MCP16301/MCP16301H Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

 2011-2015 Microchip Technology Inc.

DS20005004D-page 1

MCP16301/H

Features

• Up to 96% Typical Efficiency
• Input Voltage Range: 

- 4.0V to 30V (MCP16301)
- 4.7V to 36V (MCP16301H)

• Output Voltage Range: 2.0V to 15V
• 2% Output Voltage Accuracy
• Qualification: AEC-Q100 Rev G, Grade 1 

(-40°C to +125°C)

• Integrated N-Channel Buck Switch: 460 m

• Minimum 600 mA Output Current Over All Input 

Voltage Range (See 

Figure 2-6

 for Maximum 

Output Current vs. V

IN

):

- up to 1A output current at 3.3V, 5V and 12V 

V

OUT

, SOT-23 package at +25°C ambient 

temperature

• 500 kHz Fixed Frequency
• Adjustable Output Voltage
• Low Device Shutdown Current
• Peak Current Mode Control
• Internal Compensation
• Stable with Ceramic Capacitors
• Internal Soft-Start
• Cycle-by-Cycle Peak Current Limit
• Undervoltage Lockout (UVLO): 3.5V
• Overtemperature Protection
• Available Package: SOT-23-6

Applications

• PIC

® 

Microcontroller and dsPIC

®

 Digital Signal 

Controller Bias Supply

• 24V Industrial Input DC-DC Conversion
• Set-Top Boxes
• DSL Cable Modems
• Automotive
• Wall Cube Regulation
• SLA Battery-Powered Devices
• AC-DC Digital Control Power Source
• Power Meters
• D

2

 Package Linear Regulator Replacement

- See 

Figure 5-2

• Consumer
• Medical and Health Care
• Distributed Power Supplies

General Description

The MCP16301/H devices are highly integrated,
high-efficiency, fixed-frequency, step-down DC-DC
converters in a popular 6-pin SOT-23 package that
operates from input voltage sources up to 36V.
Integrated features include a high-side switch,
fixed-frequency peak current mode control, internal
compensation, peak current limit and overtemperature
protection. Minimal external components are
necessary to develop a complete step-down DC-DC
converter power supply. 

High converter efficiency is achieved by integrating the
current-limited, low-resistance, high-speed N-Channel
MOSFET and associated drive circuitry. High
switching frequency minimizes the size of external
filtering components, resulting in a small solution size.
The MCP16301/H devices can supply 600 mA of
continuous current while regulating the output voltage
from 2.0V to 15V. An integrated, high-performance
peak current mode architecture keeps the output
voltage tightly regulated, even during input voltage
steps and output current transient conditions that are
common in power systems.
The EN input is used to turn the device on and off.
While turned off, only a few micro amps of current are
consumed from the input for power shedding and load
distribution applications.
Output voltage is set with an external resistor divider.
The MCP16301/H devices are offered in a
space-saving SOT-23-6 surface mount package.

Package Type

MCP16301/H

6-Lead SOT-23

1

2

3

4

5

6 SW

V

IN

EN

BOOST

GND

V

FB

High-Voltage Input Integrated Switch Step-Down Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

MCP16301/H

DS20005004D-page 2

 2011-2015 Microchip Technology Inc.

Typical Applications

V

IN

GND

V

FB

SW

V

IN

 

6.0V to 36V

V

OUT

5.0V @ 600 mA

C

OUT

2 x 10 µF

C

IN

10 µF

L

1

22 µH

Boost

52.3 k

10 k

EN

1N4148

40V

Schottky

Diode

C

BOOST

100 nF

V

IN

GND

V

FB

SW

V

IN

 

4.7V to 36V

V

OUT

3.3V @ 600 mA

C

OUT

2 x 10 µF

C

IN

10 µF

L

1

15 µH

Boost

31.6 k

10 k

EN

1N4148

40V

Schottky

Diode

C

BOOST

100 nF

0

10

20

30

40

50

60

70

80

90

100

10

100

1000

I

OUT

 (mA)

E

ffi

ci

en

cy

 (%

)

V

OUT

 = 5.0V

V

OUT

 = 3.3V

V

IN

 = 12V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

 2011-2015 Microchip Technology Inc.

DS20005004D-page 3

MCP16301/H

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

IN,

 SW ............................................................... -0.5V to 40V

BOOST – GND ................................................... -0.5V to 46V
BOOST – SW Voltage........................................ -0.5V to 6.0V
V

FB

 Voltage ........................................................ -0.5V to 6.0V

EN Voltage ............................................. -0.5V to (V

IN

+ 0.3V)

Output Short-Circuit Current ................................. Continuous
Power Dissipation  ....................................... Internally Limited
Storage Temperature ................................... -65

°

C to +150

°

C

Ambient Temperature with Power Applied ... -40

°

C to +125

°

C

Operating Junction Temperature.................. -40

°

C to +150

°

C

ESD Protection On All Pins:

HBM ................................................................. 3 kV
MM ..................................................................200V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

DC CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, T

A

= +25°C, V

IN

= V

EN

= 12V,  V

BOOST

– V

SW

= 3.3V, 

V

OUT

= 3.3V,  I

OUT

= 100 mA, L = 15 µH, C

OUT

= C

IN

= 2 x 10 µF X7R ceramic capacitors.

Boldface specifications apply over the T

A

 range of -40

o

C to +125

o

C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Voltage

V

IN

4

30

V

Note 1

 (MCP16301)

4.7

36

V

Note 1

 (MCP16301H)

Feedback Voltage

V

FB

0.784

0.800

0.816

V

Output Voltage Adjust Range

V

OUT

2.0

15.0

V

Note 2

Feedback Voltage 
Line Regulation

V

FB

/V

FB

)/

V

IN

0.01

0.1

%/V

V

IN

= 12V to 30V

Feedback Input Bias Current

I

FB

-250

±10

+250

nA

Undervoltage Lockout Start

UVLO

START

3.5

4.0

V

V

IN

 Rising (MCP16301)

3.5

4.7

V

V

IN

 Rising (MCP16301H)

Undervoltage Lockout Stop

UVLO

STOP

2.4

3.0

V

V

IN

 Falling

Undervoltage Lockout 
Hysteresis

UVLO

HYS

0.5

V

Switching Frequency

f

SW

425

500

550

kHz

I

OUT

= 200 mA

Maximum Duty Cycle

DC

MAX

90

95

%

V

IN

= 5V;  V

FB

= 0.7V; 

I

OUT

= 100 mA

Minimum Duty Cycle

DC

MIN

1

%

NMOS Switch On Resistance

R

DS(ON)

0.46

V

BOOST

– V

SW

= 3.3V

NMOS Switch Current Limit

I

N(MAX)

1.3

A

V

BOOST

– V

SW

= 3.3V

Quiescent Current

I

Q

2

7.5

mA

V

BOOST

= 3.3V; 

Note 3

Quiescent Current - Shutdown

I

Q

7

10

µA

V

OUT

= EN = 0V

Maximum Output Current

I

OUT

600

mA

Note 1

EN Input Logic High

V

IH

1.4

V

EN Input Logic Low

V

IL

0.4

V

EN Input Leakage Current

I

ENLK

0.05

1.0

µA

V

EN

= 12V

Note 1:

The input voltage should be > output voltage + headroom voltage; higher load currents increase the input 
voltage necessary for regulation. See characterization graphs for typical input to output operating voltage 
range and UVLO

START

 and UVLO

STOP

 limits.

2:

For V

IN

< V

OUT

, V

OUT

 will not remain in regulation.

3:

V

BOOST

 supply is derived from V

OUT

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

MCP16301/H

DS20005004D-page 4

 2011-2015 Microchip Technology Inc.

Soft-Start Time

t

SS

300

µS

EN Low to High, 
90% of V

OUT

Thermal Shutdown Die 
Temperature

T

SD

150

C

Die Temperature Hysteresis

T

SDHYS

30

C

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, T

A

= +25°C,  V

IN

= V

EN

= 12V,  V

BOOST

– V

SW

= 3.3V, 

V

OUT

= 3.3V

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Junction Temperature Range

T

J

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature

T

J

+150

°C

Transient

Package Thermal Resistances
Thermal Resistance, 6L-SOT-23

JA

190.5

°C/W

EIA/JESD51-3 Standard

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, T

A

= +25°C, V

IN

= V

EN

= 12V,  V

BOOST

– V

SW

= 3.3V, 

V

OUT

= 3.3V,  I

OUT

= 100 mA, L = 15 µH, C

OUT

= C

IN

= 2 x 10 µF X7R ceramic capacitors.

Boldface specifications apply over the T

A

 range of -40

o

C to +125

o

C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

The input voltage should be > output voltage + headroom voltage; higher load currents increase the input 
voltage necessary for regulation. See characterization graphs for typical input to output operating voltage 
range and UVLO

START

 and UVLO

STOP

 limits.

2:

For V

IN

< V

OUT

, V

OUT

 will not remain in regulation.

3:

V

BOOST

 supply is derived from V

OUT

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

 2011-2015 Microchip Technology Inc.

DS20005004D-page 5

MCP16301/H

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, V

IN

= EN = 12V,  C

OUT

= C

IN

= 2 X 10 µF,  L = 15 µH,  V

OUT

= 3.3V,  I

LOAD

= 200 mA,

T

A

= +25°C

.

FIGURE 2-1:

2.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-2:

3.3V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-3:

5.0V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-4:

12V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-5:

15V V

OUT

 Efficiency vs. 

I

OUT

.

FIGURE 2-6:

Maximum Output Current 

vs. V

IN

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

30

40

50

60

70

80

90

0

100

200

300

400

500

600

Efficiency

 (%

)

I

OUT 

(mA)

V

IN

=

30V

V

IN

=

12V

V

IN

= 6V

V

OUT

= 2.0V

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

Efficiency

 (%

)

I

OUT 

(mA)

V

IN

= 30V

V

IN

= 12V

V

IN

= 6V

V

OUT

= 3.3V

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

Efficiency

 (%

)

I

OUT

(mA)

V

IN

= 30V

V

IN

= 12V

V

IN

= 6V

V

OUT

= 5.0V

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

Efficiency

 (%

)

I

OUT

(mA)

V

IN

= 30V

V

IN

= 24V

V

IN

= 16V

V

OUT

= 12.0V

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

Efficiency

 (%

)

I

OUT

(mA)

V

IN

= 30V

V

IN

= 24V

V

IN

= 16V

V

OUT

= 15.0V

0

200

400

600

800

1000

1200

1400

6

12

18

24

30

36

I

OUT

 (mA) 

V

IN 

(V) 

V

OUT

 = 3.3V 

V

OUT

 = 5V 

V

OUT

 = 12V 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

MCP16301/H

DS20005004D-page 6

 2011-2015 Microchip Technology Inc.

Note: Unless otherwise indicated, V

IN

= EN = 12V,  C

OUT

= C

IN

= 2 X 10 µF,  L = 15 µH,  V

OUT

= 3.3V,  I

LOAD

= 200 mA,

T

A

= +25°C

.

FIGURE 2-7:

Input Quiescent Current vs. 

Temperature.

FIGURE 2-8:

Switching Frequency vs. 

Temperature; V

OUT

= 3.3V.

FIGURE 2-9:

Maximum Duty Cycle vs. 

Ambient Temperature; V

OUT

= 5.0V.

FIGURE 2-10:

Peak Current Limit vs. 

Temperature; V

OUT

= 3.3V.

FIGURE 2-11:

Switch R

DSON

 vs. V

BOOST.

FIGURE 2-12:

V

FB

 vs. Temperature; 

V

OUT

= 3.3V.

0

1

2

3

4

5

-40 -25 -10

5

20

35

50

65

80

95 110 125

I

Q

(mA)

Ambient Temperature (°C)

V

OUT

= 3.3V

I

OUT

= 0 mA

V

IN

= 12V

V

IN

= 6V

V

IN

= 30V

455

460

465

470

475

480

485

490

495

500

505

-40

-20

0

20

40

60

80

100

120

Sw

itching Frequency

 (kHz)

Ambient Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 200 mA

94.7

94.8

94.9

95

95.1

95.2

95.3

95.4

95.5

-40 -25 -10

5

20 35 50 65 80 95 110 125

Maximum 

Duty

 Cy

cle (%

)

Ambient Temperature (°C)

V

IN

= 5V

I

OUT

= 200 mA

600

800

1000

1200

1400

1600

1800

-40 -25 -10

5

20

35

50

65

80

95 110 125

Peak Current Limit 

(mA)

Ambient Temperature (°C)

V

IN

= 12V

V

IN

= 30V

V

IN

= 6V

V

OUT

= 3.3V

420

430

440

450

460

470

480

490

500

510

3

3.5

4

4.5

5

RDSON (m

:

)

Boost Voltage (V)

T

A

= 25°C

V

DS

= 100 mV

0.796

0.797

0.798

0.799

0.800

0.801

0.802

-40

-20

0

20

40

60

80

100

120

V

FB

V

o

ltage (V)

Ambient Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 100 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

 2011-2015 Microchip Technology Inc.

DS20005004D-page 7

MCP16301/H

Note: Unless otherwise indicated, V

IN

= EN = 12V,  C

OUT

= C

IN

= 2 X 10 µF,  L = 15 µH,  V

OUT

= 3.3V,  I

LOAD

= 200 mA,

T

A

= +25°C

.

FIGURE 2-13:

Undervoltage Lockout vs. 

Temperature.

FIGURE 2-14:

EN Threshold Voltage vs. 

Temperature.

FIGURE 2-15:

Light Load Switching 

Waveforms.

FIGURE 2-16:

Heavy Load Switching 

Waveforms.

FIGURE 2-17:

Typical Minimum Input 

Voltage vs. Output Current.

FIGURE 2-18:

Start-Up From Enable.

2.50

2.60

2.70

2.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

3.60

3.70

3.80

-40 -25 -10

5

20

35

50

65

80

95 110 125

V

o

ltage (V)

Ambient Temperature (°C)

UVLO Start 

UVLO Stop 

0.40

0.45

0.50

0.55

0.60

0.65

0.70

-40 -25 -10

5

20

35

50

65

80

95 110 125

Enable Threshold 

V

o

ltage (V)

Ambient Temperature (°C)

V

IN

= 12V

V

OUT

= 3.3V

I

OUT

= 100 mA

V

OUT

 = 3.3V

I

OUT

 = 50 mA

V

IN

 = 12V

V

OUT

20 mV/DIV
AC coupled

V

SW

 

5V/DIV

I

L

100 mA/DIV

1 µs/DIV

V

OUT

 = 3.3V

I

OUT

 = 600 mA

V

IN

 = 12V

1 µs/DIV

V

OUT

 = 

20 mV/DIV
AC coupled

V

SW

 =

5V/DIV

I

L

 = 

20 mA/DIV

3.20

3.50

3.80

4.10

4.40

4.70

5.00

1

10

100

1000

Minimum 

Input V

o

ltage (V)

I

OUT

(mA)

To Start

To Run

V

OUT

 = 3.3V

I

OUT

 = 100 mA

V

IN

 = 12V

V

OUT

2V/DIV

100 µs/

V

OUT

2V/DIV

100 µs/DIV

V

EN

2V/DIV

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

MCP16301/H

DS20005004D-page 8

 2011-2015 Microchip Technology Inc.

Note: Unless otherwise indicated, V

IN

= EN = 12V,  C

OUT

= C

IN

= 2 X 10 µF,  L = 15 µH,  V

OUT

= 3.3V,  I

LOAD

= 200 mA,

T

A

= +25°C

.

FIGURE 2-19:

Start-Up from V

IN.

FIGURE 2-20:

Load Transient Response.

FIGURE 2-21:

Line Transient Response.

V

OUT

 = 3.3V

I

OUT

 = 100 mA

V

IN

 = 12V

V

OUT

1V/DIV

V

IN

5V/DIV

100 µs/DIV

V

OUT

 = 3.3V

I

OUT

 = 100 mA to 600

mA

V

OUT

 

AC coupled
100 mV/DIV

I

OUT

 

200 mA/DIV

100 µs/DIV

V

OUT

 = 3.3V

I

OUT

 = 100 mA

V

IN

 = 8V to 12V Step

V

OUT

 

AC coupled
100 mV/DIV

V

IN

 

2V/DIV

10 µs/DIV

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

 2011-2015 Microchip Technology Inc.

DS20005004D-page 9

MCP16301/H

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

3.1

Boost Pin (BOOST)

The high side of the floating supply used to turn the
integrated N-Channel MOSFET on and off is
connected to the boost pin.

3.2

Ground Pin (GND)

The ground or return pin is used for circuit ground
connection. The length of the trace from the input cap
return, output cap return and GND pin should be made as
short as possible to minimize the noise on the GND pin.

3.3

Feedback Voltage Pin (V

FB

)

The V

FB

 pin is used to provide output voltage regulation

by using a resistor divider. The V

FB

 voltage will be

0.800V typical with the output voltage in regulation.

3.4

Enable Pin (EN)

The EN pin is a logic-level input used to enable or
disable device switching and to lower the quiescent
current while disabled. A logic high (> 1.4V) will enable
the regulator output. A logic low (< 0.4V) will ensure
that the regulator is disabled.

3.5

Power Supply Input Voltage Pin 
(V

IN

)

Connect the input voltage source to V

IN

. The input

source should be decoupled to GND with a
4.7 µF-20 µF capacitor, depending on the impedance
of the source and output current. The input capacitor
provides AC current for the power switch and a stable
voltage source for the internal device power. This
capacitor should be connected as close as possible to
the V

IN

 and GND pins. For lighter load applications, a

1 µF X7R (or X5R, for limited temperature range, -40 to
+85°C) ceramic capacitor can be used.

3.6

Switch Pin (SW)

The Switch Node pin is connected internally to the
N-Channel switch and externally to the SW node
consisting of the inductor and Schottky diode. The SW
node can rise very fast as a result of the internal switch
turning on. The external Schottky diode should be
connected close to the SW node and GND.

TABLE 3-1:

PIN FUNCTION TABLE

MCP16301/H 

SOT-23

Symbol

Description

1

BOOST

Boost voltage that drives the internal NMOS control switch. A bootstrap capacitor is
connected between the BOOST and SW pins.

2

GND

Ground pin.

3

V

FB

Output voltage feedback pin. Connect V

FB

 

to an external resistor divider to set the

output voltage.

4

EN

Enable pin. Logic high enables the operation. Do not allow this pin to float.

5

V

IN

Input supply voltage pin for power and internal biasing.

6

SW

Output switch node. This pin connects to the inductor, the freewheeling diode and the
bootstrap capacitor.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005004D-html.html
background image

MCP16301/H

DS20005004D-page 10

 2011-2015 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download