C)

Non-Switching

Shutdown

V

OUT

= 3.3V

40

60

80

100

120

5

10

15

20

25

30

No Load Input Current (μA)

Input Voltage (V)

V

OUT

= 3.3V

1

1.2

1.4

1.6

1.8

5

10

15

20

25

30

Input Current 

(mA)

V

IN

(V)

V

OUT

= 3.3V

0

25

50

75

100

125

150

5

10

15

20

25

30

Output Current 

(mA)

V

IN

(V)

V

OUT

= 3.3V

V

OUT

= 5V

V

OUT

= 12V

0

10

20

30

40

50

5

10

15

20

25

30

Output Current 

(mA)

V

IN

(V)

V

OUT

= 5V

V

OUT

= 3.3V

V

OUT

= 12V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

MCP16311/2

DS20005255B-page 8

 2013-2014 Microchip Technology Inc.

Note: 

Unless otherwise indicated, V

IN

= EN = 7V,  C

OUT

= C

IN

= 2 x 10 µF,  L

 

= 22 µH,  V

OUT

= 5.0V,  I

LOAD

= 100 mA,

T

A

= +25°C

,

 8L-MSOP package

.

FIGURE 2-19:

Typical Minimum Input 

Voltage vs. Output Current.

FIGURE 2-20:

Switching Frequency vs. 

Temperature.

FIGURE 2-21:

Start-Up From Enable.

FIGURE 2-22:

Start-Up From V

IN

.

FIGURE 2-23:

Short-Circuit Response.

FIGURE 2-24:

Load Transient Response.

3.5

4

4.5

0

200

400

600

800

1000

V

IN

(V)

Output Current (mA)

To Start

To Stop

V

OUT

= 3.3V

450

475

500

525

-40 -25 -10

5

20

35

50

65

80

95 110 125

Sw

itching Frequency

 (kHz)

Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 200 mA

V

OUT

2 V/div

EN
2 V/div

80 µs/div

V

OUT

2 V/div

V

IN

5 V/div

200 µs/div

V

OUT

2 V/div

I

OUT

2 A/div

10 µs/div

I

L

500 mA/div

V

OUT

100 mV/div

I

OUT

500 mA/div

200 µs/div

AC Coupled

Load Step from
100 mA to 800 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

 2013-2014 Microchip Technology Inc.

DS20005255B-page 9

MCP16311/2

Note: 

Unless otherwise indicated, V

IN

= EN = 7V,  C

OUT

= C

IN

= 2 x 10 µF,  L

 

= 22 µH,  V

OUT

= 5.0V,  I

LOAD

= 100 mA,

T

A

= +25°C

,

 8L-MSOP package

.

FIGURE 2-25:

Line Transient Response.

FIGURE 2-26:

PFM Light Load Switching 

Waveforms.

FIGURE 2-27:

PWM Light Load Switching 

Waveforms.

FIGURE 2-28:

Heavy Load Switching 

Waveforms.

FIGURE 2-29:

PFM to PWM Transition; 

Load Step from 5 mA to 100 mA.

V

OUT

50 mV/div

V

IN

5 V/div

400 µs/div

AC Coupled

V

IN 

Step from 7V to 12V

V

OUT

100 mV/div

I

L

200 mA/div

20 µs/div

V

IN

 = 24V

SW
10 V/div

I

OUT

 = 25 mA

AC Coupled

V

OUT

10 mV/div

I

L

100 mA/div

1 µs/div

V

IN

 = 24V

SW
10 V/div

I

OUT

 = 15 mA

AC Coupled

V

OUT

50 mV/div

I

L

200 mA/div

2 µs/div

V

IN

 = 12V

SW

10 V/div

V

OUT

 = 5V

I

OUT

 = 800 mA

AC Coupled

V

OUT

100 mV/div

Load Current

50 mA/div

400 µs/div

V

IN

 = 12V

SW

5 V/div

V

OUT

 = 5V

AC Coupled

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005255B-html.html
background image

MCP16311/2

DS20005255B-page 10

 2013-2014 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download