HV9989 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

 2014 Microchip Technology Inc.

DS20005296B-page 1

HV9989

Features

• Three out-of-phase constant-current boost 

converters

• Current loop closed, with sub-microsecond PWM-

dimming pulses, supports PWM dimming >20 kHz

• Internal 40V linear regulator
• External clock input
• External individual reference inputs
• Individual PWM dimming inputs 
• Programmable slope compensation
• +0.2A/-0.4A gate drivers 
• Independent short circuit protection with hiccup 

for each channel

• Latching output open-circuit protection

Applications

• LCD panel back-lighting

Description

HV9989 is a three-channel peak current mode PWM
controller designed to drive single switch converters in
a constant-output current mode. It can be used for driv-
ing either RGB LEDs or multiple channels of white
LEDs. 

HV9989 features a proprietary PWM-dimming control
algorithm that achieves a dimming pulse of a few hun-
dred nanoseconds from a Continuous-Conduction
Mode (CCM) or Discontinuous-Conduction Mode
(DCM) boost converter, while maintaining the instanta-
neous LED constant current determined by the external
reference voltage input. This feature permits a dimming
frequency outside of the audible range, and can also
yield a wide dimming ratio in excess of 10,000:1 at low
dimming frequency. Each of the three channels fea-
tures individual PWM-dimming and reference voltage
inputs.

The switching frequencies of the three converters are
controlled by an external clock signal, such that the
channels operate at a switching frequency of 1/12th the
external clock frequency, and are positioned 120

°

 out-

of-phase to reduce the input current ripple. 

HV9989 provides a full protection feature set, including
output-short and open-circuit protection, for each indi-
vidual channel that is independent from the other chan-
nels.

HV9989 is powered by a built-in 40V linear regulator.

Three-Channel CCM/DCM Boost LED Driver

with Sub-Microsecond PWM Dimming

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

HV9989

DS20005296B-page 2

 2014 Microchip Technology Inc.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced. 
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at 

docerrors@microchip.com

. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; 

http://www.microchip.com

• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our web site at 

www.microchip.com

 to receive the most current information on all of our products.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

 2014 Microchip Technology Inc.

DS20005296B-page 3

HV9989

Pin Diagram

Typical Application Circuit 

40-Lead QFN

VDD3

FLT3

CS3

COMP3

FDBK3

REF3

OVP3

CLK

FLG

VIN_SNS

GND

1

10

11

20

40

30

21

31

VDD1

FLT1

CS1

COMP1

FDBK1

REF1

OVP1

VIN

VDD

EN

GND

COMP2

REF2

OVP2

SKIP

SC

PWMD1

PWMD2

PWMD3

NC

GATE1

GND1

FDBK2

CS2

FLT2

GATE2

GND2

VDD2

GND3

GATE3

GATE1

CS1

GND1

OVP1

FLT1

FDBK1

GATE2

CS2

GND2

OVP2

FLT2

FDBK2

GATE3

CS3

GND3

OVP3

FLT3

FDBK3

VIN

VIN_SNS

FLG

VDD

VDD1

VDD2

VDD3

PWMD1

PWMD2

PWMD3

REF1

REF2

REF3

EN

CLK

GND

COMP1

COMP2

COMP3

SKIP

SC

HV9989

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

HV9989

DS20005296B-page 4

 2014 Microchip Technology Inc.

1.0

 ELECTRICAL 
CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS †

V

IN

 to GND........................................................ -0.5V to +45V

V

DD

 to GND, V

DD

 1-3 to GND..........................--0.3V to +10V

All other pins to GND .............................-0.3V to (V

DD

 + 0.3V)

Operating temperature ....................................-40°C to +85°C
Storage temperature .....................................-65°C to +150°C
Continuous power dissipation (T

A

 = +25°C).............4000 mW

† Notice: Stresses above those listed under “Absolute Maxi-
mum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at those or any other conditions, above those indi-
cated in the operational listings of this specification, is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.

1.1

ELECTRICAL SPECIFICATIONS

TABLE 1-1:

ELECTRICAL CHARACTERISTICS  (SHEET 1 OF 3)

1

Symbol

Parameter

Note

Min

Typ

Max

Units Conditions

Input

VINDC

Input DC supply voltage 

1

10

40

V

DC input voltage

IINSD

Shut-down mode supply 
current

1

500

μA

EN = 0.8V

IIN

Supply current

4.5

mA

EN ≥ 2.0V; PWMD1 = PWMD2 
= PWMD3 = GND

Internal Regulator

VDD

Internally regulated voltage

1

7.0

8.1

V

VIN= 11V; EN = GND;
External IDD = 30mA

∆ VDD

Load regulation

80

mV

VIN= 11V; EN = GND;
External IDD(A) = 10mA, 
IDD(B) = 30mA
∆ VDD = VDD(A) - VDD(B)

UVLO

VDD under voltage lockout 
threshold

5.9

6.4

V

VDD falling

UVLOHYST

VDD under voltage hystere-
sis

-

500

-

mV

VDD rising

PWM Dimming (PWMD1, PWMD2 and PWMD3)

VPWMD(lo) PWMD input low voltage

1

0.8

V

VPWMD(hi) PWMD input high voltage

1

2.0

V

RPWMD

PWMD pull down resistor

80

160

kΩ

VPWMD = 5.0V

Td

Delay time to PWMD latch

2

50

150

ns

TDP

DMAX inhibit delay

2

400

ns

Note 1:

Applies over the full operating ambient temperature range of 0°C < T

A

 < +85°C.

2:

For design guidance only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

 2014 Microchip Technology Inc.

DS20005296B-page 5

HV9989

Gate (GATE1, GATE2 and GATE3)

ISOURCE

Gate short circuit current, 
sourcing

2

0.2

A

VGATE = 0V

ISINK

Gate sinking current

2

0.4

A

VGATE = VDD 

TRISE

Gate output rise time

50

85

ns

CGATE = 1.0nF

TFALL

Gate output fall time

25

45

ns

CGATE = 1.0nF

DMAX

Maximum duty cycle

2

91

%

Over-voltage Protection (OVP1, OVP2 and OVP3)

VOVP,rising Over-voltage rising trip point

1

4.7

5.4

V

OVP rising

Current Sense (CS1, CS2 and CS3)

TBLANK

Leading edge blanking

1

210

460

ns

TDELAY

Delay to GATE

250

ns

50mV overdrive to the current 
sense comparator 

Slope Compensation (SC)

CSC(EFF) Effective capacitance

2

0.9

1.0

1.1

nF

∆VSC

VDD-to-SC voltage drop

1

1.25

3.25

V

RSC = 120kΩ

Internal Transconductance Opamp (Gm1, Gm2 and Gm3)

GB

Gain bandwidth product

2

1.0

MHz

75pF capacitance at COMP pin

AV

Open loop DC gain

65

dB

Output open

KCOMP

COMP-to-CS divider ratio

2

1/12

VCM

Input common-mode range

2

-0.3

3.0

V

VO

Output voltage range

2

0.7

6.75

V

Gm

Transconductance

500

700

μA/V

VOFFSET Input offset voltage

-5.0

5.0

mV

IBIAS

Input bias current

2

0.5

1.0

nA

TR

Recovery delay

2

120

ns

FDBK = 0V, REF = 0.5V, 
PWMD rising

Oscillator (CLOCK)

fOSC1

Oscillator frequency

500

kHz

FCLOCK = 6.0MHz

KSW

Oscillator divider ratio

2

12

-

Phi1

GATE1-GATE2 phase delay

2

120

°

Phi1

GATE1-GATE3 phase delay

2

240

°

Oscillator (CLOCK)

TOFF

CLOCK low time

2

50

ns

TON

CLOCK high time

2

50

ns

VCLOCK,HI CLOCK input high

1

2.0

V

VCLOCK,L

O

CLOCK input low

1

0.8

V

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED) (SHEET 2 OF 3)

1

Symbol

Parameter

Note

Min

Typ

Max

Units Conditions

Note 1:

Applies over the full operating ambient temperature range of 0°C < T

A

 < +85°C.

2:

For design guidance only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

HV9989

DS20005296B-page 6

 2014 Microchip Technology Inc.

Disconnect Driver (FLT1, FLT2 and FLT3)

TRISE,FAU

LT

Fault output rise time

300

ns

330 pF capacitor at FLTx pin

TFALL,FAU

LT

Fault output fall time

200

ns

330 pF capacitor at FLTx pin

Short Circuit Protection (all three channels)

TBLANK,S

C

Blanking time

1

400

800

ns

GSC

Gain for short circuit 
comparator

1.9

2.0

2.1

Vomin

Minimum current limit 
threshold

2

0.15

V

REF = GND

TOFF

Propagation time for short 
circuit detection

250

ns

FDBK = 2 • REF + 0.1V

HICCUP timer

IHC,SOUR

CE

Current source at SKIP pin 
used for hiccup mode pro-
tection

10

μA

∆VCAP

SKIP voltage swing

2

4.0

V

Low output detection (OVP1, OVP2, OVP3, VIN_SNS, FLG)

VOVP_OS_

F

OVP offset voltage

1

-25

25

mV

OVP falling

VOVP_OS_

R

OVP offset voltage

40

70

mV

OVP rising

VFLG(LOW

)

FLG low voltage

0

0.4

V

I(FLG) = 1.0mA

VIN_CM

Input common-mode range

2

-0.3

5.0

V

1

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED) (SHEET 3 OF 3)

1

Symbol

Parameter

Note

Min

Typ

Max

Units Conditions

Note 1:

Applies over the full operating ambient temperature range of 0°C < T

A

 < +85°C.

2:

For design guidance only.

TABLE 1-2:

THERMAL RESISTANCE

Package

θja

40-Lead QFN

24°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

 2014 Microchip Technology Inc.

DS20005296B-page 7

HV9989

2.0

 

PIN DESCRIPTION

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN DESCRIPTION  (SHEET 1 OF 2)

Pin #

Name

Description

1

VDD1

Power supply pin for channel 1. It can either be connected to the VDD pin or supplied 
with an external power supply. It must be bypassed with a low ESR capacitor to their 
respective GND1 (at least 0.1 μF). All VDD pins (VDD, VDD1-3) must be connected 
together externally.

2

FLT1

Drives external disconnect switches. The disconnect switches are used to protect the 
LEDs in case of fault conditions, and also help to provide excellent PWM dimming 
response by disconnecting and reconnecting the LEDs from the output capacitor during 
PWM dimming.

3

CS1

Senses the source current of the external power FET used with channel 1. It includes a 
built-in 210 ns (min) blanking timer.

4

COMP1

Stable closed loop control can be accomplished by connecting a compensation network 
between the COMP pin and its GND.

5

FDBK1

Provides output current feedback for channel 1 by using a current sense resistor.

6

REF1

The voltage at this pin sets the output current level for channel 1. Recommended voltage 
range for this pin is 0V-1.25V.

7

OVP1

Provides the over voltage protection for the converter. When the voltage at this pin 
exceeds 5V, channel 1 of the HV9989 is turned off. The fault is reset by re-enabling the 
IC using the EN pin.

8

VIN

Input of the internal 40V linear regulator.

9

VDD

Output of the linear regulator. It maintains a regulated 7.75V as long as the voltage of the VIN 
pin is between 10 and 40V. It must be bypassed with a low ESR capacitor to GND (at least 0.1 
μF). This pin can be used as a power supply for the three channels.

10

EN

When the pin is pulled below 0.8V, the IC goes into a standby mode and draws minimal current.

11

GND

Ground connection for the common circuitry in the HV9989.

12

COMP2

Stable closed loop control can be accomplished by connecting a compensation network 
between the COMP pin and its GND.

13

REF2

The voltage at this pin sets the output current level for channel 2. Recommended voltage 
range for this pin is 0-1.25V.

14

OVP2

Provides the over voltage protection for the converter. When the voltage at this pin 
exceeds 5V, channel 2 of the HV9989 is turned off. The fault is reset by re-enabling the 
IC using the EN pin.

15

SKIP

Programs the hiccup timer for short circuit fault on any of the three channels. A capacitor 
to GND programs the hiccup time.

16

SC

Sets the current to program slope compensation voltage ramp at the three CS inputs. 
Connect a resistor to GND.

17

PWMD1

Used to PWM dim channel 1.

18

PWMD2

Used to PWM dim channel 2.

19

PWMD3

Used to PWM dim channel 3.

20

NC

No connection.

21

VIN_SNS

When voltage at this pin exceeds any of the voltages at OVP 1-3, the high-impedance 
state is issued at the FLG output.

22

FLG

Open-drain logic output reporting a high-impedance state in the case of any of the OVP 
1-3 voltages falling below the VIN_SNS voltage. A hysteresis is added at VIN_SNS to 
avoid oscillation.

23

CLK

Clock input for the HV9989. The input to the CLK pin should be a TTL compatible square 
wave signal. The three channels will switch at 1/12th the switching frequency of the sig-
nal applied at the CLK pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

HV9989

DS20005296B-page 8

 2014 Microchip Technology Inc.

24

OVP3

Provides the over voltage protection for the converter. When the voltage at this pin 
exceeds 5V, channel 3 of the HV9989 is turned off. The fault is reset by re-enabling the 
IC using the EN pin.

25

REF3

The voltage at this pin sets the output current level for channel 3. Recommended voltage 
range for this pin is 0V-1.25V.

26

FDBK3

Provides output current feedback for channel 3 by using a current sense resistor.

27

COMP3

Stable closed loop control can be accomplished by connecting a compensation network 
between the COMP pin and its GND.

28

CS3

Used to sense the source current of the external power FET used with channel 3. It 
includes a built-in 210 ns (min) blanking timer.

29

FLT3

Used to drive external disconnect switches. The disconnect switches are used to protect 
the LEDs in case of fault conditions and also help to provide excellent PWM dimming 
response by disconnecting and reconnecting the LEDs from the output capacitor during 
PWM dimming.

30

VDD3

Power supply pin for channel 3. It can either be connected to the VDD pin or supplied 
with an external power supply. It must be bypassed with a low ESR capacitor to their 
respective GND3 (at least 0.1 μF). All VDD pins (VDD, VDD1-3) must be connected 
together externally.

31

GATE3

Output gate driver for the external N-channel power MOSFET.

32

GND3

Ground return for channel 3. It is recommended that all the GNDs of the IC be connected 
together in a STAR connection at the input GND terminal to ensure best performance.

33

VDD2

Power supply pin for channel 2. It can either be connected to the VDD pin or supplied 
with an external power supply. It must be bypassed with a low ESR capacitor to their 
respective GND2 (at least 0.1 μF). All VDD pins (VDD, VDD1-3) must be connected 
together externally.

34

GND2

Ground return for channel 2. It is recommended that all the GNDs of the IC be connected 
together in a STAR connection at the input GND terminal to ensure best performance.

35

GATE2

Output gate driver for the external N-channel power MOSFET.

36

FLT2

Used to drive external disconnect switches. The disconnect switches are used to protect 
the LEDs in case of fault conditions and also help to provide excellent PWM dimming 
response by disconnecting and reconnecting the LEDs from the output capacitor during 
PWM dimming.

37

CS2

Used to sense the source current of the external power FET used with channel 2. It 
includes a built-in 210 ns (min) blanking timer.

38

FDBK2

Provides output current feedback for channel 2 by using a current sense resistor.

39

GND1

Ground return for channel 1. It is recommended that all the GNDs of the IC be connected 
together in a STAR connection at the input GND terminal to ensure best performance.

40

GATE1

Output gate driver for the external N-channel power MOSFET.

TABLE 2-1:

PIN DESCRIPTION (CONTINUED) (SHEET 2 OF 2)

Pin #

Name

Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

 2014 Microchip Technology Inc.

DS20005296B-page 9

HV9989

3.0

FUNCTIONAL DESCRIPTION

3.1

Power Topology

HV9989 is a three-channel, switch-mode converter,
LED driver designed to control a continuous conduction
mode boost or SEPIC device in a constant frequency
mode. The IC includes an internal linear regulator,
which operates from 10 to 40V input voltages. This
device can also be powered directly using the VDD
pins and bypassing the internal linear regulator.
HV9989 includes features typically required in LED
drivers such as open LED protection, output short cir-
cuit protection, linear and PWM dimming, programma-
ble input current limiting and accurate control of the
LED current. A high current gate drive output enables
the controller to be used in high power converters.
HV9989 is ideally suited for back-light applications
using either RGB or multi-channel white LED
configurations.

3.2

Power Supply to the IC (VIN, VDD, 
VDD1-3)

The HV9989 can be powered directly from its VIN pin
that takes a voltage up to 40V. When a voltage is
applied at the VIN pin, the HV9989 tries to maintain a
constant 7.75V (typ) at the VDD pin. The regulator also
has a built in under-voltage lockout which shuts off the
IC if the voltage at the VDD pin falls below the UVLO
threshold. By connecting this VDD pin to the individual
VDD pins of the three channels, the internal regulator
can be used to power all three channels in the IC. 

In case the internal regulator is not utilized, an external
power supply (7-9V) can be used to power the IC. In
this case, the power supply is directly connected to the
VDD pins and the VIN pin is left unconnected. 

All four VDD pins must be bypassed by a low ESR
capacitor (≥0.1 µF) to provide a low impedance path for
the high frequency current of the output gate driver.
These capacitors must be referenced to the individual
grounds for proper noise rejection. Also, in all cases,
the four VDD pins must be connected together
externally.

The input current drawn from the external power supply
(or VIN pin) is a sum of the 4 mA current drawn by the
all the internal circuitry (for all three channels) and the
current drawn by the gate drivers (which in turn
depends on the switching frequency and the gate
charge of the external FET). 

In the preceding equation, f

S

 is the switching frequency

of the converters and Q

G1-3

 are the gate charges of the

external FETs (which can be obtained from the FET
data sheets).

The EN pin is a TTL-compatible input used to disable
the IC. Pulling the EN pin to GND will shut down the IC
and reduce the quiescent current drawn by the IC to be
lower than 500 μA. If the enable function is not
required, the EN pin can be connected to VDD.

3.3

Clock Input (CLK)

The switching frequency of the converters are set by
using a TTL-compatible square wave input at the CLK
pin. The switching frequencies of the three converters
will be 1/12th the frequency of the external clock.

3.4

Current Sense (CS1-3)

The current sense input is used to sense the source
current of the switching FET. The CS input of the
HV9989 includes a built-in 100 ns (minimum) blanking
time to prevent spurious turn off due to the initial current
spike when the FET turns on. 

The IC includes an internal resistor divider network,
which steps down the voltage at the COMP pins by a
factor of 12 (including the internal diode drop). This
stepped-down voltage is given to one of the
comparators as the current reference. 

It is recommended that the sense resistor R

CS

 be cho-

sen so as to provide about 250 mV current sense signal.

3.5

Slope Compensation

For continuous conduction mode converters operating in
the Constant Frequency mode, slope compensation
becomes necessary to ensure stability of the peak cur-
rent mode controller, if the operating duty cycle is greater
than 0.5. Choosing a slope compensation which is one
half of the down slope of the inductor current ensures
that the converter will be stable for all duty cycles. 

Slope compensation in the HV9989 can be pro-
grammed by a single resistor at SC input common for
all three channels. Assuming a down slope of DS (A/
ms) for the inductor current, the SC resistor can be
computed as:

where R

CS

 is the current sense resistor at the CS

X

inputs.

I

IN

4mA

Q

G1

Q

G2

Q

G3

+

+

+

f

s

=

R

SC

2

V

DD

V

SC

DS 10

6

R

CS

C

SC EFF

--------------------------------------------------------------

11

V

DS R

CS

C

SC EFF

-----------------------------------------------

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005296B-html.html
background image

HV9989

DS20005296B-page 10

 2014 Microchip Technology Inc.

3.6

Control of the LED Current

The LED currents in the HV9989 are controlled in a
closed-loop manner. The current references which set
the three LED currents are provided at the REF pins
(REF1-3). This reference voltage is compared to the
FDBK voltages (FDBK1-3) which sense the LED cur-
rents in the three channels using current sense resis-
tors. The HV9989 includes three 1MHz
transconductance amplifiers with tri-state outputs,
which are used to close the feedback loops and provide
accurate current control. The compensation networks
are connected at the COMP pins (COMP1-3).

The outputs of the op amps are buffered and connected
to the current sense comparators using 12:1 dividers.
The buffer helps to prevent the integrator capacitor from
discharging during the PWM dimming state.

The outputs of the op amps are controlled by the signal
applied to the PWMD pins (PWMD1-3). When PWMD
is high, the output of the op amp is connected to the
COMP pin. When PWMD is low, the output is left open.
This enables the integrating capacitor to hold the
charge when the PWMD signal has turned off the gate
drive. When the IC is enabled, the voltage on the inte-
grating capacitor will force the converter into steady
state almost instantaneously. 

3.7

Linear Dimming

Linear dimming can be accomplished in the HV9989 by
varying the voltages at the REF pins. Note that since
the HV9989 is a peak current mode controller, it has a
minimum on-time for the GATE outputs. This minimum
on-time will prevent the converters from completely
turning off even when the REF pins are pulled to GND.
Thus, linear dimming cannot accomplish true zero LED
current. To get zero LED current, PWM dimming has to
be used. Note that different signals can be connected
to the three REF pins if desired, and they need not be
connected together.

Due to the offset voltage of the short circuit comparator,
as well as the non-linearity of the X2 gain stage, pulling
the REF pin very close to GND would cause the inter-
nal short circuit comparator to trigger and shut down
the IC. To overcome this, the output of the gain stage is
limited to 125mV (minimum), allowing the REF pin to
be pulled all the way to 0V without triggering the short
circuit comparator.

3.8

PWM Dimming

PWM dimming in HV9989 can be accomplished using
a TTL-compatible square wave source at the PWMD1-
3 pins.

HV9989 has an enhanced PWM dimming capability,
which allows PWM dimming to widths less than one
switching cycle with no drop in the LED current.

The enhanced PWM dimming performance of the
HV9989 can be best explained by considering typical
boost converter circuits without this functionality. When
the PWM dimming pulse becomes very small (less than
one switching cycle for a DCM design or less than a few
switching cycles for a CCM design), the boost con-
verter is turned off before the input current can reach its
steady state value. This causes the input power to
drop, which is manifested in the output as a drop in the
LED current (

Figure 3-1

 and 

Figure 3-2

 for a CCM

design).

FIGURE 3-1:

PWM DIMMING WITH 
DIMMING ON-TIME FAR 
GREATER THAN ONE 
SWITCHING TIME PERIOD

FIGURE 3-2:

PWM DIMMING WITH 
DIMMING ON-TIME 
EQUAL TO ONE 
SWITCHING TIME PERIOD

In the above figures, I

O

(SS) and I

L

(SS) refer to the

steady state values (PWMD = 100%) for the output cur-
rent and inductor current respectively. As can be seen,
the inductor current does not rise enough to trip the CS
comparator. This causes the closed loop amplifier to
lose control of the LED current and COMP rails to VDD.

Note:

This control IC is a peak current mode control-
ler; therefore, pulling the REF pin to zero will
not cause the LED current to go to zero. The
converter will still be operating at its minimum
on-time causing a very small current to flow
through the LEDs. To get zero LED current,
the PWMD input has to be pulled to GND.

PWMD

I

LED

I

INDUCTOR

I

O

(SS)

I

O

(SS)

PWMD

I

LED

I

INDUCTOR

I

O

(SS)

I

L

(SS)

Maker
Microchip Technology Inc.
Datasheet PDF Download